
Preference-Driven Hierarchical Hardware/Software Partitioning �

Gang Quan Xiaobo(Sharon) Hu
Dept. of Computer Science & Engineering

University of Notre Dame
Notre Dame, IN 46556

�gquan,shu�@cse.nd.edu

Garrison Greenwood
Dept. of Electrical & Computer Engineering

Western Michigan University
Kalamazoo, MI 49008

garry.greenwood@wmich.edu

Abstract

In this paper, we present a hierarchical evolutionary ap-
proach to hardware/software partitioning for real-time em-
bedded systems. In contrast to most of previous approaches,
we apply a hierarchical structure and dynamically deter-
mine the granularity of tasks and hardware modules to
adaptively optimize the solution while keeping the search
space as small as possible. Two new search operators are
described, which exploit the proposed hierarchical struc-
ture. Efficient ranking is another problem addressed in this
paper. Imprecisely Specified Multiple Attribute Utility The-
ory has the advantage of constraining the solution space
based on the designer’s preference, but suffers from high
computation overhead. We propose a new technique to re-
duce the overhead. Experiment results show that our algo-
rithm is both effective and efficient.

1. Introduction

Hardware/software partitioning, is an important step in
hardware/software codesign that determines which system
tasks should be realized in which hardware modules. It is
clearly critical to board-level designs and is becoming in-
creasingly important in system-on-a-chip (SOC) designs as
more and more intellectual property (IP) components are
available. The objective of hardware/software partitioning
is to search for an assignment of system tasks to hardware
modules which not only satisfies the constraint (such as
timing), but also optimizes desired quality metrics, such as
cost, power, and so on. This type of constrained optimiza-
tion problem has been shown to be NP-hard [14].

In hardware/software partitioning both tasks and hard-
ware modules can have different granularities. Coarse-

�This research is supported in part by an External Research Pro-
gram Grant from Hewlett-Packard Laboratories, Bristol, England, by
DARPA/Army under contract number DABT63-97-C-0048, and by NSF
under grant number MIP-9796162 and MIP-9701416.

granularity means the tasks or hardware modules contain
large amounts of behavioral or functional specifications
while finer-granularity means tasks or hardware modules
contain smaller amounts. A number of papers have dealt
with the partitioning problem [3–5, 12]. They differ by
the levels of abstractions, the target architecture, and/or the
search algorithms used, but these approaches all presume
a fixed granularity of tasks and hardware modules. This
presumption might be sufficient whenever the behavior of
a system and the functionality of the hardware objects are
relatively simple, but for a large-scale, real-time embedded
system, far more detail is typically required. These spec-
ifications are not easy to be satisfied when partitioning is
performed at a coarse grain level. Conversely, with finer-
grain partitioning the cost to solve the partitioning problem
increases exponentially with the number of tasks and hard-
ware modules. We believe a mixed granularity representa-
tion provides a reasonable compromise.

Generally, hierarchical approaches are well-suited for
complicated problems because complex systems can be
hierarchically decomposed into a set of simpler systems,
which are easier to deal with. Researchers have adopted
hierarchy for hardware/software partitioning problems in a
variety of ways [2,6]. However, we feel the hierarchal struc-
ture in the embedded system can be exploited more effi-
ciently and aggressively. In this paper, we propose a new
partitioning methodology which incorporates hierarchical
structures for both tasks and hardware modules. We em-
ploy an evolutionary algorithm (EA) to efficiently the han-
dle hierarchical tasks and hardware modules. In our hier-
archical approach, the search space is maintained as small
as possible. Partitioning always starts from a coarse level
and switches to a finer level only when it becomes difficult
to find a satisfactory solution. The key to our partitioning
algorithm is to search for the optimized solution by parti-
tioning objects with dynamically determined granularity.

Another challenge in solving the hardware/software par-
tition problem is how to effectively and efficiently rank so-
lutions which often have conflicting design criteria. For ex-

ample, minimizing power consumption frequently requires
a reduction in clock speed. The weighted-sum approach
is intuitive and easily implemented, but the selection of
precise weights is not always straightforward. Another
method, the Pareto optimal ranking [3], is based on the
assumption that all Pareto optimal solutions are equally
preferable—a situation that does not hold in many real
world applications. In [13, 15], the Imprecisely Specified
Multiple Attribute Utility Theory (ISMAUT) is used, which
combines the advantages of both a weighted-sum method
and a Pareto optimal ranking algorithm. With ISMAUT,
comparsion of two alternative designs can be directed by
the preference of the designer. However, the bottleneck
in comparing solutions by ISMAUT is that many instances
of linear programming problems need to be solved. This
added complexity weakens the efficiency of ISMAUT. In
this paper, we present an approach that avoids solving lin-
ear programming problems and hence greatly improve the
efficiency of ISMAUT.

G GG1

V

V

V

V

21

d2

22

d1

G 32

V

V

V

V

V

V

d3

31

32

31a

d4

d5

V31b
V31c

V31d

0

V

V

V

1

2

3

Figure 1. Hierarchical task graphs

The paper is organized as following. Section 2 describes
our problem in more detail. Section 3 describes the hierar-
chical evolutionary algorithm. Section 4 describes the pref-
erence driven technique. Finally, we present some experi-
ment results of applying our algorithm.

2. Hierarchical Models And Our Approach

The behavior of an embedded system is usually repre-
sented by a task graph [4, 14]. A task graph is a directed
acyclic graph in which each node represents a task and each
edge represents the data dependency between the tasks. As
pointed out in the introduction, it is often desirable to allow
a hierarchical representation of tasks. That is, a complex
task may consist of several simple tasks, and a simple task
can contain some even simpler tasks. To facilitate such a
system composition, we adopt a multiple granularity repre-
sentation, called a hierarchical task graph (HTG).

An HTG is a task graph which contains three kinds of
nodes: simple nodes, complex nodes and dummy nodes.
A simple node is a node representing a task containing no

sub-tasks. The task represented by a complex node can be
decomposed to several sub-tasks, which can be expressed
in more detail by another lower level HTGs, i.e. sub-HTGs.
The third kind of nodes are dummy nodes, which exist in
sub-HTGs. A dummy node represents only the input and
output relation with other HTGs and is not associated with
any computational task. The behavior of a system as well
as its hierarchical structure can be represented by a set of
HTGs. Figure 1 depicts an HTG example. In Figure 1,
�� is the highest level HTG representing a system with one
simple task (corresponding to ��) and two complex tasks
(corresponding to �� and ��). The two complex tasks are
represented furthur by sub-HTGs ��, ��, and ��. Specif-
ically in ��, ��� is a simple node, ��� is a complex node,
and ��� is a dummy node.

Though an HTG is a convenient representation to capture
the intrinsic hierarchical structure of the functionality for an
embedded system, it does not represent a complete system
behavior at different hierarchical levels (except for the high-
est one). In order to clearly differentiate behavior models of
a complete system at various level of hierarchy, we intro-
duce the concept of HTG instance. An HTG instance is
a task graph that combines appropriate HTGs in different
levels to describe the behavior of the whole system. For ex-
ample, in Figure 1, by replacing the complex nodes � � and
�� in HTG �� with their sub-HTGs, �� and ��, we can
construct a new task graph shown in Figure 2(a). The task
graph in Figure 2(a) describes the same system behavior as
HTG �� in Figure 1 but in more detail. The task graph
in Figure 2(b) is another instance which is constructed from
��, ��, �� and��. Given the set of HTGs for a system, by
expanding different complex nodes, we can construct differ-
ent HTG instances with different granularities.

V 1 V 1

V21 V21

V22 V22

V31

V 32

V31a

31bV
V31c

V 32

1

V31d

(a) (b)

Figure 2. Hierarchical Task Graph instances

We consider hardware objects to be individual chips, IP
components, or functional components such as processors,
ASICs, and programmable devices. A hardware module is
an instance of a hardware object. We adopt a hierarchical
representation for hardware modules in a similar way as that
for the system behavioral specification. Such a hierarchical
structure for hardware objects is quite natural. For exam-

2

ple, a coarse-grain hardware may represent a chip which
contains a CPU core and peripheral circuitry. The periph-
eral circuitry, in turn, consists of modules at an even lower
level such as timing circuits, A/D and D/A converters and so
on. Such hierarchical information can be readily captured
by the tree representation.

We consider the following hardware/software partition-
ing problem: given (1) a set of HTGs, which describe the
behavior of an embedded system, (2) hierarchical hardware
modules, (3) communication links, (4) constraints on cost,
power, timing, etc., and (5) a designer’s preference for cer-
tain attributes, find an assignment of task nodes of one HTG
instance to some hardware modules in a way that optimizes
all design attributes while satisfying all design constraints.

Considering the NP-hard nature of the partitioning prob-
lem, we use an evolutionary algorithm (EA) to search for
high quality solutions. EAs been widely used in a wide va-
riety of optimization problems [1]. EAs work well for solv-
ing the non-hierarchical partitioning problem for embedded
system. In fact, applying EAs to the partitioning problems
has been investigated in several papers [3,5,7,12,15]. How-
ever, if the system task specifications as well as hardware
modules contain hierarchical structures, simply employing
an EA—or any other type of search algorithm—may not
lead to an efficient search process. Either the computational
overhead may prove to be too costly or one has to settle for
an inferior solution. Nonetheless, our studies do indicate
that EAs are well suited for solving partitioning problems.

3. Hierarchical Evolutionary Algorithm

In order to utilize the hierarchical structure for efficient
exploration of the design space, we propose a hierarchical-
structure based EA. In virtually all implementations of EAs,
the size of a genotype—i.e., the data structure which en-
codes a solution—is fixed a priori. Unfortunately, a fixed
size genotype cannot readily handle the hierarchical struc-
ture in the partitioning problem because both simple and
complex nodes must be accommodated. Moreover, the re-
production operators must likewise be dynamically changed
as the genotype size changes. We refer to such an EA as hi-
erarchical EA (HEA). In the following, we discuss in more
detail the data structure and reproduction strategy in a HEA.

3.1. Data Structure

In hardware/software partitioning problem, for a non-
hierarchical task graph, each node is to be assigned to a
hardware module. In EA, such a node-hardware tuple be-
comes a gene in an individual. However, for the hierarchical
task graph, how to encode genes needs some careful con-
sideration. A simple approach is to associate each element
with a finest level task node. This approach maintains the

same number of elements in all individuals but diminishes
the advantage of the hierarchical representation. Another
intuitive approach is to associate each element with either
a complex or simple node in HTGs. The problem with this
approach is that a basic task may be represented implicitly
more than once. Additional effort would be required dur-
ing the construction of solutions to avoid any undesirable
conflicts for this approach.

Recall that an HTG instance itself is a task graph that
represents the complete system behavior. Hence, we con-
struct individuals from the HTG instances instead of HTGs.
Each individual is related to one HTG instance of the given
HTGs, and each gene in the individual corresponds to a
node in the HTG instance. Note that no task is represented
more than once in an HTG instance. This guarantees the
correctness when constructing the individual.

We use the notation (�����) to denote task �� is as-
signed to (hardware) module ��. Then a gene list for
the instance in Figure 2(a) might be �������� ��������
�������� �������� ���������, and ������ �

�� ������
�

��
������

�

�� �������
�

�� �������
�

�� �������
�

�� �������
�

��
������

�

	
�� for Figure 2(b). Note that this notation natu-

rally reflects different granularity levels, which is necessary
because distinct individuals may have different sizes.

In a HEA the nodes are assigned in a unique order and
the genes are listed by the order of their corresponding
nodes. However,in HEA the order is defined in each HTG.
Sub-node inherits the order of its parent. Specifically, given
two nodes � and � in the same HTG (neither � or � is a
parents of the other), assume that � preceeds � according
to the given order. We denote this by ���� �� ����. Sup-
pose that � is a complex node, then the nodes in the cor-
responding sub-task graphs ���� � ���� ��� must satisfy
��	� �� ����� 	 � ��. Later on, we will show the im-
portance that order plays in maintaining the consistency of
tasks and modules when complex nodes are expanded.

3.2. Reproduction

In a HEA, the reproduction process stochastically creates
new (offspring) solutions from existing (parent) solutions.
Because the size of the gene lists changes dynamically in
HEA, careful design of reproduction operators is critical to
achieve efficient design space exploration. In HEA, both
mutation and crossover are designed to generate individuals
with different granularities as well as same granularity.

Mutation generates new species by updating one gene
of an individual. There are two ways this can be done:
change the hardware module to which the task is assigned
in the gene or, if the node is complex, replace the gene with
the genes associated with the sub-node set of the complex
node. The advantage of HEA is that evolution can be first
performed at coarse grain level, which explores only a rel-

3

atively small search space. Only when it seems to be diffi-
cult to satisfy the constraints of the system, there is a need
for exploring alternatives at the finer levels (a larger search
space). Thus the search space is maintained as small as pos-
sible to improve the search effectiveness and efficiency.

The replacement of a complex node with its sub-node
set is done with probability �, and the mapping of � � to
another randomly selected hardware module is done with
probability ���. The value of � increases with the number
of generations (iterations) during which the individual with
the highest fitness value (solution quality) has not been im-
proved. Intuitively, the value of � is larger at higher levels
in the hierarchy because the search space at the higher level
is much smaller. We use the following formula to calculate
� in our system,

� � ���
�

��

�� ���

��

� �

where
 is the generations when the highest fitness value has
not been improved, �� is the total number of simple nodes
in the finest level of HTG, �� is the number of the nodes in
the current HTG instance, and � is a constant defined by the
user. Consider the example in Figure 2(a). We have �� � �
and �� � �. Let � � 	�, then if the best solution has not
been improved after 5 generations, we have � � 	
	.

21V 22V1(V , m) (V , m) (V , m)(, m) 3 4(, m)a b c d e

22V1(V , m) (, m)(, m)a b c21V’ ’ ’ V’ ’ ’3 d e f41 V42(V , m) (, m) (, m)

21V 22V1(V , m) (V , m) (V , m)(, m) 3 4(, m)a b c d e

1 a b
’ ’(V , m)(V , m) 2 V’ ’ ’3 41 V42(V , m) (, m)c d e(, m)

(a) valid cross point.

adjusted cross pointinvalidcross point

(b) adjust invalid cross point

Figure 3. Crossover in HEA

The crossover points must be chosen with care be-
cause the parent individuals may potentially have different
granularities. Specifically, it is very important to guaran-
tee that the newly created individuals are valid solutions.
As shown in Figure 3(a), when two gene lists are sliced
along the crossover point, the parts on the same side of
crossover point are associated with the same fuctionality,
which makes such a crossover point valid. Otherwise, as
shown in Figure 3(b), simply exchanging the subset of
genes of both parents would generate invalid individuals.
To overcome this problem, we need to adjust the position

of crossover point such that the cross line can cut along the
“boundary” of higher level task in both individuals. Note
that the data structure for the individuals maintains a total
order for tasks as defined in Section 3.1. Therefore, find-
ing the correct position for the new crossover point simply
requires linear scanning the genes lists. After the correct
crossover point is identified, we can swap the two subsets
of two parents to obtain two new offsprings.

There are several other issues needed more considera-
tions in HEA, such as hardware module consistency (a com-
plex module may appear in the same solution with its sub-
modules), attribute calculation, scheduling, and so on. Due
to the page limit, we omit the detailed explaination. Inter-
ested readers can refer to [9] for more information.

4. Preference Driven Ranking

When solving the partitioning problem, how to handle
multiple, often conflicting design objectives is not easy. IS-
MAUT offers an efficient way to compare alternative de-
sign according to the designer’s preferences. Details on
ISMAUT can be found in [13, 15]. For completeness, we
briefly review the ISMAUT approach.

ISMAUT uses a linear weighted-sum format to capture
the fitness of a design alternative. Let the fitness of a design
	 be represented by �	, and denote the kth of 	 attribute by
���	�, then

�	 �
�

�

�� � ������	��

where ���	� maps the raw attribute values to set �	� �� and
�� is the corresponding weight. A bigger value of �	 indi-
cates a more desirable design alternative. �	 is imprecisely
defined in the sense that each �� does not have a specific
value, but is constrained by the designer’s preferences as
follows.

The designer’s preferences are indications of which at-
tributes are considered to be more important and which de-
signs are considered to be more desirable. Let 	, 	 � be two
individuals with attribute ���	� and ��

��	�, � � �� � 	 	 	 � �.
Suppose that according to the designer preference, 	 is con-
sidered to be preferable to 	�, denoted by 	
 	�. We can
derive one constraint for � as:

�	 � �	� �
�

�

���������	�� � ������	
���� � 	

When more than one pair of design alternatives are ranked
by the designer, a set of such constraints are defined which
confines � � ���� ��� 	 	 	 � �
� to a subspace of �
.
With these constraints, any two design alternatives, i.e. �

and ��, can be compared by solving the following two lin-

4

ear programming problems,

��� � � �
�

�

����������
���� ����������

�� �� � ���� ��� 	 	 	 � �
� � �

and

��� � �� �
�

�

�� ����������� �������
����

�� �� � ���� ��� 	 	 	 � �
� � �

If � � 	 (or �� �), then 	�
 	 (or 	
 	�). If � � 	 and
�� � 	, then 	� and 	 are indifferent (� �x), i.e., no one
is clearly better than the other. Notice that a large number
of linear programming instances must be solved in order to
rank many design solutions which is very time consuming
when a large number of individuals need to be compared in
many generations in EA.

However, once the designer’s preferences have been
given, the constraint space �
 is fixed. This makes it pos-
sible to avoid solving the linear programming problems one
by one. In fact, the minimum values of the objective func-
tion for the linear programming problems are always at-
tained at one of the extreme points defined by the set of
constraint [11]. Solving the linear programming problems
can therefore be transformed to check the objective function
values at each of these extreme points.

Preference Dimension of �

Constraint 10 25 50 75 100

10 9 13 20 23 35
20 28 75 80 62 110
30 30 108 292 280 242
40 49 218 252 328 611
50 46 313 543 582 793

Table 1. Efficient Extreme Points

To find the extreme points from the given designer’s
preference, we make use of a software package called AD-
BASE [10]. Each extreme point in our case corresponds to
a vector in �
. A pair of indifferent individuals, 	 and
�, can thus be compared by evaluating the following values
with respect to the extreme point set.

�����	 � ��� � ����
�

�

�� �������	�� � �����������

One concern about using this approach is that the num-
ber of the extreme points grows rapidly with the dimension
of�
, and the number of preference constraints. However,

this approach is still more efficient than that of directly solv-
ing linear programming problems. In [10], the relation be-
tween the number of extreme points, dimension and number
of constraints was studied.

Table 1 was copied from [10] to illustrate the relationship
between constraints and dimension. Consider the case of a
design alternative with 10 attributes and 20 preference con-
straints. Referring to Table 1, we have at most 28 extreme
points. Let �� be the amount of time needed to calculate the
extreme points with ADBASE, and �� be the time to com-
pute the fitness value at each extreme point (which is the
amount of time for performing 10 multiplications and 9 ad-
ditions), and �� be the amount of time for comparing two
fitness values. Then in the worse case, the total amount of
time � needed to rank 100 individuals in 100 generations
can be obtained by

� � �� � �		� ��		� �� �� �
�		� ��

� ���

If the ISMAUT approach is used for the above example, in
the worse case, the total amount of time ��� would be

��� � �		� ��		� ��� ��� �

where ��� is the amount of time required to solve a linear
programming problem with 10 variables and 20 constraints.
In most cases, �� � ��� , ��� ��, and ��� ��, so
��� �. Our experimental results also agree with this
conclusion.

5. Experimental Results

We have implemented the ideas in this paper in a soft-
ware package called EvoC. The input of EvoC consists of
the HTGs, task attributes, data dependency, hierarchical in-
formation, hardware modules, etc. The output of EvoC con-
tains the task assignment, dollar cost, average power con-
sumption, and the task execution schedule. Because of its
simplicity, the list scheduling algorithm [8] is used in EvoC.

In our examples, we use the task graphs and param-
eters including task execution times, deadlines, commu-
nication data volume, and hardware module information
in [4]. Hierarchical information is derived from the clus-
tered and unclustered task graphs in [4]. We modify
the period of the task graph to be the latest deadline in
the task graph. This modification simplifies the schedul-
ing process as scheduling is not our focus in this paper.
Power consumption data is obtainted from the FTP site
ftp://ftp.ee.princeton.edu/pub/dickrp/Trans/Mogac [3]. All
results were obtained on a SUN Ultra-1 workstation.

Table 2 contains experiments on two sets of tasks cho-
sen from the four task graphs in [4]. The first row is for the
hierarchical approach. The second row shows the results

5

Task Set Set 1 (task1&2) Set 2 (task3&4)
Initial Result Initial Result

Attribute Cost Power Cost Power Gen. CPU(s) Cost Power Cost Power Gen. CPU(s)

Hier. 170 50.6 100 36.3 12 3.45 190 59.3 170 38.3 15 9.45
Uncluster 190 49.3 170 34.3 39 9.05 190 70.2 170 38.5 57 56.84
Cluster 170 44.3 100 36.3 15 3.25 170 56.3 170 43.0 9 1.53
PrefADBASE 190 49.3 100 36.3 69 32.86 190 70.2 170 38.5 51 106.3
PrefISMAUT 190 49.3 100 36.3 69 71.32 190 70.2 170 38.5 51 356.6

Table 2. Hardware/software partitioning examples

of partitioning at a finer granularity (10 tasks in each task
graph). The third row shows the results of partitioning at a
coarse granularity (3 or 4 tasks in each task graph). From
Table 2, with the hierarchical approach, we can get results
comparable in quality with those by searching at the finest
level (Uncluster) and much better than those by searching
at coarse grain level (Cluster). For CPU time, the hierarchi-
cal approach takes little more than that of the coarse grain
search but much less than that of the finest grain search.
The effectiveness and efficiency of hierarchical approach is
apparent.

While dominance checking is used when comparing two
individuals for the first three rows, the last two rows show
the partition results of an unclustered task graph with de-
signer’s preferences. ADBASE was used for the results in
the fourth row, while ISMAUT is used for those in the fifth
row. Compared with solving linear programming problems
in ranking alternatives, the speedup by using ADBASE is
more than 2 (3) times that of set 1 (set 2). This confirms our
analysis from Section 4.

6. Summary

In this paper, we present several techniques to improve
the hardware/software partitioning process for large, com-
plex embedded systems. We proposed the use of both hi-
erarchical task specification and hardware modules. To
facilitate the partitioning process, we extended the exist-
ing EA approach so that it can effectively handle hier-
archical structures. To further improve the efficiency of
the preference-driven hardware/software partitioning pro-
cess, we introduced the idea of employing the extreme
points in multi-objective linear programming to eliminate
the time-consuming procedure of solving multiple linear-
programming problem instances. The experimental results
obtained so far have clearly demonstrated the advantages of
our proposed approach.

References

[1] T. Bäck, U. Hammel, and H. P. Schwefel. Evolutionary com-
putation: Comments on the history and current state. IEEE

Trans. on Evolution. Comp., 1(1):3–17, 1997.
[2] B. Dave and N. Jha. Cohra:hardware-software co-synthesis

of hierarchical distributed embedded system architectures.
The 11th International Conf. on VLSI Des., pages 347–354,
1998.

[3] R. Dick and J. Jha. Mogac:a multiobjective genetic al-
gorithm for the co-synthesis of hardware-software embed-
ded systems. IEEE Trans. on CAD of Integr. Circ. & Sys.,
17(10):920–935, 1998.

[4] J. Hou and W. Wolf. Process partitioning for distributed em-
bedded systems. IEEE/AMC Intl. Workshop on Hardware-
Software Codesign, 1996.

[5] X. Hu and G. Greenwood. Evolutionary approach to hard-
ware/software partitioning. IEE Proc. on Comput. Digit.
Tech., 145(3):203–209, 1998.

[6] J. Kenkel and R. Ernst. A hardware/software partitioner us-
ing a dynamically determined granularity. IEEE Intl. Conf.
on Design Automation Conf., pages 691–696, 1997.

[7] Y. Kwok and I. Ahmad. Efficient scheduling of arbitrary task
graphs to multiprocessors using a parallel genetic algorithm.
Parallel and Distributed Computing, 47:58–77, 1997.

[8] E. Lawler and C. Martel. Scheduling periodically occurring
tasks on multiple processors. Info. Proc. Ltr., 7:9–12, 1981.

[9] G. Quan, X. Hu, and G. Greenwood. Hierarchical hard-
ware/software partitioning. Technological Reports, Depart-
ment of Computer Science and Engineering, University of
Notre Dame, (TR 99-11), 1999.

[10] R. Steuer. Manual for the adbase multiple objective linear
programming package. 1995.

[11] J. Strayer. Linear programming and its applications.
NewYork: Springer-Verlag, 1989.

[12] J. Teich, T. Blickle, and L. Thiele. An evolutionary approach
to system-level synthesis. Proc. of Fifth Int’l Workshop on
Hardware/Software Codesign, 1997.

[13] C. White, A. Herraya, and S. Dozono. A model of multi-
attribute decision making and trade-off weight determina-
tion under uncertainty. IEEE Trans. on Sys, Man, and Cy-
ber., SMC-14(2):223–229, 1984.

[14] W. H. Wolf. Hardware-software co-design of embedded sys-
tems. Proc. of the IEEE, 82(7):967–989, 1994.

[15] G. G. X. Hu and J. D’Ambrosio. An evolutionary approach
to hardware/software partition. The 4th Int’l Conf. on Paral-
lel Problem Solving from Nature, pages 900–909, 1996.

6

