
IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING

Received 16 May 2014; revised 11 November 2014; accepted 12 January 2015.
Date of publication 15 May 2014; date of current version 9 December 2015.

Digital Object Identifier 10.1109/TETC.2015.2398824

Data Allocation for Hybrid Memory
With Genetic Algorithm

MEIKANG QIU1,2, (Senior Member, IEEE), ZHI CHEN3, (Student Member, IEEE),
JIANWEI NIU4, (Senior Member, IEEE), ZILIANG ZONG5,

GANG QUAN6, (Senior Member, IEEE), XIAO QIN7, (Senior Member, IEEE),
AND LAURENCE T. YANG1,8, (Senior Member, IEEE)

1Department of Computer Science, Huazhong University of Science and Technology, Wuhan 430074, China
2Pace University, New York, NY 10038 USA

3Department of Electrical and Computer Engineering, University of Kentucky, Lexington, KY 40506 USA
4State Key Laboratory of Software Development Environment, School of Computer Science and Engineering,

Beihang University, Beijing 100191, China
5Department of Computer Science, Texas State University, San Marcos, TX 78666 USA

6Department of Electrical and Computer Engineering, Florida International University, Miami, FL 33199 USA
7Department of Computer Science and Software Engineering, Auburn University, Auburn, AL 36849 USA

8St. Francis Xavier University, Antigonish, NS B0H 1X0, Canada

CORRESPONDING AUTHOR: J. Niu (njujianwei@buaa.edu.cn)

The work of M. Qiu was supported by the Division of Computer and Network Systems (CNS) through the National Science Foundation
(NSF) under Grant CNS-1457506, Grant CNS-1359557, and Grant CNS-1249223. The work of Z. Zong was supported by NSF

CNS-1305359. The work of J. Niu was supported by the National Natural Science Foundation of China under Grant 61170296 and
Grant 61190125. The work of G. Quan was supported by NSF under Grant CNS-1423137 and Grant CNS-1018108.

ABSTRACT The gradually widening speed disparity between CPU and memory has become an
overwhelming bottleneck for the development of chip multiprocessor systems. In addition, increasing
penalties caused by frequent on-chip memory accesses have raised critical challenges in delivering high
memory access performance with tight power and latency budgets. To overcome the daunting memory wall
and energywall issues, this paper focuses on proposing a new heterogeneous scratchpadmemory architecture,
which is configured from SRAM, MRAM, and Z-RAM. Based on this architecture, we propose a genetic
algorithm to perform data allocation to different memory units, therefore, reducing memory access cost in
terms of power consumption and latency. Extensive and experiments are performed to show the merits of the
heterogeneous scratchpad architecture over the traditional pure memory system and the effectiveness of the
proposed algorithms.

INDEX TERMS Hybrid memory, SPM, chip multiprocessor, MRAM, Z-RAM, data allocation, genetic
algorithm.

I. INTRODUCTION
For Chip Multiprocessor (CMP) systems, low power
consumption and short-latency memory access are two most
important design goals. Nowadays, the development of cur-
rent CMP systems is substantially hindered by the daunting
memory wall and power wall issues. To bridge the ever-
widening processor-memory speed gap, traditional com-
puting systems widely adopted hardware caches. Caches,
benefitting from temporal and spatial locality, have effec-
tively facilitated the layered memory hierarchy. Nonetheless,
caches also present notorious problems to CMP systems,
such as lack of hard guarantee of predictability and
high penalties in cache misses. For example, caches

consume up to 43% of the overall power in the
ARM920T processor [1].

Therefore, how to develop alternative power-efficient
techniques to replace the current hardware-managed cache
memory is really challenging. Scratch Pad Memory (SPM),
a software-controlled on-chip memory, has been widely
employed by key manufacturers, due to two major advan-
tages over the cache memory [2], [3]. First, SPM does not
have the comparator and tag SRAM, since it is accessed
by direct addressing. Therefore, the complex decode oper-
ations are not performed to support the runtime address
mapping for references. This property of caches can save
a large amount of energy. It has been shown that

544

2168-6750 
 2015 IEEE. Translations and content mining are permitted for academic research only.
Personal use is also permitted, but republication/redistribution requires IEEE permission.

See http://www.ieee.org/publications_standards/publications/rights/index.html for more information. VOLUME 3, NO. 4, DECEMBER 2015



Qiu et al.: Data Allocation for Hybrid Memory With Genetic Algorithm

IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING

a SPM consumes 34% less chip area and 40% less energy
consumption than a cache memory does [4]. Second, SPM
generally guarantees single-cycle access latency, whereas
accesses to cache may suffer from capacity, compulsory, and
conflict misses that incur very long latency [5]. Given the
advantages in size, power consumption, and predictability,
SPMhas beenwidely used in CMP systems, such asMotorola
M-core MMC221, IBM CELL [6], TI TMS370CX7X, and
NVIDIA G80. Based on the software management charac-
teristics of SPM, how to manage SPM and perform data
allocation with the help of compilers becomes the most
critical task.

A hybrid SPM architecture must resolve the problem on
how to reduce energy consumption, memory access latency,
and the number of write operations to MRAM. To take
advantage of the benefits of each type of memory, we must
strategically allocate data on each memory module so that
the total memory access cost can be minimized. Recall that
SPMs are software-controllable, which means the datum on
it can be managed by programmers or compilers. Traditional
hybrid memory data management strategies, such as data
placement and migration [7], [8], are unsuitable for hybrid
SPMs, since they are mainly designed for hardware caches
and are unaware of write activities. Fortunately, embedded
system applications can fully take the advantage of compiler-
analyzable data access patterns, which can offer efficient data
allocation mechanisms for hybrid SPM architecture. There
are practical products adopted hybrid memory architecture,
for instance, Micron’s HMC (Hybrid Memory Cube)
controller.

In the context of data allocation for hybrid on-chip
memory, Sha et al. [9] employed a multi-dimensional
dynamic programming (MDPDA) method to reduce write
activities and energy consumption. However, this methodwill
consume a significant amount of time and space. Based on
this observation, we use a genetic algorithm to allocate data
on different memory units for CPMs with our novel hybrid
SPM comprising SRAM and MRAM.

To address this issue, we design a genetic algorithm in
this paper to solve the data allocation problem which is
able to yield near-optimal solutions with moderate time
and space overhead. Genetic Algorithms (GAs), stemmed
from the evolutionary theory, are a class of computational
models which is able to achieve sub-optimal solutions for
problems. These algorithms organize a solution candidate
of a problem in a specific data structures (often referred to
as chromosome), such as linear binary, tree, linked list, and
even matrix, and apply some operations on these structure to
produce new candidates by preserving good features [10].
To achieve this goal, our proposed genetic algorithm
inherits the prominent merits of traditional ones, such as
accurate solutions and fast convergence. In general, a genetic
algorithm always involves the following basic elements:
chromosome, initialization, selection, reproduction, and
termination. Targeting the data allocation problem
for the heterogeneous on-chip SPM memory with

SRAM, MRAM, and Z-RAM, we develop corresponding
algorithms for these 4 stages.

The major contributions of this paper include:
(1) We propose a hybrid SPM architecture that consists of
SRAM, MRAM, and Z-RAM. This architecture produces
high access performance with low power consumption.
(2) We propose a novel genetic algorithm based data allo-
cation strategy to reduce memory access latency and power
consumption, while reducing the number of write operations
toMRAM. The reduction of writes onMRAMwill efficiently
prolong their lifetime.

The remainder of the paper is organized as follows.
Section II gives an overview of related work on data allo-
cation for SPM. Section III presents the system model.
Section IV describes a motivational example to illustrate our
basic ideas. Detailed algorithms such as Adaptive Genetic
Algorithm for Data Allocation (AGADA) are presented in
Section V. Experimental results are given in Section VI.
Section VII concludes this paper.

FIGURE 1. A typical scratchpad memory.

II. RELATED WORK
Scratchpad Memory (SPM) is a software controlled on-chip
memory that has been envisioned as a promising alternative
to hardware caches in both uniprocessor and multiprocessor
embedded systems with tight energy and timing budgets, due
to its superiority in timing predictability, area and power
consumption, and guarantee of single cycle access latency.
Figure 1 shows a typical processor with a scratchpadmemory,
in which the SPM is implemented by direct address
mapping. Particularly, the access address is always in a
predetermined memory space range [11]. To efficiently use
the SPM, scratchpad memory management unit (SMMU) is
regularly introduced so that the programmers or compilers
can explicitly manage the data allocation on it [12], [13].

Since this benefit is achieved at the cost of interference
from programmer or compiler, the development of sophisti-
cated mechanisms is a must to SPM management therefore
improving the overall system performance. This paper aims
to address the data allocation problem of the CMP embedded
systems (but not just limited to CMP systems, it can be also
easily applied to uniprocessor embedded system) based on
the proposal of a heterogeneous architecture associated with
an array of novel scheduling algorithms. The goal is to reduce
the memory access cost and extend the wear-out leveling of
the on-chip systems.

VOLUME 3, NO. 4, DECEMBER 2015 545



IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING Qiu et al.: Data Allocation for Hybrid Memory With Genetic Algorithm

Depending on the time when the data allocation decision
is made, existing work can be categorized into static data
allocation and dynamic data allocation. In static data alloca-
tion scenarios, the analysis of application program and data
allocation decision is made at compile-time (offline). The
required memory blocks are loaded into SPM at the system
initialization stage and remain the same during the execution.
The biggest advantage of static allocation approaches is the
ease of implementation and the low demand on runtime
resources.

Compared to the static allocation counterpart, program
data/code to memory mapping is determined when the appli-
cation is running in dynamic allocation approaches. Further-
more, data can be reloaded into SPM at some designated
program points to guarantee the execution of the application.
Therefore, dynamic allocation needs to be aware of the
contents in SPM over time. Most of dynamic allocation
approaches used in the literature commonly perform a
compile-time analysis to determine the memory blocks and
reloading points therefore amortizing runtime delay. In addi-
tion, good analysis of the profiled trace file or historical
information of program execution is effectively beneficial to
making better mapping decision. However, the most obvious
shortcoming of dynamic allocation is the inexorable high cost
of data mapping at runtime. To reduce this overhead, previous
work depends on either pre-extracting part of program that
doesn’t need runtime information [14], [15] or performing
a compile-time analysis to find out the potential allocation
sites [16], [17].

Udayakumaran et al. [7] proposed a heuristic algorithm to
allocate data for a SPM,withmajor consideration of stack and
global variables. Dominguez et al. [18] applied a dynamic
data allocation method on heap data for embedded systems
with SPMs. Three types of the program object are considered
in their allocation method: global variables, stack variables,
and program code. They divided a program into multiple
regions, where each program region is associated with a time
stamp. According to the order of time stamps, they then
utilized a heuristic algorithm to determine the data allocation
for each program region.

In [9], [19], and [20], Sha et al. proposed a
multi-dimensional dynamic programming (MDPDA) strategy
for the hybrid SPM architecture. Their method is able to
achieve optimal allocation for each program region.
Compared with their approach, this paper has several dif-
ferent aspects: First, while their targeted hybrid architecture
only consists of a NVM and SRAM, this paper investigates
the features of MRAM and Z-RAM, and we proposed a
more complicated architecture to attack the on-chip memory
access problem. Second, [9], [19] focused on in single pro-
cessor platforms with hybrid SPM. However, we step further
to investigate on multicore embedded systems where each
of core is attached with a hybrid on-chip memory. Third,
comparing with [20], we propose a novel genetic algorithm
solution on multicore platform, which has much smaller
space complexity without losing the accuracy of the results.

III. SYSTEM MODEL
A. HARDWARE MODEL
Figure 2 exhibits the architecture of a target CMP system
with hybrid SPMs. Each core is tightly coupled with an
on-chip SPM which is composed of a SRAM, a MRAM,
and a Z-RAM. We call a core accesses the SPM owned by
itself as local access, while accessing a SPM held by another
core is referred to as remote access. Generally, the remote
access is supported by an on-chip interconnect. All cores
access the off-chip main memory (usually a DRAM device)
through a shared bus. CELL processor [21] is an example
that adopts this architecture. In a CELL processor, there is
a multi-channel ring structure to allow the communication
between any two cores without intervention from other cores.
Consequently, we can safely assume that the data transfer cost
between cores is constant. Generally, accessing the local SPM
is faster and dissipates less energy than fetching data from
a remote SPM, while accessing the off-chip main memory
incurs the longest latency and consumes most energy.

FIGURE 2. System architecture. A n-core with hybrid on-chip SPMs and
an off-chip DRAM main memory. Core1 accesses data in SPM1 is referred
to as local access, while accessing data in other cores is regarded to as
remote access. All accesses to shared main memory utilize the on-chip
interconnect.

In order to make sure a hit for an access to the memory
modules on the heterogeneous memory, we need to move the
data from the memory unit holding this data preliminarily.
However, this movement will inevitably incur much higher
overhead, since it needs to access a remote SPM or the main
memory. In this case, the data transfer overhead is composed
of two major parts: reading the memory module of a remote
SPM or main memory owning the data and writing the data
to the target memory module.

B. CHROMOSOME MODEL
A chromosome for the data allocation problem is a set of
defined parameters which is able to represent a solution. The
parameters here are the data blocks and the size of each
memory module including all on-chip memory modules and
the off-chip main memory. Therefore, we define a gene in
a chromosome as a pair of these two parameters. That is,
a chromosome represents an allocation scheme. There are
numerous ways to represent a chromosome. Intuitively, we
can use a matrix to represent a chromosome, where the rows
indicate the main memory and all on-chip memory units of
a SPM in each processor core. The columns indicate data

546 VOLUME 3, NO. 4, DECEMBER 2015



Qiu et al.: Data Allocation for Hybrid Memory With Genetic Algorithm

IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING

FIGURE 3. Two chromosomes in matrix structure. (a) Chromosome C1.
(b) Chromosome C2.

allocation on the corresponding memories. For example,
Figure 3 shows two randomly generated chromosomes,
A and B. These two chromosomes are constructed in matrix
structure according to the size of each memory unit, where
C1S,C1M ,C1Z ,C2S,C2M ,C2Z , andMM represent SPM1’s
SRAM, SPM1’s MRAM, SPM1’s ZRAM, SPM2’s SRAM,
SPM2’s MRAM, SPM2’s ZRAM, and the main memory,
respectively. Each row of data given in the chromosome
matrix is a gene sequence, which represents the data
allocation on the corresponding memory module.

However, this form of chromosome is inconvenient to
perform genetic operations, particularly for crossover,
because it is hard to maintain the space constraint of each
memory module. Hence, we modify the chromosome and
organize it as a list structure where each gene in the list is
defined to be a data item and a memory unit pair: (d,MT ).
Each gene cell shows that the data item d is allocated to
the memory unit MT . In this method, all the memory units
are numbered uniquely. Suppose that the target CMP system
has N cores, where each core has an on-chip heterogeneous
memory configured from MRAM and SRAM, we need at

most 2 ∗N + 1 numbers to label these memory units. For the
purpose of simplicity, we use number 3∗i−2, 3∗i−1, and 3 ∗ i
(1 ≤ i ≤ N ) to represent the SRAM, MRAM, and ZRAM
of the SPM associated with core i, respectively. Number
3 ∗N + 1 represents the main memory. Two chromosomes in
this structure are shown in Figure 4, and they are transformed
from the chromosomes A and B in Figure 3, respectively.
In Figure 4, we use 1, 2, 3, 4, 5, 6, and 7 to correspondingly
represent SPM1’s SRAM, SPM1’s MRAM, SPM1’s ZRAM,
SPM2’s SRAM, SPM2’s MRAM, SPM2’s ZRAM, and the
main memory. For example, the gene (B1, 4) represents
data B1 is allocated to SPM2’s SRAM.

IV. MOTIVATIONAL EXAMPLE
The objective of our algorithm is to minimize memory access
latency, energy consumption, as well as the number of write
operations to MRAM for CMP systems with the hybrid SPM
consisting of SRAM, MRAM, and Z-RAM. In this section,
we present an example to illustrate the rationale behind the
proposed algorithm.

For demonstration purpose, we normalize latency and
energy consumption of memory access to MRAM, SRAM,
Z-RAM, and off-chip main memory as Table 1. In this table,
the columns of ‘‘LS’’, ‘‘RS’’, ‘‘LM’’, ‘‘RM’’, ‘‘LZ’’, ‘‘RZ’’,
and ‘‘MM’’ represent thememory access cost to local SRAM,
remote SRAM, local MRAM, remoteMRAM, local Z-RAM,
remote Z-RAM, and off-chip DRAM, respectively.
‘‘La’’ and ‘‘En’’ represent latency and energy consumption,
respectively. During the execution of an application, a data
can be allocated to any memory module and moved back and
forth among all memory modules in SPMs.

Similar to the mechanism used in [17], we assume data
moving latency and energy consumption between different
memory modules are given in Table 2 and Table 3,
respectively. In these two tables, the column of ‘‘Type’’
indicates different types of memory, and others columns

FIGURE 4. Change the chromosomes in Figure 3 into list structure, C1 → C3, C2 → C4. (a) Chromosome C3. (b) Chromosome C4.

TABLE 1. Latency and energy consumption for access to different memory modules. ‘‘LS’’, ‘‘RS’’, ‘‘LM’’, ‘‘RM’’, ‘‘LZ’’, ‘‘RZ’’, and ‘‘MM’’
represent local SRAM, remote SRAM, local MRAM, remote MRAM, local Z-RAM, remote Z-RAM, and off-chip DRAM, respectively.
‘‘La’’ and ‘‘En’’ represent latency and energy consumption, respectively.

VOLUME 3, NO. 4, DECEMBER 2015 547



IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING Qiu et al.: Data Allocation for Hybrid Memory With Genetic Algorithm

TABLE 2. Latency of moving data between different memory
modules.

TABLE 3. Energy consumption of moving data between different
memory modules.

represent latency and energy consumption of data movement
between different memorymodules. For example, the column
of ‘‘SRAM’’ represents the cost of moving data from other
kinds of memory modules to SRAM.

We assume the target system has 2 cores, and each of them
equips with hybrid SPM consisting of SRAM, MRAM, and
Z-RAM. The off-chip shared memory is a DRAM. In order to
demonstrate the viability of our data allocation strategy, we
assume a simple program which has 18 data blocks obtained
from a program, namely B1,B2, . . . , and B18. Initially, only
data block B18 is stored in the core2’s SRAM, and all others
blocks are stored in off-chip DRAM. In order to illustrate the
example, we assume the number of accesses for each data
by each core is given in Table 4. In this table, the column of
‘‘DATA’’ indicates the data blocks used in this example. The
rows of ‘‘Read’’ and ‘‘Write’’ represent the number of reads
and writes to each data block incurred by each core.

V. DESCRIPTION OF THE ADAPTIVE
GENETIC ALGORITHM
In this section, we will discuss the details of the adaptive
genetic algorithm. Typically, a genetic algorithm involves
three major steps: initialization, evaluation of fitness func-
tion, and genetic operations. First, we formally define the
problem of data allocation in a CMP system. Then, we present

each step of the genetic algorithm by using the example
illustrated in the Section IV.

A. PROBLEM STATEMENT
The cost optimization problem of memory access incurred by
data allocation in a CMP with P processors (each of these
processors is integrated with a SPM which consists of a
SRAM and a MRAM) can be defined as: Given the number
of data N , the initial data allocation on the on-chip memory
units of all processor cores and the off-chip main memory,
the capacity of each core’s SRAM and MRAM, the number
of cores P, the number of reading and writing references to
each data of each core, the cost of each memory unit access,
and the cost of moving data between different memory units,
how to allocate each data to the hybrid memory units of each
core so that the total memory access cost can be minimized
and the write activities on MRAMs can be reduced? In this
problem, we assume each core can access the off-chip main
memory, the SRAM and MRAM in its local SPM, and every
remote SPM with different cost. The cost of access to each
memory unit is given in Table 1.

The objective function of the target problem is described as:
given the number of local readsNLR, local writesNLW , remote
reads NRR, remote writes NRW , the cost of local read CLR,
local write CLW , remote read CRR, remote write CRW , and
the cost of data movement CMove exhibited in Table 2 and 3,
the cost of memory access (CM ) for a specific data can be
formulated as Equation (1).

CM = NLR × CLR + NLW × CLW + NRR
×CRR + NRW × CRW + CMove (1)

B. INITIALIZATION
The population size PopSize(PS) usually depends on the
proposed problem and is determined experimentally [22].
To accelerate the process of data allocation and the implemen-
tation of genetic operations, we will use the greedy algorithm
in [7] to generate the initial population. A whole population
will be generated from these initial individuals by randomly
swapping the memory positions of genes.

C. FITNESS FUNCTION
In general genetic algorithms, the fitness function is typi-
cally obtained from the objective function that needs to be
optimized. The fitness of an individual u is regarded to be
better than the fitness of another individual v if the solution

TABLE 4. The number of data accesses for each core. The column of ‘‘Data’’ refers to the 18 data blocks, the columns of ‘‘R’’ and ‘‘W’’
represent the number of reads and writes to the corresponding data block, respectively.

548 VOLUME 3, NO. 4, DECEMBER 2015



Qiu et al.: Data Allocation for Hybrid Memory With Genetic Algorithm

IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING

corresponding to u is closer to an optimal solution than v.
According to Darwin’s principle of survival of the fittest, the
individual with a greater fitness value will have higher like-
lihood to survive in the next generation than the counterpart
with a lower fitness value. We define the fitness function as
Equation (2)

FT (i) = M − Total_Cost(i); (2)

where M represents maximum total cost have observed by
this generation and FT (i) represents the fitness value of
chromosome i. Total_Cost(i) is the total cost of memory
access to the chromosome i. Essentially, it equals to the total
memory access cost of each gene (data) in this chromosome.
We calculate the total cost by using Equation (3)

Total_Cost(i) =
N∑
j=1

CM (j), for chromosome i; (3)

whereN is the number of data items andCM (j) is thememory
access cost of data j that is defined as Equation (1).

D. GA OPERATIONS
Generally, the genetic operations include selection, crossover,
and mutation. We describe each of them as follows.

1) SELECTION
The selection process is carried out to form a new popula-
tion, through strategically choosing some chromosomes from
the old population with respect to the fitness value of each
individual. It is utilized to enhance the overall quality of the
population. Based on the natural selection rule, many meth-
ods are exploited to select the fittest chromosomes, such as
roulette wheel selection, Boltzman selection, rank selection,
and elitism, etc. In our genetic algorithm, we will use
a rank based roulette wheel selection scheme with elitism to
select chromosomes. In this method, an imaginary wheel with
total 360 degrees is applied, on which all chromosomes in the
population are placed, and each of them occupied a slot size
according to the value of the corresponding fitness function.

Let PS denote the population size and Ai represent the
angle of the sector occupied by the ith ranked chromosome.
The chromosome-to-sector mapping is consistent to the
fitness of each chromosome, and the 1st ranked chromo-
some has the highest fitness value, therefore allocating to
the sector 1 with the largest angle A1. The (PS)th ranked
chromosome has the lowest fitness value and is allocated
to the sector PS − 1 with smallest angle APS .
Equation 4 to Equation 6 hold for the angles. Therefore, the
fitter an individual is, the more area of it will be assigned on
the wheel, and thus the more possible that it will be selected
when the biased roulette wheel is spun. The algorithm to
implement it is shown as Algorithm 1

ρ =
Ai
Ai+1

(4)

A1 =
1− ρ
1− ρPS

(5)

Algorithm 1 Algorithm for Genetic Selection
Input: An old population OldPop and the size of the

population PS.
Output: A selected chromosome k .
1: Define the total fitness SumFit as the sum of fitness

values of all individuals in the current population;
2: for i = 1→ PS do
3: SumFit = SumFit + OldPop(i).FT ;
4: end for
5: Generate a random number RanN between 1 to SumFit;
6: for k = 1→ PS do
7: if

∑k
i=1 OldPop(i).FT ≥ RanN then

8: break;
9: end if
10: end for
11: return chromosome k;

Ai =
(1− ρ)
1− ρPS

× ρi−1 (6)

where Ai < 1, ρ < 1, and 0 ≤ i < PS.

2) CROSSOVER
Crossover is a crucial step after selection. Generally, it is
employed to more broadly explore the search space. We can
find the individual with higher fitness function with this
operation. Conventionally, crossover operation includes sig-
nal point crossover, two point crossover, and uniform
crossover. The rationale is that the ‘‘good’’ characteristics
of the parents should be well preserved and passed down
to children. However, the rational selection may lead to the
local optimal problem. To avoid this problem, the crossover
operations are carried out with a specific probability, which
is often referred to as crossover rate, denoted by PC .
We randomly select pairs of chromosomes as parents to gen-
erate new individuals. In this section, we will use an adaptive
cycle crossover strategy to perform the crossover operation
with a tunable crossover rate which is proposed in [23], which
is calculated as Equation (7). This method is modified from
the cycle crossover proposed in [24]. The basic idea of cycle
crossover works as follows

PC =
%c(FTmax − FTbestC )
(FTmax − FTavg)

(7)

where FTmax is the maximal fitness value in the current
population, FTbestC is the fitness value of the parent with
higher fitness value between the two crossover parents,
FTavg is the average fitness value of the current population,
and %c is a positive constant less than 1.

We start at the first allele of parent 1 and copy the gene
to the first position of the child. Then, we look at the allele
at the same position in parent 2. We cannot copy this gene to
the first position of the child because it has been occupied.
We will go to the position with the same gene in the parent 1
and suppose it is at the position i.We copy the gene in parent 2
to the position i of the child.We then apply the same operation

VOLUME 3, NO. 4, DECEMBER 2015 549



IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING Qiu et al.: Data Allocation for Hybrid Memory With Genetic Algorithm

FIGURE 5. An example of cycle crossover. The solid line, dashed line, and dotted line represent the first, second, and third iteration, respectively.
The gene (B, 1) is invalid, since the core1’s SRAM has already been full before the allocation of data B.

on the gene in position i of parent 2. The cycle is repeated until
we arrive at a gene in parent 2 which has already been in the
child. The cycle started from parent 1 is complete. The next
cycle will be taken from parent 2. This crossover mechanism
enables the child to efficiently inherit the characteristics from
both parents.

However, this approach is possible to generate invalid
alleles for our data allocation problem, due to the size
constraint of each memory unit. An example of such scenario
is exhibited in Figure 5, where ‘‘Parent 1’’ and ‘‘Parent 2’’
indicate the parents chromosomes, and ‘‘Child’’ is generated
by this two chromosomes. In this example, because of the
space limitation, we assume that there are 11 data blocks,
A,B,C,D,E,F,G,H , I , J , andK , needs to be allocated to a
dual-core system with hybrid on-chip SPMs configured from
SRAM and MRAM. We also assume that the size of SRAM
and MRAM are 4KB and 6KB respectively, while the size
of each data block is 2KB. Therefore, each SRAM is able to
accommodate 2 data blocks and eachMRAM can store 3 data
blocks. As we can see from the child chromosome, allocating
data B to core1’s SRAM will exceed the maximum capacity
of the SRAM. This is because the SRAM can only hold 2 data
items, but it is assigned 3 data.

Because of the limitation of directly applying the cycle
crossover method to our data allocation problem, we propose
an adaptive cycle crossover strategy to guarantee valid data
allocation. The critical idea of our approach is that we use a
variable to keep the currently available space of each memory
unit. For each genetic operation of data allocation, we will
check if there is enough room for assigning the gene to the
specific memory unit. If it is true, the data will be directly
allocated. Otherwise, we will adaptively check the memory
units of the neighboring processor cores and find a space for
it. However, if all on-chip memory units, including SRAMs
andMRAMs, are full, the data will be assigned to the off-chip
main memory. An example of the adaptive cycle crossover
operation is shown in Figure 6. In this figure, the circled num-
bers indicate the adaptive adjustments of data allocation to
memory units at corresponding steps. The detailed algorithm
is shown as Algorithm 2.

The cycle crossover is able to travel through both par-
ents. Therefore, it is able to examine the good features of
both of them. But the downside is the relative long cost
of checking each position of parent chromosomes. Hence,
we propose another simpler crossover operation, which is a

Algorithm 2 Adaptive Cycle Crossover Algorithm
Input: Two parent chromosomes P1 and P2.
Output: A new chromosome.
1: Assume the length of each chromosome is L.
2: while Child chromosome has empty position do
3: for i = 1→ L do
4: if Gene i in P1 has not been copied to the child

chromosome then
5: Keep the gene and break;
6: end if
7: end for
8: if The memory unit associated with gene i is full then
9: Adaptively search an available position from neigh-

boring memory units;
10: else
11: Copy gene i to the same position of the child;
12: end if
13: Get a gene Ge at position i in P2;
14: while Ge has already existed in the child do
15: Locate the gene Ge in P1, suppose its position is j;
16: Copy the gene Ge to the position j of the child;
17: Get a new gene Ge at position j in P2;
18: end while
19: Apply the same process on P2 to copy genes to the

child chromosome;
20: end while
21: return The child chromosome;

modified version of the Partially Mapped Crossover (PMX).
Themain idea of the modified PMX algorithmworks as given
in Algorithm 3.

An example, shown in Figure 7, is employed to illustrate
the modified PMX algorithm. As shown in this figure, the
gene pairs after the crossover point are swapped and copied
to the child.

3) MUTATION
After the crossover operation, a genetic mutation will be
performed to recover some good features eliminated by the
crossover and prevent the premature convergence to a local
optima. It is archived by randomly flipping bits of a chro-
mosome. Similar to the crossover, it is happened in a certain
specific probability that is called mutation rate. We define it
to be a tunable parameter given in Equation (8) and donate

550 VOLUME 3, NO. 4, DECEMBER 2015



Qiu et al.: Data Allocation for Hybrid Memory With Genetic Algorithm

IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING

FIGURE 6. An example of adaptive cycle crossover. The solid line, dashed line, and dotted line represent the first, second, and third iteration,
respectively. The circled numbers indicate the adaptive allocation for genes.

FIGURE 7. An example of the modified PMX algorithm.

Algorithm 3 Modified PMX Algorithm
Input: Two parent chromosomes P1 and P2.
Output: A new chromosome C .
1: Assume the length of each chromosome is L;
2: Randomly generate a crossover point 0 ≤ cp ≤ L;
3: for all Genes in the segment starting from the crossover

point in P1 do
4: Examine the gene at the same position of P2;
5: if The two genes have not been copied to C then
6: Fill the positions of the childC by swapping the two

genes in P1;
7: /*Note that here we only swap the data of two genes

while keeping the memory position unchanged*/
8: end if
9: end for
10: Map the remaining genes in P1 to C
11: return The child chromosome C ;

it as PM . The probability of a mutation is much lower than
that of a crossover. For every new chromosome generated
by the crossover operation, we perform the genetic mutation
on it with a probability of PM , as shown in Algorithm 4.
Since the gene in this research is defined as a data item and a
memory unit pair, themutation operation can be performed by
swapping either the data or the memory units of the selected
genes. However, since the datum are independent of each
other, these two mutation methods are equal. We will thus
swap the number of memory units of two genes to achieve
the mutation. For example, Figure 8 illustrate the result of
our genetic mutation for a chromosome.

PM =
%m(FTmax − FTbestM )
(FTmax − FTavg)

(8)

Algorithm 4 Algorithm for Genetic Mutation
Input: A Chromosome in population and mutation rate PM.
Output: A new chromosome.
1: Randomly select two genes i and j in the input chromo-

some;
2: Generate a random number RanN between 0 and 1;
3: if RanN ≤ PM then
4: Form a new chromosome by swapping the memory

units of gene i and gene j;
5: end if
6: return The new generated chromosome;

where FTbestM is the fitness value of the chromosome to be
mutated and %m is a positive constant less than 1.

The whole procedure of our AGADA algorithm is
described by Algorithm 5. First, we need to generate the
initial population. In this procedure, a number of chromo-
somes will be generated randomly. These chromosomes are
random permutations of pairs of data and all memory units
of a CMP system (line 1). After the initialization, the fitness
value of each individual will be calculated according to
Equation (3) (line 2). Then, a search process will be iteratively
applied to determine the best solution for the data alloca-
tion problem until a termination condition is reached. The
termination criterion includes two conditions: 1) the number
of new generations exceeds a predefined maximum number
of iterations, 2) after a certain number of search (typically
500 or even more), a better solution is still unreachable.
In each generation, the crossover and mutation operation
will be carried out in terms of the predefined crossover rate
PC and mutation rate PM (line 6-8). Finally, based on the
new population, the fitness value of each individual will be

VOLUME 3, NO. 4, DECEMBER 2015 551



IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING Qiu et al.: Data Allocation for Hybrid Memory With Genetic Algorithm

FIGURE 8. An example of mutation between gene (C, 2) and (H, 5).

calculated and the selection operation will be employed to
generate a new population (line 10).

Algorithm 5 Adaptive Genetic Algorithm for Data
Allocation (AGADA)
Input: A set of data items, a CMP system with P processor

cores, each core has a hybrid SPM. Any SPMi has a
SRAM with size of SSi and a MRAM with size of SMi.

Output: A data allocation.
1: Generate initial population;
2: NewPoP← ∅;
3: Determine the fitness of each individual;
4: while Termination criterion is not met do
5: for i = 0→ PS do
6: Randomly select two chromosomes i and j from

current population;
7: Optionally apply the crossover operation on chro-

mosomes i and j with probability PC ;
8: Optionally apply the mutation operation on the new

chromosome with probability PM ;
9: end for
10: Evaluate all individuals and perform selection;
11: end while
12: return The best allocation has obtained;

VI. EXPERIMENTAL RESULTS
We evaluate our algorithm across a host of benchmarks
selected from PARSEC [25]. We run these workloads on
M5 simulator [26] and obtain the memory traces for them.
We implemented both of the Multi-dimensional Dynamic
Programming Data Allocation (MDPDA) algorithm, the
adaptive genetic algorithm, and the greedy algorithm as
stand-alone programs. These programs take the memory
traces we have collected as inputs. We also use a modi-
fied version of CACTI [27] to get the memory parameters,
including memory read/write latency, energy consumption,
and leakage power, for the simulations by using 65 nm
technology.

There are two configurations for the target systems. The
first one is a dual-core in-order CMP system where each
core has a hybrid SPM with 4KB SRAM, 16B MRAM, and
8KB Z-RAM. The other one is quad-core CMP where each
core has a hybrid SPM with 4KB SRAM, 8KB MRAM, and
4KB Z-RAM. The baseline configuration is a dual-core CMP
system with a pure SPM configured from an 8KB SRAM.
The specifications of the hybrid memory modules and the

TABLE 5. Performance parameters for the target systems and
memory modules.

baseline are given in Table 5. Then, we integrate all these
parameters into our custom simulator. To verify the effective-
ness of our proposed MDPDA algorithm, 10 applications are
selected form PARSEC for simulations: blackscholes,
bodytrack, canneal, dedup, streamcluster, facesim,
fluidanimate, x264, swaptions, and ferret.

The following parameter specifications are used in our
simulations for the AGADA algorithm. 1) Population size:
300; 2) Crossover rate: %c = 0.8; 3)Mutation rate %m = 0.02;
4) Selection method: rank based roulette wheel; 4) maximum
generation: 1000.

We compare the performance of the AGADA algorithm to
that of the greedy algorithm [7]. Fig. 9, Fig. 10, and Fig. 11
illustrate comparisons between the greedy algorithm and the
AGADA algorithm, with respect to the number of writes to
MRAMs, dynamic energy consumption, and memory access
latencies. Compared to the greedy algorithm [7], the average
performance improvements of our AGADA algorithm are
32.96%, 15.98%, and 14.42%, respectively. By reducing the
number of writes to MRAMs, the AGADA algorithm can
efficiently extend the usage of MRAMs.
Performance analysis and comparison for the

AGADA algorithm: First, we verify the precision of the
AGADA strategy for data allocation in hybrid SPM archi-
tectures, by comparing to the optimal allocation results of the
multi-dimension dynamic programming (MDPDA) algorithm
revised from [9]. Fig. 12 shows that dynamic energy

552 VOLUME 3, NO. 4, DECEMBER 2015



Qiu et al.: Data Allocation for Hybrid Memory With Genetic Algorithm

IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING

FIGURE 9. The comparison of the number of writes operations to MRAM
caused by data allocation strategies of the greedy algorithm and our
proposed adaptive genetic algorithm (AGADA). The AGADA algorithm
reduces the number of writes 32.96% on average.

FIGURE 10. The comparison of energy consumption caused by the
greedy algorithm and the adaptive genetic algorithm (AGADA) for data
allocation. The AGADA algorithm reduces dynamic energy consumption
by 15.98% on average.

FIGURE 11. The comparison of memory access latencies caused by the
greedy algorithm and the adaptive genetic algorithm (AGADA) for data
allocation. The AGADA algorithm reduces memory access latencies by
14.42% on average.

consumption of the AGADA algorithm is approximate to that
of the optimal MDPDA, with respect to the 7 applications
selected from PARSEC. On average, the AGADA consumes
2.21% more dynamic power than that of the
MDPDA counterpart. However, considering the high time

FIGURE 12. The comparison of dynamic energy consumption caused by
the MDPDA and AGADA for data allocation. On average, the AGADA
algorithm consumes 2.21% more dynamic energy consumption than the
MDPDA.

and space complexity of theMDPDA, the AGADA algorithm
is more competitive in overall performance.

For example, for a n-core CMP with hybrid SPMs, the
MDPDA algorithm revised from [9] needs
O(N ×

∏M
i=1(SizeSi × SizeMi )) times and spaces to get the

solution and maintain the cost matrix used the algorithm,
where N and M are the number of input data and SPMs,
respectively; SizeSi and SizeMi are the size of SRAM and
MRAM of SPM i, respectively. Instead, the AGADA
algorithm organizes a chromosome in the form of the list
structure, which only requires O(G × P × N ) space to
maintain the entire chromosomes, where G and P represent
the maximum number of iterations and the population size
of the genetic algorithm, respectively. Moreover, G and P are
constants, andG×P is much less than

∏M
i=1(SizeSi×SizeMi ).

VII. CONCLUSION
Hybrid memory is an effective approach to reduce the
energy consumption and latency issues for mobile cloud
computing systems. This paper proposed a novel hybrid
SPM architecture comprising SRAM, MRAM, and Z-RAM
to reduce memory access latency and energy consumption
by making the best usage of each type of memory. Based
on the hybrid SPM architecture, we proposed a novel adap-
tive genetic algorithm, Adaptive Genetic Algorithm for Data
Allocation (AGADA), to efficiently allocate data on each
memory unit of the heterogeneous SPMs. AGADA has much
smaller space complexity compared with multi-dimensional
dynamic programming (MDPDA) algorithm. Experimental
results have shown that our proposed algorithm can signifi-
cantly reduce both the memory access cost (including latency
and energy consumption) and the number of write operations
on MRAM, compared to the greedy algorithm.

REFERENCES
[1] J. Montanaro et al., ‘‘A 160-MHz, 32-b, 0.5-W CMOS RISC

microprocessor,’’ Digit. Tech. J., vol. 9, no. 1, pp. 49–62, 1997.
[2] M. Qiu, Z. Chen, and M. Liu, ‘‘Low-power low-latency data allocation

for hybrid scratch-pad memory,’’ IEEE Embedded Syst. Lett., vol. 6, no. 4,
pp. 69–72, Dec. 2014.

VOLUME 3, NO. 4, DECEMBER 2015 553



IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING Qiu et al.: Data Allocation for Hybrid Memory With Genetic Algorithm

[3] M. Qiu, Z. Chen, Z. Ming, X. Qin, and J. W. Niu, ‘‘Energy-
aware data allocation for mobile cloud systems,’’ IEEE Syst. J.,
doi: 10.1109/JSYST.2014.2345733.

[4] R. Banakar, S. Steinke, B.-S. Lee, M. Balakrishnan, and R. Marwedel,
‘‘Scratchpad memory: A design alternative for cache on-chip mem-
ory in embedded systems,’’ in Proc. 10th Int. Symp. Hardw./Softw.
Codesign (CODES), May 2002, pp. 73–78.

[5] P. R. Panda, N. D. Dutt, and A. Nicolau, ‘‘Efficient utilization of scratch-
pad memory in embedded processor applications,’’ in Proc. Eur. Design
Test Conf., Mar. 1997, pp. 7–11.

[6] C. R. Johns and D. A. Brokenshire, ‘‘Introduction to the cell broadband
engine architecture,’’ IBM J. Res. Develop., vol. 51, no. 5, pp. 503–519,
Sep. 2007.

[7] S. Udayakumaran and R. Barua, ‘‘Compiler-decided dynamic mem-
ory allocation for scratch-pad based embedded systems,’’ in Proc. Int.
Conf. Compil., Archit. Synthesis Embedded Syst. (CASES), Oct. 2003,
pp. 276–286.

[8] G. Sun, X. Dong, Y. Xie, J. Li, and Y. Chen, ‘‘A novel architecture of the
3D stacked MRAM L2 cache for CMPs,’’ in Proc. 36th Annu. Int. Symp.
Comput. Archit. (ISCA), Feb. 2009, pp. 239–249.

[9] J. Hu, C. J. Xue, Q. Zhuge, W.-C. Tseng, and E. H.-M. Sha, ‘‘Towards
energy efficient hybrid on-chip scratch pad memory with non-volatile
memory,’’ in Proc. Design, Autom. Test Eur. Conf. Exhibit. (DATE),
Mar. 2011, pp. 1–6.

[10] D. Whitley, ‘‘A genetic algorithm tutorial,’’ Statist. Comput., vol. 4, no. 2,
pp. 65–85, Jun. 1994.

[11] V. Suhendra, A. Roychoudhury, and T. Mitra, ‘‘Scratchpad allocation
for concurrent embedded software,’’ ACM Trans. Program. Lang. Syst.,
vol. 32, no. 4, pp. 13:1–13:47, 2010.

[12] J. Whitham, R. I. Davis, N. C. Audsley, S. Altmeyer, and C. Maiza,
‘‘Investigation of scratchpad memory for preemptive multitasking,’’ in
Proc. 33rd IEEE Int. Real-Time Syst. Symp. (RTSS), San Juan, PR, USA,
Dec. 2012, pp. 3–13.

[13] J. Whitham and N. Audsley, ‘‘The scratchpad memory management unit
for microblaze: Implementation, testing, and case study,’’ Dept. Comput.
Sci., Univ. York, Heslington, U.K., Tech. Rep. YCS-2009-439, 2009.

[14] N. Nguyen, A. Dominguez, and R. Barua, ‘‘Memory allocation for embed-
ded systems with a compile-time-unknown scratch-pad size,’’ in Proc. Int.
Conf. Compil., Archit. Synthesis Embedded Syst. (CASES), San Francisco,
CA, USA, Sep. 2005, pp. 115–125.

[15] A. Dominguez, S. Udayakumaran, and R. Barua, ‘‘Heap data allocation to
scratch-pad memory in embedded systems,’’ J. Embedded Comput., vol. 1,
no. 4, pp. 521–540, Dec. 2005.

[16] B. Egger, J. Lee, and H. Shin, ‘‘Dynamic scratchpad memory management
for code in portable systems with an MMU,’’ ACM Trans. Embedded
Comput. Syst., vol. 7, no. 2, pp. 11:1–11:38, Feb. 2008.

[17] Y. Guo, Q. Zhuge, J. Hu, M. Qiu, and E. H.-M. Sha, ‘‘Optimal data
allocation for scratch-pad memory on embedded multi-core systems,’’ in
Proc. 40th Int. Conf. Parallel Process. (ICPP), Taipei, Taiwan, Sep. 2011,
pp. 464–471.

[18] S. Udayakumaran, A. Dominguez, and R. Barua, ‘‘Dynamic allocation
for scratch-pad memory using compile-time decisions,’’ ACM Trans.
Embedded Comput. Syst., vol. 5, no. 2, pp. 472–511, May 2006.

[19] J. Hu, C. J. Xue, Q. Zhuge, W.-C. Tseng, and E. H. Sha, ‘‘Data allocation
optimization for hybrid scratch pad memory with SRAM and nonvolatile
memory,’’ IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 21, no. 6,
pp. 1094–1102, Jun. 2012.

[20] J. Hu, Q. Zhuge, C. J. Xue, W.-C. Tseng, and E. H.-M. Sha, ‘‘Management
and optimization for nonvolatile memory-based hybrid scratchpadmemory
on multicore embedded processors,’’ ACM Trans. Embedded Comput.
Syst., vol. 13, no. 4, Nov. 2014, Art. ID 79.

[21] H. P. Hofstee, ‘‘Power efficient processor architecture and the cell
processor,’’ in Proc. IEEE 11th Int. Symp. High Perform. Comput.
Archit. (HPCA), Feb. 2005, pp. 258–262.

[22] E. S. H. Hou, N. Ansari, and H. Ren, ‘‘A genetic algorithm for multi-
processor scheduling,’’ IEEE Trans. Parallel Distrib. Syst., vol. 5, no. 2,
pp. 113–120, Feb. 1994.

[23] M. Srinivas and L. M. Patnaik, ‘‘Adaptive probabilities of crossover and
mutation in genetic algorithms,’’ IEEE Trans. Syst., Man, Cybern., vol. 24,
no. 4, pp. 656–667, Apr. 1994.

[24] K. Shahookar and P. Mazumder, ‘‘A genetic approach to standard cell
placement using meta-genetic parameter optimization,’’ IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst., vol. 9, no. 5, pp. 500–511,
May 1990.

[25] Parsec. [Online]. Available: http://parsec.cs.princeton.edu/, accessed
2010.

[26] N. L. Binkert, R. G. Dreslinski, L. R. Hsu, K. T. Lim, A. G. Saidi, and
S. K. Reinhardt, ‘‘TheM5 simulator: Modeling networked systems,’’ IEEE
Micro, vol. 26, no. 4, pp. 52–60, Jul./Aug. 2006.

[27] N. Muralimanohar, R. Balasubramonian, and N. Jouppi, ‘‘Optimiz-
ing NUCA organizations and wiring alternatives for large caches with
CACTI 6.0,’’ in Proc. 40th Annu. IEEE/ACM Int. Symp., Dec. 2007,
pp. 3–14.

MEIKANG QIU (SM’07) received the B.S. and
M.S. degrees from Shanghai Jiao Tong University,
in 1992 and 1998, respectively, and the Ph.D. degree
in computer science from the University of Texas
at Dallas, Richardson, TX, USA, in 2007. He is
currently an Associate Professor of Computer
Science with Pace University, New York, NY,
USA. He has authored four books, over 200 peer-
reviewed journal and conference papers (includ-
ing over 100 journal articles and 100 conference

papers), and holds three patents. He was a recipient of the ACM Transactions
on Design Automation of Electrical Systems Best Paper Award in 2011.
His paper about cloud computing has been published in the Journal of
Parallel and Distributed Computing (Elsevier) and ranked 1 in 2012 Top
25 Hottest Papers. He was a recipient of four conference best paper awards
(the IEEE/ACM ICESS’12, the IEEE GreenCom’10, the IEEE EUC’10,
and IEEE CSE’09) in recent four years. He is an Associate Editor of the
IEEE TRANSACTIONS ON COMPUTERS and the IEEE TRANSACTIONS ON CLOUD

COMPUTING. He is the General Chair of the IEEE HPCC/ICESS/CSS 2015.
The General Chair of IEEE CSCloud’15 and NSS’15, Steering Committee
Chair of IEEE BigDataSecurity 2015, and the Program Chair of IEEE
SOSE/MobileCloud/BigData 2015. He was also a recipient of the Navy
Summer Faculty Award in 2012 and the Air Force Summer Faculty Award in
2009. His research is supported by NSF and Industrial, such as Nokia, TCL,
and Cavium.

ZHI CHEN received the B.S. degree from Huai-
hua University, Hunan, China, in 2008, and the
M.S. degree from Hunan University, Changsha,
China, in 2011. He is currently pursuing the degree
with the Electrical and Computer Engineering
Department, University of Kentucky.

JIANWEI NIU received the B.S. degree in infor-
mation science from the Zhengzhou Institution of
Aeronautical Industry Management, Zhengzhou,
China, and the M.S. and Ph.D. degrees in
computer application from Beihang University,
Beijing, China, in 1998 and 2002, respectively.
He is currently a Professor with Beihang
University. His current research interests include
embedded and mobile computing.

554 VOLUME 3, NO. 4, DECEMBER 2015



Qiu et al.: Data Allocation for Hybrid Memory With Genetic Algorithm

IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING

ZILIANG ZONG received the B.S. and
M.S. degrees in computer science from Shandong
University, in 2002 and 2005 respectively, and the
Ph.D. degree in computer science and software
engineering from Auburn University, in 2008. He
is currently an Assistant Professor with the Com-
puter Science Department, Texas State University.
His research is currently focusing on energy-
efficient computing and systems, distributed stor-
age systems, parallel programming, and big data

analytics. He was a recipient of the Distinguished Dissertation Award from
Auburn University.

GANG QUAN (SM’10) received the B.S. degree
from the Department of Electronic Engineer-
ing, Tsinghua University, Beijing, China, the
M.S. degree from the Chinese Academy of
Sciences, Beijing, and the Ph.D. degree from
the Department of Computer Science and Engi-
neering, University of Notre Dame, Notre Dame,
IN, USA. He is currently an Associate Profes-
sor with the Electrical and Computer Engineering
Department, Florida International University. His

research interests and expertise include real-time systems, embedded system
design, power/thermal-aware computing, advanced computer architecture,
and reconfigurable computing. He was a recipient of the National Science
Foundation Faculty Career Award, and the best paper award from the 38th
Design Automation Conference. His paper was selected as one of the Most
Influential Papers of the 10 Years Design, Automation, and Test in Europe
Conference in 2007.

XIAO QIN (SM’09) received the B.S. and
M.S. degrees from the Huazhong University of
Science and Technology, in 1992 and 1999,
respectively, and the Ph.D. degree from theUniver-
sity of Nebraska-Lincoln, in 2004, all in computer
science.

He is currently an Associate Professor with the
Department of Computer Science and Software
Engineering, Auburn University. He was a recip-
ient of the NSF CAREER Award in 2009. His

research is supported by NSF, Auburn University, and Intel Corporation.

LAURENCE T. YANG received the B.E. degree
in computer science and technology from
Tsinghua University, Beijing, China, and the
Ph.D. degree in computer science from the Uni-
versity of Victoria, Victoria, BC, Canada. He is
currently a Professor with the School of Computer
Science and Technology, Huazhong University
of Science and Technology, Wuhan, China, and
the Department of Computer Science, St. Francis
Xavier University, Antigonish, NS, Canada.

He has authored over 200 papers in various refereed journals.

VOLUME 3, NO. 4, DECEMBER 2015 555


