
Fast Performance Prediction for Periodic Task Systems �

Xiaobo (Sharon) Hu
Dept. of Computer Science and Engineering

University of Notre Dame
Notre Dame, IN 46556
shu@cse.nd.edu

Gang Quan
Dept. of Computer Science and Engineering

University of Notre Dame
Notre Dame, IN 46556
gquan@cse.nd.edu

ABSTRACT
During design exploration, many implementations of the same sys-
tem specification may need to be evaluated. In this paper, we
present an approach to construct sufficient and necessary condi-
tions for a given system specifications. These conditions can be em-
ployed in the design exploration process to rapidly determine if an
implementation of the system satisfies the timing constraints. We
prove that our conditions always outperform the existing respective
conditions. Experimental results are also provided to compare our
approach with known scheduling results.

1. INTRODUCTION
A challenging issue in hardware-software codesign is rapid design
exploration at an early design phase [21, 5]. Since timing estima-
tion must be performed for a large number of design alternatives,
fast prediction of the system timing behavior is essential to the suc-
cess of a design exploration tool. In this paper, we present an effi-
cient method to predict the timing behavior of real-time embedded
system. We focus on systems containing periodic tasks (since ape-
riodic tasks can be handled based on the analysis result for periodic
tasks [14]), which are executed on a single processor according
to a fix-priority preemptive scheduling scheme. This assumption,
although not universal, is true for many embedded systems in prac-
tice, particularly for low-cost high-volume consumer products [7].

Many papers have been published that study the problem of predict-
ing if a given real-time system architecture is feasible, i.e., satisfies
all the timing constraints (e.g., [1, 2, 8, 9, 13, 16, 22]). Almost
all of these results fall into one of the two categories: (i) deriv-
ing a closed-form sufficient condition, or (ii) providing an algo-
rithm for checking the feasibility. Employing a sufficient condi-
tion from the first category [2, 9], one can rapidly test feasibility
of a design alternative. However, since these sufficient conditions
are formed so as to be applicable to any periodic task sets, they
generally produce rather pessimistic results. That is, many feasi-

�This research is supported in part by an External Research Pro-
gram Grant from Hewlett-Packard Laboratories, and by NSF under
grant numbers MIP-9796162 and MIP-9701416.

ble systems do not satisfy these conditions [10, 13]. On the other
hand, feasibility-checking algorithms in the second category gen-
erally produce more accurate predictions. Unfortunately, these al-
gorithms are much more time consuming.

A somewhat different approach is proposed by Park, et:al:, in [17,
18]. Rather than finding sufficient conditions that are applicable to
any task set, they present a method to compute a sufficient condi-
tion based on the given task periods. However, no comparison is
made between the condition derived in [17] and the existing ones.
Furthermore, constructing the conditions can be quite costly when
the number of tasks is big and the differences between task peri-
ods are large. In [18], a simplified approach is proposed, which,
however, often produces sufficient conditions that are even more
pessimistic than the existing ones in [2, 16].

In this paper, we present our approach to constructing two suffi-
cient conditions for a given system specification (i.e., task timing
parameters except the execution time are fixed). Our conditions are
obtained by eliminating certain constraints in the problem formu-
lation proposed in [17]. Our first condition is less costly to derive
but give exactly the same results as that in [17], and our second
condition is much less costly than the first one with little loss in
prediction results. We formally prove that both of our conditions
lead to better predictions than the existing ones in [2, 16, 18]. We
also extend our method to obtain necessary conditions which can
help to eliminate those definitely infeasible systems. Experimental
results demonstrate that our conditions can even outperform some
feasibility-checking algorithms (e.g., [8]). Moreover, the sufficient
and necessary conditions for a real-time system to be feasible are
derived once the system specification (i.e., task periods and dead-
lines) is given. Then, for each different implementations (due to
the choice of processors and task assignments), the conditions can
be readily evaluated with a time complexity being linearly depen-
dent on the number of tasks. Hence, the efficiency of the design
exploration process can be greatly improved.

2. PRELIMINARY
The system we consider consists of n periodic tasks, T = f�1; �2;

� � � ; �ng, arranged in the decreasing order of their priorities. Each
task is associated with three timing parameters, Ti; Di; Ci. Ti is
the shortest time interval between two requests of task �i and is
referred to as the period of �i. Di denotes the maximum time al-
lowed from initiation to termination of task �i and is referred to as
the deadline of �i. Ci is the time needed for a processor to com-
plete �i without any interruption and is referred to as the execution
time of �i. We allow that Ti � Di. Note that Ti and Di are fixed
when the functional requirements of a system is given but Ci is de-

Permission to make digital or hard copies of part or all of this
work or personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the
full citation on the first page. To copy otherwise, to republish, to
post on servers, or to redistribute to lists, requires prior specific
permission and/or a fee.
CODES 2000, San Diego, CA USA
© ACM 2000 1-58113-268-9/00/05 . . .$5.00

72

pendent on the choice of the processor and implementation of �i in
an actual design. For a given processor, the processor utilization by
i tasks is computed by Ui =

P
i

j=1

Cj

Tj
. The tasks are to be sched-

uled on a single processor by a preemptive fixed-priority scheduler.
For ease of presentation, we first assume that the tasks are indepen-
dent of one another and ignore the communication requirements.
We will remove these assumptions in Section 4.

Our goal is to find conditions that can be used to check if a proces-
sor definitely can or cannot complete the tasks on or before their
deadlines (also referred to as the system is feasible or not). We
introduce the following definitions.

DEFINITION 1. Feasibility upper bound (or simply feasibility
bound), BF

i , is a bound on the processor utilization such that the i
tasks are definitely feasible if Ui < B

F

i .

DEFINITION 2. Infeasibility lower bound (or simply infeasibil-
ity bound), BF

i , is a bound on the processor utilization such that
the i tasks are definitely not feasible if Ui > B

F

i .

It follows that the feasibility bound and infeasibility bound can
be used to form sufficient and necessary conditions, respectively,
for testing feasibility. If an implementation is such that BF

i �

Ui � B
F

i , whether the implementation is feasible or not cannot be
determined by these conditions and a time-consuming feasibility-
checking algorithm would be needed. Therefore, it is desirable to
have larger feasibility bounds and smaller infeasibility bounds.

The well-known results by Liu and Layland in [16] is a feasibility
bound, i.e.,

B
F

n = n(2
1

n � 1); (1)

A better feasibility bound is presented in [2] as follows:

B
F

n =

(
(n � 1)(2

�
n�1 � 1) + 21�� � 1 � < 1� 1=n

n(2
1

n � 1) � � 1� 1=n

(2)

where � = max
1�i�n

Si � min
1�i�n

Si, and Si = log
2
Ti � blog

2
Tic.

Note that both bounds only apply to systems in which Di = Ti for
i = 1; � � � ; n. An often used infeasibility bound is simply BF

i =
1. As pointed out in the introduction, these bounds can be rather
ineffective for many task systems.

Park, et:al:, presented an LP-based approach to compute feasibility
bounds [17, 18] formulated as follows.

Minimize: B
F

i =

iX
j=1

Cj

Tj

Subject To:
iX

j=1

Cjd
pTk

Tj
e � pTk

p = 1; 2; � � � ; bTi=Tkc
k = 1; 2; � � � ; i� 1:

iX
j=1

Cjd
Di

Tj
e � Di

(3)

The idea is to find the minimum processor utilization by i tasks
subject to that there is no idle time before the first instance of �i
is finished. For each task �i, i = 1; 2; � � � ; n, an corresponding
LP instance can be constructed. By solving the LP instances, one
obtains feasibility bounds BF

i for i = 1; 2; � � � ; n. The minimum
of all BF

i is taken as the system-wise feasibility bound. To see why
the solution is a valid feasibility bound, let us assume that the tasks
are assigned to a particular processor and the resulting processor
utilization is Ui. If Ui < B

F

i , at least one of the constraints in (3)
must be violated. That is, the first request of �i as well as higher
priority tasks can be completed before either one of the pTk's or
Di, which is equivalent to the system being feasible [13].

One drawback of the approach is that the number of constraints
in an LP-instance can become very large if the differences between
task periods are large. Such task systems may occur in real applica-
tions. For example, in the engine control example described in [12],
some periods are more than 100 times of some others. For this
reason, the same authors modified their LP formulation by keep-
ing only the last constraint and eliminating the rest from (3) [18].
However, it is not difficult to find cases where the bounds obtained
from [18] are worse than those in (1) and (2).

3. LP-BASED BOUND COMPUTATION
In this section, we present our LP-based approach for computing
feasibility and infeasibility bounds and prove that these bounds are
better than the existing ones.

3.1 Feasibility bound
For computing feasibility bounds, we formulate the problem as an
LP problem similar to [17]. However, by making use of some inter-
esting observations, we can reduce the number of constraints used
in [17]. The first feasibility bound is obtained by using at most
half of the constraints as in [17] while the bound value is the same
as that in [17]. The number of constraints used in calculating the
second bound equals to the number of tasks (instead of depends on
task periods). We will further show that both our bounds are never
smaller than those in [2, 16] and are better for most systems.

Observe that the constraints in (3) is constructed for Di and each
pTk, p = 1; � � � ; bTk=Tjc and k = 1; � � � ; i � 1. We refer to
these points as scheduling points. One way to reduce the number
of constraints is to reduce the unnecessary constraints. Given two
constraints

H(p; k) :

iX
j=1

Cjd
pTk

Tj
e � pTk; (4)

H(q; l) :

iX
j=1

Cjd
qTl

Tj
e � qTl; (5)

We say thatH(p; k) is redundant orH(q; l) dominates H(p; k) if
d
pTk
Tj

e

pTk
�

d
qTl
Tj

e

qTl
for all j = 1; 2; � � � ; i, and denote by H(p; k) �

H(q; l). Then, H(p; k) can be removed from the constraint set
in (3) since it is automatically satisfied when H(q; l) is satisfied.
According to the definition, we can check if any constraint is re-
dundant. To check all pairs of constraints, the worst-case time com-
plexity isO(mn logm), where m is the total number of scheduling
points and n is the number of tasks. Several observations allowing
us to reduce the time needed for checking redundancy are presented
as follows (We omit the proofs due to page limit).

73

LEMMA 1. Given a set of tasks, T = f�1; �2; � � � ; �ng, con-
sider two scheduling points, pTk and qTl. If pTk = 1

2
qTl, then

H(p; k) � H(q; l).

LEMMA 2. Given a set of tasks, T = f�1; �2; � � � ; �ng, let
Tk

Tj
= A(k; j) + �(k; j) for k; j = 1; � � � ; n, where A(k; j) is

an integer and 0 < �(k; j) < 1. If p � �(k; j) is an integer, then
d
pTk
Tj

e

pTk
�

d
qTk
Tj

e

qTk
for any q = 1; 2; � � � .

By applying the above two lemmas, removing redundant constraints
can be greatly simplified. In fact, according to Lemma 1, one can
immediately remove those constraints corresponding to schedul-
ing points pTk for p = 1; � � � ; bTi=2Tkc without any comparison.
That is, at least half of the constraints can be eliminated from (3)
by Lemma 1 alone.

If both the number of tasks and the number of scheduling points are
large, the number of constraints left after removing all the redun-
dant constraints may still be quite large. We now construct another
LP instance in which the number of constraints equals to the num-
ber of tasks and show that the feasibility bound obtained is still very
effective. The modified LP is given in the following:

Minimize: B
F

i =

iX
j=1

Cj

Tj

Subject to:
iX

j=1

Cjd
b
Di

Tk
c � Tk

Tj
e � b

Di

Tk
c � Tk

k = 1; 2; � � � ; i� 1:
iX

j=1

Cjd
Di

Tj
e � Di

(6)

To see why the solution of the above LP is a valid feasibility bound,
similar argument as in Section 2 can be applied. Assume that the
tasks are assigned to a particular processor and the resulting pro-
cessor utilization is Ui. If Ui < B

F

i , the given task execution
times must violate at least one of the constraints in (6). That is, the
first request of �i as well as higher priority tasks can be completed
before either one of the (bDi

Tk
c � Tk) or Di. Thus, the system is

feasible as far as �i is concerned.

Since bDi

Tk
c �Tk is one of the scheduling points before Di, the con-

straints in (6) is a subset of those in (3). Hence, it is possible for the
bound obtained from (6) to be smaller than that from (3). However,
we shall show that the feasibility bound obtained from the modi-
fied LP instance is still mostly larger than the bounds given in [2,
16, 18]. Recall that the bound in [18] is obtained by solving an LP
which has the same objective function as in (6) but only uses the last
constraint in (6). The smaller constraint set results in a large feasi-
ble solution region which in turn gives a smaller objective function
value. Therefore, the bound value obtained in [18] will always be
less than or equal to the bound obtained from (6). Our experimen-
tal results show that the two bound values can be quite different for
same tasks.

To show that the bound obtained from (6) is larger than or equals
to the ones in [2, 16], we only need to compare our bound with that
in [2], since the bound in [2] has been proved to be better than that
in [16]. We introduce two lemmas for the proof.

LEMMA 3. Given a set of tasks, T = f�1; �2; � � � ; �ng, assume
that T1 � � � � � Tn � 2�T1 (� � 1), and Di = Ti. The feasibil-
ity bound obtained from (6) is greater than or equal to the bound
computed from (2).

Proof: For the given task set, the constraints in our LP instance for
computing BF

i become

k�1X
j=1

2Cj +

iX
j=k

Cj � Tk k = 1; � � � ; i (7)

The bound in (2) is obtained by solving the following non-linear
optimization problem with Cj and Tj (for j = 1; � � � ; n) as vari-
ables.

Minimize: Ui(C; T) =

iX
j=1

Cj

Tj

subject to:
k�1X
j=1

2Cj +

iX
j=k

Cj � Tk (8)

k = 1; � � � ; i

0 � Cj � Tj j = 1; � � � ; i

T1 � � � � � Tn � 2
�
T1; � � 1

For the given task set, the solution obtained from solving the LP
instance defined by the objective function in (6) and the constraints
in (7) definitely satisfies the constraints in (8). That is, it is a fea-
sible solution of (8). Since the non-linear programming problem
allows both Cj and Tj to change, minUi(C; T) must be less than
or equal to BF

i obtained from our LP instance in (6). 2

LEMMA 4. Given a set of tasks, T = f�1; �2; � � � ; �ng, assume
that T1 � � � � � Tn and Di = Ti. The feasibility bound obtained
from (6) is greater than or equal to the bound computed from (2).

The proof for Lemma 4 can be obtained by comparing the con-
straints in (7) with the general constraint set in (6), and shown that
any feasible solution satisfying the latter constraint set is also a
feasible solution for the former constraint set. Hence, the bound
for the task set in Lemma 4 is always greater than or equals to the
bound for the system in Lemma 3. (We omit the detailed proof due
to the page limit.)

Note that the bound in (2) is valid for the task systems in Lemma 4.
However, for systems in which task priorities do not follow the
rate monotonic rule (rate monotonic implies that i < j if and only
if Ti < Tj), the bound in (2) can no longer be used. Our LP
formulation in (6), on the other hand, can still be readily applied.
Furthurmore, the LP-based approach can be generalized to produce
even better bounds for given system specifications. For example, if
it is known that the complexity of �i is higher than that of �j , we
can add an additional constraint, Ci > Cj , to the LP in (3) or (6).
Such constraints for certain task can be readily obtained from the
system specification regardless of the processors to be used. Other
constraints such as the minimum and maximum of a task execution
time [22] can also be used.

3.2 Infeasibility Bound
The above LP formulation can be extended to compute an infeasi-
bility bound on the processor utilization of i tasks. In this case, we

74

are interested in finding the maximum utilization above which the
task set will be infeasible. We construct the following LP instance:

Maximize: B
F

i =
P

i

j=1

Cj

Tj

Subject to:
iX

j=1

Cjd
Di

Tj
e � Di (9)

If a processor utilization Ui is greater than B
F

i , the constraint is
violated and the tasks cannot be completed before the deadline.
Therefore, BF

i is a valid infeasibility upper bound.

If there is no other information available, the infeasibility bound
computed above is generally very close to one. However, if more
information about the task execution time, such as the lower and
upper bounds on Ci and the relative magnitude ofCi's, is available,
it can be used to formulate additional constraints in the above LP
instance, and hence tighter infeasibility bounds can be obtained.

4. EXTENSIONS TO THE TASK MODEL
This section discusses the way we handle tasks that need to com-
municate with each other by sending and receiving data or mes-
sages. As in many existing approaches, e.g.,[4, 22], the overhead
for such communication can be modeled as a fixed amount of exe-
cution times if the two communicating tasks reside on two different
hardware components, and is assumed to be zero otherwise. The
challenge is to maintain consistency in data transfers.

First, consider the communicating tasks with the same period. If
the priorities of the tasks are assigned such that receiving tasks al-
ways have lower priorities than the corresponding sending ones, the
tasks can be scheduled as if they are independent without causing
any data inconsistency. Thus, any analysis result derived for inde-
pendent task systems are still valid for such communicating task
systems and our LP-based method is readily applicable. Though
may not be optimal, such an assignment is often used in existing
work (e.g., [1, 4, 22]). If a priority assignment violates the above
condition, data dependencies must be considered during schedul-
ing. We are working on modifying our approach for such systems.

There exist systems in which the frequencies of sending and receiv-
ing tasks can be different. A key requirement in such a system is to
avoid shared data being accessed by more than one task at the same
time. Such a requirement falls into the category of task synchro-
nization. Common synchronization primitives include semaphores,
locks and monitors [20]. The use of these or equivalent methods is
necessary to protect the consistency of shared data or to guarantee
the proper use of non-preemptable resources. However, their use
may jeopardize the ability of the system to meet its timing require-
ments. Two priority inheritance protocols are proposed to deal with
the synchronization problem in [20]. Based on the priority ceil-
ing protocol in [20], the execution of task �i can be delayed by at
most the time duration of Zi, the maximum time in which �i can
be blocked waiting for a lower priority task to complete the use of
shared data. It follows that Zi can be treated as a part of the execu-
tion time of �i, i.e., the execution time of �i can be considered as
Ĉi = Ci+Zi, where Ci is the original task execution time, and the
feasibility and infeasibility bounds can be computed correspondly.

5. EXPERIMENTAL RESULTS
In this section, we use some experimental results to compare the
performance of our approach with those of several existing ap-

proaches, including the LP-based bound computation approach by
Park, et. al. [17], another bound-based approach in [2], and a new
scheduling algorithm in [8].

The task sets in our experiment is constructed as follows. A task set
contains the number of tasks between 10 and 70. For task sets with
a given number of tasks, we construct 10 groups, each of which
contains 100 task sets. The task sets within one group have the
same task periods but different execution times (which models the
design exploration process examining a number of different imple-
mentations). Both task periods and execution times are randomly
generated. Only task sets with utilization higher than the bound
given by Liu and Layland [16] are used in the experiment, since all
these algorithms are able to correctly predict the schedulability of
the task set with utilization lower than Liu and Layland bound [16].

Two measures, the prediction ratio and running time, are used in
evaluating the performance of different approaches. Assume the
number of feasible task sets predicted by one approach is M . Us-
ing the exhaustive method discussed in [13], the number of fea-
sible task sets can be exactly determined and let this number be
N . The prediction ratio is thus defined as M=N . It captures the
quality of an approach. The average prediction ratio over different
period groups of task sets is used in the experiment to eliminate the
possible random effect. The running time of an approach includes
both the bound computation time (if appropriate) and the feasibility
checking time.

The experimental results for quality and running time of these al-
gorithms are presented in Figure 1 and Table 1, respectively. Here,
LP-0 refers to the results by [17], LP-1 refers to the approach
which applies Lemma 1 to eliminate half of the constraints from
the linear programming problems in [17], LP-2 refers to the ap-
proach shown in (6), DCT refers to the results by the the algorithm
in [8], and Burch refers to the results by [2].

10 20 30 40 50 60 70
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Pr
ed

ic
tio

n
R

at
io

Task Number

DCT
LP−0
LP−1
LP−2
Burch

Figure 1: Quality of different approaches

Figure 1 shows that the LP-based approaches, i.e. LP-0,LP-1, and
LP-2, greatly outperform Burch, and lead to much higher predic-
tion ratios than DCT in most cases, especially for task sets with a
large number of tasks. Furthermore, it is interesting to notice that
LP-2 can save CPU time dramatically with little loss of quality,
compared with LP-0 and LP-1. Even by simply eliminating the
redundant constraints, LP-1 can save a large amount of CPU time
compared with LP-0. For example, when task number is 70, LP-
1 only needs about 35% of the CPU time that LP-0 takes. Park's
modified approach [18] is also tested in our program. Task sets

75

are randomly generated with utilization near but less than Liu and
Layland bound [16]. With that approach, only 3% of the task sets
can be correctly predicted to be schedulable when each task set
contains 20 tasks.

CPU Time Algorithm
(s) DCT LP-0 LP-1 LP-2 Burch

10 0.54 7.95 7.9 7.55 0.12
Number 20 1.83 32.86 23.66 17.17 0.18

30 3.96 65.12 45.61 29.14 0.15
of 40 6.96 224.97 116.44 44.35 0.12

50 10.53 394.08 203.26 65.09 0.16
Tasks 60 14.92 950.44 408.13 92.9 0.13

70 20.3 2812.96 995.73 132.54 0.2

Table 1: Running time of different approaches

From Table 1, it seems that the LP-based approaches take much
longer CPU time than DCT does. However, the bound calculation
time, which accounts for almost 100% of the total CPU time for
the LP-based approaches, is counted for 10 times in Table 1 , while
in design space exploration, after the periods of the tasks are given,
only one bound calculation is needed. Moreover, after the utiliza-
tion bounds are available, the complexity for feasibility checking
is only O(n) for the LP-based approaches, where it is O(n3) for
DCT [8]. Hence, our LP-based approach is more desirable in de-
sign space exploration in terms of both quality and running time.

6. CONCLUSION
We have presented an approach to constructing sufficient and nec-
essary conditions for a given system specification. These condi-
tions can be used in the design exploration process to rapidly de-
termine the feasibility of an design alternative. We have formally
proved that our conditions always lead to better prediction results,
in terms of the percentage of correctly predicted result, than the
existing respective conditions. Furthermore, the experimental data
have shown that our conditions can even outperform more costly
feasibility-checking algorithms.

We emphasize that our approach is especially appealing to design
space exploration, where system specification is given and many
implementations of the systems need to be compared. The feasi-
bility conditions in our approach are are effective because they are
derived for a given system specification, instead of for general real-
time systems. Furthermore, these conditions are efficient as they
can be applied to very rapidly evaluate the feasibility of a given
implementation.

Our current results are applicable to systems with communications
among tasks. However, we require that the task priorities be as-
signed without violating the precedence constraints and we are work-
ing on extending our approach to general task systems.

7. REFERENCES
[1] N. Audsley, A. Burns, M. Richardson, K. Tindell and A.J. Wellings,

“Applying new scheduling theory to static priority pre-emptive
scheduling,” Software Engineering Journal, vol. 8, no. 5,
pp. 284-292, 1993.

[2] A. Burchard, J.Liebeherr, Y. Oh and S.H. Son, “New strategies for
assigning real-time tasks to multiprocessor systems,” IEEE
Transactions on Computers, vol. 44, no. 12, pp. 1429-1442,
December, 1995.

[3] S.-T. Cheng and A.K. Agrawala, “Allocation and scheduling of
real-time periodic tasks with relative timing constraints,”
Proceedings of the Second International Workshop on Real-Time
Computing Systems and Applications, pp. 210-217, 1995.

[4] R.P. Dick and J.K. Jha, “MOGAC: A multiobjective genetic
algorithm for the co-synthesis of hardware-software embedded
systems,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, pp. 920-935, vol. 17, no. 10, Oct
1998.

[5] D.D. Gajski, F. Vahid, S. Narayan and J. Gong, Specification and
Design of Embedded Systems, Prentice Hall, Englewoo Cliffs, New
Jersey, 1994.

[6] R.K. Gupta and G. De Micheli, “Hardware-software cosynthesis for
digital systems,” IEEE Design & Test of Computers, vol. 10, no. 3,
pp. 29-40, September 1993.

[7] W.A. Halang and A.D. Stoyenko, “Next generation of real-time
operating systems: industrial perspective,” Proceedings of the NATO
Advanced Study Institute on Real Time Computing, pp. 595-596,
1994.

[8] C.-C. Han and H.-Y. Tyan “A better polynomial-time schedulability
test for real-time fixed-priority scheduling algorithms,” Proceedings
of the Real-Time Systems Symposium, pp. 36-45, 1997.

[9] M.G. Harbour, M.H.Klein and J.P. Lehoczky, “Timing analysis for
fixed-priority scheduling of hard real-time systems,” IEEE
Transactions on Software Engineering, vol. 20, no. 1, pp. 13-28,
January, 1994.

[10] X. Hu and R. Sambandam, “Predicting timing behavior in
architectural design exploration of real-time embedded systems,”
Proceedings of the 34th IEEE/ACM Design Automation Conference,
June 1997, pp. 157-160.

[11] J. P. Huang, “Modeling of software partition for distributed
real-time applications”, IEEE Transactions on Software
Engineering, pp. 1113-1126, October 1985.

[12] X. Hu and J.G. D'Ambrosio, “Hardware/software partitioning for
real-time embedded systems,” Journal of Design Automation for
Embedded Systems. vol. 2, no. 3/4, pp. 339-358, 1997.

[13] J. Lehoczky, L. Sha and Y. Ding, “The rate monotonic scheduling
algorithm: Exact characterization and average case behavior,”
Proceedings of the 1989 IEEE Real-time System Symposium, pp.
166-171, 1989.

[14] J. Lehoczky and S. Ramos-Thue, “An optimal algorithm for
scheduling soft-aperiodic tasks in fixed-priority preemptive systems,”
Proceedings of the 11992 IEEE Real-time System Symposium, pp.
110-123, 1992.

[15] J. Y-T., Leung, “A new algorithm for scheduling periodic, real-time
tasks”, Algorithmica, vol. 4, pp. 209-219, 1989.

[16] C. L. Liu, and J. W. Layland, “Scheduling algorithms for
multiprogramming in a hard real-time environment,” Journal of the
ACM, vol. 20, no. 1, pp. 46-61, 1973.

[17] D. Park, S. Natarajan, A. Kanevsky, and M.J. Kim, “A generalized
utilization bound test for fixed-priority real-time scheduling,”
Proceedings of the Second International Workshop on Real-Time
Computing Systems and Applications, pp. 73-76, Oct. 1995.

[18] D. Park, S. Natarajan, and A. Kanevsky, “Fixed-priority scheduling
of real-time systems using utilization bounds,” Journal of Systems
Software, vol. 33, pp. 57-63, 1996.

[19] K. Ramamritham, and J. A. Stankovic, “Dynamic task scheduling in
distributed real-time systems”, IEEE Software, vol. 1, no. 3,
pp. 65-75, July, 1984.

[20] L. Sha, R. Rajkumar, and J.P. Lehoczky, “Priority inheritance
protocols: An approach to real-time synchronization,” IEEE
Transactions on Computers, vol. 39, no. 9, pp. 1175-1185, Sept.
1990.

[21] W. Wolf, “Hardware-software co-design of embedded systems,”
Proceedings of the IEEE, vol. 82, no. 7, pp. 967-989, July 1994.

[22] T.-Y. Yen and W. Wolf, “Performance estimation for real-time
distributed embedded systems,” Proceedings of the International
Conference on Computer Design (ICCD'95), pp. 64-69, October
1995.

76

