
A Realistic Variable Voltage Scheduling Model for
Real-Time Applications ∗

Bren Mochocki Xiaobo Sharon Hu
Department of CSE

University of Notre Dame
Notre Dame, IN 46556, USA

{bmochock,shu}@cse.nd.edu

Gang Quan
Department of CSE

University of South Carolina
Columbia, SC 29208, USA

gquan@cse.sc.edu

ABSTRACT
Voltage scheduling is indispensable for exploiting the benefit
of variable voltage processors. Though extensive research has
been done in this area, current processor limitations such as
transition overhead and voltage level discretization are often
considered insignificant and are typically ignored. We show
that for hard, real-time applications, disregarding such details
can lead to sub-optimal or even invalid results. We propose
two algorithms that guarantee valid solutions. The first is a
greedy yet simple approach, while the second is more com-
plex but significantly reduces energy consumption under cer-
tain conditions. Through experimental results on both real
and randomly generated systems, we show the effectiveness
of both algorithms, and explore what conditions make it bene-
ficial to use the complex algorithm over the basic one.

1. INTRODUCTION
The demands for mobile and pervasive computing devices

have made low power computing a critical technology. One
of the most effective ways of reducing energy is so called Dy-
namic Voltage Scaling (DVS), i.e., dynamically varying sup-
ply voltage and frequency (or speed) simultaneously. Several
variable voltage processors are appearing in the market e.g.,
Intel’s XScale [7], AMD’s Mobile Athlon [1], and Transmeta’s
Crusoe processor [5]. Several research groups have also de-
veloped their own variable voltage systems. Burd and Broder-
sen implemented a variable voltage system using the ARM8
core [2], while Pouwelse, Langendoen and Sips constructed a
similar system using the SA-1100 [19]. To effectively exploit
the benefit provided by a variable voltage processor, careful
selection of voltage levels and frequencies, often referred to as
voltage scheduling, is crucial.

While substantial research, e.g., [6, 8, 14, 21, 23, 9, 10, 11,

∗This work is supported in part by NSF under grant numbers
MIP-9701416, CCR-9988468 and CCR02-08992.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 2001 ACM 0-89791-88-6/97/05 ...$5.00.

20, 18, 17, 22] has gone into developing efficient algorithms
to utilize this emerging technology, often there is a sizeable
gap between the simulated environment and an actual, tangi-
ble implementation. A dominating trend is to ignore seem-
ingly insignificant implementation details during the research
process to simplify the problem, e.g. [8, 9, 18, 17, 21, 22,
23]. One such detail is voltage transition overhead (or sim-
ply transition overhead for brevity), i.e., the time and energy
overhead incurred whenever a voltage transition takes place.
Another detail is the discrete voltage levels, i.e., some variable
voltage processors provide only a limited number of voltage
levels. No quantitative analysis has been published regarding
the validity of these simplifications. One potential problem
is that scheduling algorithms that ignore this transition effect
may produce sub-optimal or even completely invalid results,
especially when applied to real-time systems, where missed
deadlines could significantly degrade performance.

Several researchers do address the timing overhead and/or
discrete voltage level issues in their research. For example,
in [10] and [11], Leeet al propose a time slicing method to
dynamically schedule a set of periodic tasks. However, the
energy overhead is ignored which can grow rapidly with the
slicing granularity. Manzaket al [14] address the transition
delay by literally increasing the total required execution time
or decreasing the processor utilization. Such adjustments will
mostly likely lead to either a deadline miss or an over pes-
simistic design. Chandrasenaet al [4] introduce a rate selec-
tion algorithm for variable voltage processor with limited volt-
age levels, but it provides no deadline guarantee for the tasks.
In [6], Hong et al present a heuristic algorithm that includes
the transition overhead during static scheduling, but requires
both continuous control over the voltage level and that the pro-
cessor continues executing instructions during the transition,
neither of which is guaranteed in actual systems [1, 2, 5, 7,
11, 19].

The problem we are interested in is the off-line scheduling
of real-time tasks while accounting for the practical limitations
of currently available processors. In this paper, we show that
transition overhead can cause deadlines to be missed and, if
accounted for in a naïve manner, can be a considerable source
of energy consumption above the optimal schedule. Then we
present a simple, yet not intuitively obvious method of ac-
counting for transition timing overhead. We further improve
on this method to produce a better energy saving performance
and to integrate other practical considerations such as transi-
tion energy overhead and discrete voltage levels. Through ex-

perimental results, we demonstrate quantitatively that the tran-
sition overhead and discrete voltage levels can significantly in-
crease the power consumption for a voltage schedule. We also
how effectively our proposed algorithms can deal with these
factors. To the best of our knowledge, this is the first work
that accounts for transition overhead (both time and energy)
and discrete voltage levels in the process of deriving voltage
schedules for real-time applications.

The remainder of this paper is organized as follows. Sec-
tion 2 summarizes the relevant background material, including
system models, motivation examples, and so forth. Section 3
describes a basic algorithm to deal with transition timing over-
head. Section 4 improves upon the basic algorithm in terms of
energy saving and accounts for energy overhead and discrete
voltage levels, in addition to the timing overhead. Section 5
presents our experimental results, and section 6 concludes the
paper.

2. PRELIMINARIES
The real-time system we are interested in consists of a set

of jobsJ = {J1...Jn}, each of which is characterized with re-
lease timesr i , deadlinesdi , and worst case execution cycles,
ci . The job set is scheduled with EDF scheme [12]. Through-
out this paper, we will often make a reference to the optimal
off-line scheduling algorithm (LPEDF) for an EDF priority
system without transition overhead [23]. The general idea of
the algorithm is to iteratively identify the critical interval, i.e.,
the interval that requires the highest speed in order to finish
the jobs within it on time, and then squeeze the critical inter-
val into one single point. Readers can refer to [23] for more
details on LPEDF.

For the variable voltage processor used in our system, we
assume that its power is a simple convex function of speed,
i.e.,P(s)≈ s3, and its speed is proportional to the voltage, i.e.,
s(V)≈V (we use processor voltage and speed interchangeably
because of their one-to-one correspondence.) These assump-
tions hold whenV >> VT (VT is the threshold voltage) [3],
which is usually true in practice. Also, the processor can work
at a set of voltage levels,V = {V1, ...,Vm}. For simplicity,
the processor voltage is normalized withVmax= 1. During the
scheduling process, a constanttransition interval(denoted as
∆t) and a variabletransition energy overhead(denoted as∆E)
which may vary depending on the start and ending voltage lev-
els, are associated to each voltage transition.

A seemly true but misleading assumption for the variable
voltage processor is that the time transition overhead∆t is
proportional to the difference between the starting and end-
ing transition voltage. In several variable voltage systems the
Phase-Locked Loop used to set the clock frequency requires
a fixed amount of time to lock on a new frequency. This
lock time is independent of the source and target frequencies,
and is typically larger than the time it takes for the voltage to
change [1, 19]. It is also possible that the maximum voltage
change rate is asymmetric for rising and falling voltages [19].
A more reasonable assumption is therefore to assume that the
transition time overhead as a constant∆t, as we use in this pa-
per. Another common assumption is that instructions can be
executed during a voltage/speed transition. As pointed out by
Burd and Broderson [2], designing a processor that can exe-
cute instructions during transitions can be quite difficult. In
fact, for this reason, actual processors/systems, e.g., AMD’s

S

p
e

e
d

0
 6
 10
 12

1

0.75

T1

T2

Time

(b)

T3

Time
0
 5
 6
 10
 12

P

r
i

o

r
i

t
y

(a)

J
1

J
2

J
3

C
2
= 4

C
3
= 2

C
1
= 4

Figure 1: (a) An example set of jobs. (b) Optimal voltage
schedule with LPEDF.

Time

S

p
e

e
d

0
 5
 6
 10

1

0.9

1.5

11
 12

T2

T3

T1

Figure 2: The voltage schedule from Fig. 1(b) modified by
inserting transition overhead.

mobile Athlon processor [1] and the SA-1100 based system
in [19], often do not allow instructions to be executed during
a transition. Simply ignoring this implementation detail can
have a significant negative impact on resulting system perfor-
mance, as we will show later. Hence, in this paper, we assume
that no instructions can be executed during a transition inter-
val.

To see the possible impacts of ignoring the transition over-
head, let us look at a simple example. Consider the task set
in Figure 1(a), which contains three jobs (where4 represents
a job release time and5 a job deadline). The optimal volt-
age schedule by LPEDF, assuming both∆t and∆E are zero,
is given in Figure 1(b). Suppose the same set of jobs is to
be scheduled on a variable voltage processor with∆t = 1. One
approach could be to simply insert a transition interval on both
sides ofT2, the interval with the largest speed, and then adjust
the speeds ofT1 andT3 accordingly, as shown in Figure 2.

There are several problems with the schedule in Figure 2.
First,S3’s speed has surpassed the normalized maximum of 1,
so the required speed is unachievable. Second,J3 will miss
its deadline even if the speed of 1.5 is possible. Note that the
schedule in Figure 1(b) executes a part ofJ3 from t = 5.3 to
6. On the other hand, the schedule in Figure 2 requires that
the same part ofJ3 be executed fromt = 4.4 to 5, which is

S

p
e

e
d

0
 6
 10
 12

1

0.8

Time

2

5
 11

T3

T2

T1

Figure 3: The voltage schedule obtained by simple modifi-
cation of LPEDF.

impossible sinceJ3 is not released until 5. Given thatT2 is
completed utilized byJ2, J3 can only be executed fromt =
11 to 12, which requires the speed inT3 be increased to 2!

Obviously, the problem of accounting for transition over-
head is not just a simple process of locally adjusting the opti-
mal solution by LPEDF. Care must be taken during the voltage
scheduling process to ensure that the generated schedules are
valid. In the following, we will propose our approaches to
solve this problem. To simplify our discussion, we will first
assume that∆E is negligible and processor can vary continu-
ously. We will remove these assumptions later.

3. A BASIC ALGORITHM
To integrate the voltage transition timing overhead into LPEDF,

a reasonable way is to extend the critical interval to accommo-
date the timing overhead and adjust its speed and the neigh-
boring jobs accordingly such that the effect of fixing the crit-
ical interval can be propagated to the construction of future
critical intervals. We propose the modification to LPEDF as
follows: Instead of compressing just the critical interval,T =
[ts, t f], down to a single time point, we compress the interval
[ts−∆t, t f +∆t] and adjust the job sets accordingly. Applying
this modified algorithm to the system in Figure 1(a), we obtain
a new voltage schedule shown in Figure 3.

Readers would immediately point out that the schedule in
Figure 3 is still not valid since the required voltage is higher
than the maximum available. Of course, such voltage over-
shoots must be eliminated. In general, our simple modification
of LPEDF may lead to voltage schedules in which the voltage
of a critical interval is higher than the voltage of another criti-
cal interval obtained in an earlier iteration. We will refer to this
problem asmonotonicity violation. Monotonicity violation oc-
curs when less time is available to execute the instructions in
jobs that overlap a transition interval. To guarantee that all the
voltage speeds are less than the maximal one and given that en-
ergy consumption increases faster for higher voltage levels, it
is desirable to have monotonically non-increasing voltage lev-
els for the subsequently identified critical intervals. To handle
the above problem, we have observed that any critical interval
that violates the monotonically non-increasing property must
be adjacent to the critical interval identified in the immediately
previous iteration. Readers can refer to [15] for the detailed il-
lustrations and proofs. This observation helps us in proposing

t
i
t
i
-

 t
 t
i
+

 t

Time

P

r
i

o

r
i

t
y

Figure 4: Job arrangements about the intervalTi squeezed
down into a single time point ti, which will cause execution
violations.

an algorithm which will always produce a voltage schedule
with monotonically non-increasing voltage levels.

Furthermore, there is one additional complication with the
simple modification introduced at the beginning of this sec-
tion. Note that the transition interval is on the order of hun-
dreds of microseconds, i.e., thousands of cycles. It is possible
the executions of some jobs fall completely inside a transition
interval. Moreover, some jobs may have their release times
fall in the left transition, and/or their deadlines fall in the right
transition. These jobs are not correctly taken care of during the
critical interval construction simply because they are not to-
tally contained in interval[ts, t f]. We will refer to this problem
asexecution violationsince the schedule will fail to execute
such jobs. Possible arrangements that cause execution viola-
tions are illustrated in Figure 4. To solve these problems, we
propose a more delicate algorithm as shown in Algorithm 1.

Algorithm 1 LPEDF with transition timing overhead
1: Input: The job setJ , and time transition overhead length,

∆t.
2: Output: A valid voltage ScheduleT .
3: i = 0;
4: while J is not emptydo
5: i++; //The critical interval index
6: Find the next intervalTi = [ts(i), t f (i)] with the maximal

speedsi ;
7: if (i > 1 AND si > s(i−1)) //monontonicity violation

then
8: J = Jbackup; //Restore related job timing information
9: Adjust ts(i) andt f (i);

10: ts(i−1) = min{ts(i), ts(i−1)};
11: t f (i−1) = max{t f (i), t f (i−1)};
12: i−−;
13: end if
14: while (∃Ji ∈ J AND [r i ,di] ⊆ [ts(i)− ∆t, t f (i) + ∆t]

AND [r i ,di]* [ts(i), t f i]) do
15: ts(i) = min{ts(i), r i};
16: t f (i) = max{t f (i),di};
17: end while
18: Jbackup= J ; //Backup job timing requirements
19: Remove all jobs inJ that fall within Ti = [ts(i) −

∆t, t f i +∆t];
20: SqueezeTi into a single time point and adjust the rest

of jobs correspondingly;
21: end while

The general idea of Algorithm 1 is: if monotonicity is en-
countered, the previous critical interval is extended to include
all jobs in the current interval, and the resultant interval may
need to be extended further to cover all the jobs that would oth-
erwise cause execution violation. Since ”squeezing” a critical
interval will change the timing parameters of the jobs, which
are needed if this critical interval is to be extended for the fol-
lowing one, we use the variableJbackupto backup and restore
the job information when necessary. It is worth mentioning
that if an end point of a critical interval is the same time point
into which some previous critical interval has been squeezed, it
would be unnecessary to add another transition interval at that
end since the voltage transition overhead has been accounted
for by the previous critical interval. In the worst case, the en-
tire schedule will run at the speed of the largest critical in-
terval, which we know will meet all deadlines. The problem
when using Algorithm 1 is that unnecessary energy may be
wasted. Also, transition energy overhead and discrete voltage
level considerations are not yet considered.

4. AN IMPROVED ALGORITHM
In this section, we improve the energy efficiency of Algo-

rithm 1 and incorporate transition energy overhead and dis-
crete voltage levels into considerations.

Unnecessary energy may be wasted when using Algorithm 1.
Since energy consumption increases faster at a higher voltage
levels, it is desirable that the length of the critical intervals be
kept as short as possible, especially during the early execu-
tion stage of Algorithm 1. Unfortunately, Algorithm 1 takes a
rather greed approach to identify the valid critical interval by
simply extending to the earliest release time or the latest dead-
line (see line 14 to 17) of the jobs. More energy savings can be
achieved if we can find a smaller time interval needed to com-
plete the jobs under the given speed/voltage. We formalize the
problem as follows.

PROBLEM 1. Given a set of jobs,J , and a predefined volt-
age/speed,s∗ (s∗ is higher than the highest speed needed to
complete the jobs), find the shortest interval in which all the
jobs can be completed by their deadlines.

The key to solving Problem 1 is to realize that we really
only have one degree of freedom in the problem; how long we
can delay the start of the interval, i.e., delay the use of higher
speed. Of course, by delaying the interval we run the risk of
missing job deadlines. To prevent any deadlines from being
missed, we next introduce the concept of thelatest start time
for a job set and an important lemma on how to compute it.

DEFINITION 1. TheLatest Start Time for a job setJ , tLS,
is the latest time at which the set of jobsJ can begin execution
at speeds∗ and still meet all deadlines inJ .

LEMMA 1. The job setJ scheduled byEDF has the latest
start timetLS as

tLS = min{tLS(i)|tLS(i) = di −
i

∑
j=1

c j

s∗
, i = 1..|J |},

wheredi is job Ji ’s deadline,s∗ is the given speed,c j is job
Jj ’s worst case execution cycles, and the set{J1, ...,Ji} are the
jobs having a greater (or equal) priority thanJi .

The proof of Lemma 1 is omitted due to page limit. Af-
ter the jobs contained in a critical interval are identified (line
19 in Algorithm 1), Lemma 1 helps us to find the latest start
time for these jobs, i.e.,t ′s. Then, with a simple simulation
of the execution (in linear complexity), we can find the fin-
ish time for these jobs, i.e.t ′f . We can prove [15] that[t ′s, t ′f]
is the minimum-length valid interval for the execution of jobs
removed in line 19 of Algorithm 1.

So far, we have ignored transition energy overhead in our
voltage scheduling algorithms. One way to account for transi-
tion energy is to include a post-processing step. For example,
given the length and speed of current interval, the energy tran-
sition overhead, and the expected speeds for both of its neigh-
boring intervals, we can determine if the voltage transitions for
current interval will indeed lead to energy saving, or we simply
should merge it to one of its neighboring intervals. However,
beforewe use the post-processing scheme, we can be more ag-
gressive and take care of the transition energy overhead during
the construction of critical intervals, thus allowing the effect
to be propagated to the rest of the critical intervals. Our idea
is that, when a new critical interval is identified, whether this
critical interval should be kept depends on whether the energy
consumption by adopting its speed is smaller than that by sim-
ply merging it to one of its neighboring critical intervals. The
problem, however, is how topreciselyevaluate the resultant
energy saving in each of the cases.

Given a critical intervalTi = [ts, t f], its neighboring crit-
ical interval Tj = [t ′s, t ′f] can be in any one of the following
forms: (i)t ′f = ts, (ii)t f = t ′s, and (iii)ts < t ′s, t ′f < t f . If there
exists one or more neighboring critical intervals forTi , given
the monotonicity property of the critical intervals, we know
that the speed ofTi is always lower than its neighboring criti-
cal intervals already identified. One way to merge the interval
to one of its neighbors is to extend its neighboring interval to
cover this interval. Recall that Lemma 1 can help us find the
minimal-length interval when a speed higher than necessary is
applied for the jobs in the interval. Therefore, we can apply
Lemma 1 find the minimal-length interval and hence the min-
imal energy consumption for executing the jobs in the merged
interval. This information can greatly help to prevent the un-
necessary voltage transitions and reduce the corresponding en-
ergy overhead.

Finally, since current commercial variable voltage proces-
sors [1, 7, 5] only have a finite number of voltage levels, this
factor must be integrated into voltage scheduling algorithms to
provide a practical, valid, and energy efficient voltage sched-
ule. One way to deal with discrete voltage levels is to round
up the required voltage to some allowed levels. In [8], the
authors proved that the two allowed levels immediately above
and below the desired voltage value can be used for this pur-
pose. However, the theorem is only true if the combination
of the two allowed voltages can lead to an execution time in-
terval that is the same as the original execution time interval
and contains no idle time [24], which may or may not be the
case. When considering jobs with both release times and dead-
lines, to guarantee the validity of the schedule, one can always
use another post-processing strategy for the resultant voltage
schedule, i.e., rounding up the required voltage to the next
higher level. Unfortunately, this can be extremely pessimistic
and energy inefficient, especially for many commercial pro-
cessors with only a few voltage levels available [1].

We believe that, instead of simply rounding up the voltage
for the final voltage schedule, it is more efficient to incorpo-
rate the discrete voltage level effects into the construction of
critical intervals and let its effect be propagated to the con-
struction of future critical intervals. Therefore, after a critical
interval is identified in Algorithm 1, its speed is increased to
the immediately higher available voltage level. Again, we can
use Lemma 1 to find the minimal necessary interval with the
given voltage. Note that, while this method would work, it can
introduce a significant amount of unused idle time within the
critical interval. A better method to better utilize these idle
times is to relax the requirement that all jobs originally found
in the critical interval must run at the higher speed. Therefore,
we keep only one of these busy intervals for the final voltage
schedule with the expectation that the rest of the jobs may ben-
efit from the higher-than-necessary speed assignment for this
interval and can be executed at a lower voltage level.

Now the problem becomes how to select the busy interval
to be kept. A good choice would directly lead to low compu-
tation cost and higher energy efficiency. There are a number
of heuristics such as always selecting (a) the first, (b) the last,
(c) the shortest, or (d) the longest busy interval. Though each
of these approaches has its intuitive advantages, none of them
can really dominate another in our experiments due to the di-
versity of the patterns of jobs’ arrival times, deadlines, and ex-
ecution cycles. For our results in Section 5, we always choose
the first busy interval because it is the most computationally
convenient.

By combining the above techniques with Algorithm 1, a
valid voltage schedule with superior energy savings can be
achieved while accounting for practical limitations of real-world
variable-voltage processors, such as transition energy over-
head and discrete voltage levels. Due to the page limit, we
omit the pseudo code for this algorithm. Reader can refer
to [15] for more details.

5. EXPERIMENTAL RESULTS
In this section, we quantify the energy consumption due to

the transition overhead and discrete voltage levels and evalu-
ate the energy saving performance of our proposed algorithms
with both the randomly generated job sets and real-world ex-
amples.

We first constructed and tested 100 randomly generated
sets of 20 jobs each with our algorithms. The jobs are as-
sumed to have worst-case execution time and release time uni-
formly distributed between [0,800] and [0,1000], respectively.
The relative deadlines of the jobs are normally distributed with
an average of 810 and a standard deviation of 280. For each
job set, we applied both Algorithm 1 and the improved al-
gorithm (Section 4) with the overhead ranging from 0% (no
overhead) to 100% of the average deadline of the jobs. A con-
tinuous voltage range between [0, 1] was used first to generate
the comparison base. This process was repeated for a proces-
sor with 5 discrete levels (6 including idle) as with the AMD
processor [1], and a processor with 14 discrete levels (15 in-
cluding idle) as with the SA-1100 system [19]. Since we are
still in the process of finding exact energy overhead for real-
world processors, our current experiments do not include en-
ergy overhead.

The results were then normalized against the optimal volt-
age schedule without any overhead consideration (using LPEDF).

0

20

40

60

80

100

120

140

160

180

200

0
 10
 20
 30
 40
 50
 60
 70
 80
 90
 100

(Time Transition Overhead)/(Mean Deadline) x 100%

P
er

ce
n

t
In

cr
ea

se
 in

 E
n

er
g

y
C

o
n

su
m

p
ti

o
n

A
b

o
ve

 O
p

ti
m

al

Base: Cont.

Impr.: Cont.

Base: 14 lvls

Impr.:14 lvls

Base: 5 lvls

Impr.: 5 lvls

Figure 5: Energy consumption for randomly generated job
sets.

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

0
 100
 200
 300
 400
 500
 600
 700
 800
 900
 1000

Time Transition Overhead (

 s)

P
er

ce
n

t
In

cr
ea

se
 in

 E
n

er
g

y
C

o
n

su
m

p
ti

o
n

 (

ab
o

ve
 o

p
ti

m
al

)

Basic: Continuous

Adv: Continuous

Basic: 14 levels

Adv: 14 levels

Basic: 5 levels

Adv: 5 levels

Figure 6: Energy consumption for CNC.

The results are displayed in Figure 5. We also apply our algo-
rithms to two real-world examples, i.e., CNC [16] and Avion-
ics [13]. Our algorithms are tested with the transition timing
overhead ranging from5µsto 1msfor CNC job sets, and5µsto
1.5msfor Avionics job sets. The results are shown in Figure 6
and 7, respectively.

From Figure 5, 6, and 7, one can immediately notice that
the transition overhead (both timing and energy) and discrete
voltage levels can cause dramatic increase of energy consump-
tion to the voltage schedule. And, as we expected, the energy
consumption grows rapidly with the longer transition overhead
and fewer available voltage levels. For example, from Fig-
ure 5, a processor model with 5 voltage levels and timing over-
head as 5% of the average deadline will increase the total en-
ergy consumption by 24% compared with the ideal processor
model. Therefore, a valid and energy efficient voltage sched-
ule scheme must take all these factors into consideration. Also,
it is not difficult to see that our improved algorithm (Section 4)
has a significantly better performance than the basic one, 1.e.
Algorithm 1. For example, in Figure 5, for the processor with
5 available voltage levels, our improved algorithm can save
nearly 50% of the energy compared with Algorithm 1 when
the transition timing overhead is around 50% of the job dead-

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

0
 200
 400
 600
 800
 1000
 1200
 1400

Time Transition Overhead (

 s)

P

e

r
c

e

n

t

I
n

c

r
e

a

s

e

i
n

E

n

e

r
g

y

A

b

o

v

e

O

p

t
i

m

a

l

Base: Cont.

Impr: Cont.

Base: 14 lvls

Impr:14 lvls

Base: 5 lvls

Impr: 5 lvls

Figure 7: Energy consumption for Avionics.

lines. And the maximal energy saving can be as high as 17%
for CNC example (Figure 6) and 82.5% for Avionics example
(Figure 7).

6. SUMMARY
In this paper, we studied the impact of practical limitations

of current processors on voltage schedules. We have shown
through examples and analysis that limitations such as tran-
sition overhead or discrete voltage levels can cause a theo-
retically optimal schedule to become invalid if not correctly
accounted for during the scheduling process. Accounting for
such limitations is not a trivial matter, as trying to make adjust-
ments to the optimal schedule by inserting overhead between
voltage intervals will likely cause jobs to miss their deadlines.
We have presented two algorithms, which are guaranteed to
yield a valid voltage schedule given an initially schedulable
job set. The base algorithm offers a simple implementation,
while the improved one can give significant energy savings
over the base algorithm.

Currently the optimality of our algorithms is not guaran-
teed, so further algorithm development may improve results
even more. Also, for the scheduling process to give a practical
voltage schedule for an even wider range of systems, other im-
plementation details will need to be accounted for, including
support for different transition models and other prioritization
schemes, such as fixed priority scheduling. Future work must
account for these limitations.

7. REFERENCES
[1] I. Advanced Micro Devices. Amd power now

technology. 2000.
[2] T. D. Burd and R. W. Brodersen. Design issues for

dynamic voltage scaling.ISSCC, 2000.
[3] A. Chandrakasan, S.S., and R. Brodersen. Low-power

cmos digital design.IEEE Journal of Solid-State
Circuits, 27(4):473–484, Apr 1992.

[4] L. Chandrasena, P. Chandrasena, and M. Liebelt. An
energy efficient rate selection algorithm for voltage
quantized dynamic voltage scaling.ISSS, pages
124–129, 2001.

[5] M. Fleischmann. Longrun power management:
Dynamic power management for crusoe processors.
RTSS, 1998.

[6] I. Hong, G. Qu, M. Potkonjak, and M. B. Srivastava.
Synthesis techniques for low-power hard real-time
systems on variable voltage processors.RTSS, pages
178–187, 1998.

[7] Intel. The intel xscale microarchitecture.Technical
Summary, 2000.

[8] T. Ishihara and H. Yasuura. Voltage scheduling problem
for dynamically variable voltage processors.ISLPED,
pages 197–202, Aug 1998.

[9] W. Kim, J. Kim, and S. L. Min. A dynamic voltage
scaling algorithm for dynamic-priority hard real-time
systems using slack time analysis.DATE, 2002.

[10] S. Lee and T. Sakurai. Run-time power control scheme
using software feedback loop for low-power real-time
applications.ASPDAC, 2000.

[11] S. Lee and T. Sakurai. Run-time voltage hopping for
low-power real-time systems.DAC, 2000.

[12] C. L. Liu and J. W. Layland. Scheduling algorithms for
multiprogramming in a hard real-time environment.
Journal of the ACM, 17(2):46–61, 1973.

[13] C. D. Locke, D. R. Vogel, and T. J. Mesler. Building a
predictable avionics platform in ada: A case study.
RTSS, 1991.

[14] A. Manzak and C. Chakrabarti. Variable voltage task
scheduling algorithms for minimizing energy.ISLPED,
2001.

[15] B. Mochocki, X. Hu, and G. Quan. A realistic variable
voltage scheduling model for real-time applications.
Technical Report TR-03, 2002.

[16] N.Kim, M. Ryu, S. Hong, M. Saksena, C. Choi, and
H. Shin. Visual assessment of a real-time system design:
a case study on a cnc controller.RTSS, pages 300–310,
Dec 1996.

[17] T. Okuma, T. Ishihara, and H. Yasuura. Real-time task
scheduling for a variable voltage processor.ISSS, 1999.

[18] T. Okuma, T. Ishihara, and H. Yasuura. Software energy
reduction techniques for variable-voltage processors.
IEEE Design and Test of Computers, 2001.

[19] J. Pouwelse, K. Langendoen, and H. Sips. Dynamic
voltage scaling on a low-power microprocessor.
MOBICOM, pages 251–259, 2001.

[20] J. Pouwelse, K. Langendoen, and H. Sips. Energy
priority scheduling for variable voltage processors.
ISLPED, 2001.

[21] G. Quan and X.S.Hu. Energy efficient fixed-priority
scheduling for real-time systems on variable voltage
processors.DAC, pages 828–833, 2001.

[22] Y. Shin and K. Choi. Power conscious fixed priority
scheduling for hard real-time systems.DAC, pages
134–139, 1999.

[23] F. Yao, A. Demers, and S. Shenker. A scheduling model
for reduced cpu energy.FOCS, pages 374–382, 1995.

[24] Y. Zhang, X. Hu, and D. Chen. Task scheduling and
voltage selection for energy minimization.DAC, 2002.

