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Abstract: In this paper, we study the problem of reducing the energy consumption for a weakly 
hard real-time system. The weakly hard real-time system is modelled by the (m, k)-constraints, 
which require that at least m out of any k consecutive jobs of a task meet their deadlines. Since 
the system energy is consumed not only by the processor alone but also in a large part by other 
peripheral devices, we first propose a static approach, with the specifications of peripheral 
devices taken into consideration, to partition the jobs into mandatory/optional jobs to achieve the 
dual goals of (m, k)-guarantee and overall energy minimisation. Based on that, we present a 
dynamic scheduling algorithm that adopts preemption control technique and dynamic 
mandatory/optional partitioning strategy to reduce the energy consumption of the whole system 
dynamically. Our approach can effectively minimise the system-wide energy consumption and 
guarantee the (m, k)-deadlines at the same time. The novelty and effectiveness of our techniques 
are demonstrated through extensive simulation studies. 
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1 Introduction 

Energy reduction is critical to increase the mobility for 
today’s pervasive computing systems and thus becomes a 
widespread research area (Kathuria, 2013; Yang et al., 
2013; Ji et al., 2013). Power aware scheduling has been 
proven to be an effective way to reduce the energy 
consumption. Rooted in the traditional real-time scheduling 
technology, the power aware scheduling techniques change 
the system computing performance accordingly based on 
the dynamically varying computation demand. Two main 
types of techniques are reported in the literature. The first 
one is commonly known as the dynamic power down 
(DPD), i.e., to shut down a processing unit and save power 
when it is idle. The second one is called dynamic voltage 
scaling (DVS) which updates the processor’s supply 
voltages and working frequencies dynamically. 

Extensive power aware scheduling techniques have  
been published for energy reduction, but most of them  
(e.g., Aydin et al., 2001; Kim et al., 2002; Quan et al., 2009) 
have been focused solely on reducing the processor energy 
consumption. While the processor is one of the major power 
hungry units in the system, other peripherals such as 
network interface card, memory banks, disks also consume 
significant amount of power. The empirical study by 
Viredaz and Wallach (2003) on a Itsy pocket computer, 
which is a typical portable electronic systems based on the 
StrongARM SA-1100 processor, reveals that the processor 
core consumes around 28.8% of total power when playing a 
video file on a hardware testbed (Viredaz and Wallach, 
2003) for handheld devices, while the DRAM consumes 
about 28.4% of the total power. Note that this testbed 
(Viredaz and Wallach, 2003) lacks disk storage and wireless 
networking capability, which may contribute as much 
power consumption as the processor core if not more 
(Zedlewski et al., 2003; Doherty et al., 2001). This implies 
that the techniques that attack the processor energy alone 
may not be overall energy efficient. On the other hand, 
while DVS techniques have proven to be able to 
dramatically reduce the dynamic power consumption of the 
processor, most of the peripheral devices do not have the 
DVS capabilities. For peripheral devices, the most efficient 
way to save power is simply shut them down when they are 
not in use. As a result, the research on employing a 
combination of DVS and DPM has also gained its 
momentum to reduce the system-wide energy consumption. 

Recently, several techniques (e.g., Kim and Ha, 2001) 
have been proposed to reduce the energy consumption for 
hard real-time systems consisting of both core processors 
and peripheral devices. However, few real-time applications 
are truly hard real-time, i.e., many practical real-time 
applications can allow some deadline misses provided  
that user’s perceived quality of service (QoS) constraints 
(Wang et al., 2012) can be satisfied. While the statistic 
information such as the average deadline miss rate is 
commonly used to quantify the QoS requirements for the 
system, this metric can be problematic for some real-time 
applications. For example, many real-time applications can 
tolerate occasional deadline misses of the real-time tasks, 

and the information carried by these tasks can be estimated 
to a reasonable accuracy using techniques such as 
interpolation. However, even with very low overall miss 
rate tolerance, it is still possible that a large number of 
deadline misses could occur consecutively in a short period 
of time such that critical information could be lost (in those 
time periods). 

The weakly hard real-time model is more suitable for 
this type of applications. In the weakly-hard real-time 
model, tasks have both firm deadlines (i.e., task instances 
that missed their deadlines are not counted as valid ones) 
and a throughput requirement (i.e., sufficient task instances 
must meet deadlines to provide required quality levels). 
Ramamritham and Stankovic (1994) proposed a so-called 
(m, k)-model, with a periodic task being associated with a 
pair of integers, i.e., (m, k), such that among any k 
consecutive instances of the task, at least m of the instances 
must finish by their deadlines for the system behaviour to be 
acceptable. A dynamic failure occurs, which implies that the 
temporal QoS constraint is violated and the scheduler is thus 
considered failed, if within any consecutive k jobs more 
than (k − m) job instances miss their deadlines. Based on 
this (m, k)-model, Ramanathan (1999) proposed to partition 
the jobs into mandatory and optional jobs. So long as  
all the mandatory jobs can meet their deadlines, the  
(m, k)-constraints can be ensured. 

In this paper, we study the problem of reducing the 
system wide energy consumption for the weakly hard  
real-time system modelled with the (m, k)-model. The 
problem becomes more challenging since we need to deal 
with not only the tradeoffs between DVS and DPD, but also 
the mandatory/optional partitioning problems, i.e., to 
determine which jobs are mandatory (whose deadlines have 
to be met to guarantee no dynamic failure occur) and which 
jobs can be optional. This problem is known as NP-hard 
(Quan and Hu, 2000). In this paper, we propose a novel 
mandatory/optional job partitioning strategy and a  
sufficient condition for checking the feasibility. Based on 
which, we present a dynamic scheduling scheme that adopts 
preemption control (Kim and Roy, 2004) technique and 
mandatory job pattern adjustment (Niu and Quan, 2006a) 
simultaneously to achieve higher efficiency in energy 
savings. 

The rest of the paper is organised as follows. Section 2 
talks about the related work. Section 3 presents the system 
model, and motivations. Section 4 presents our new 
approach in determining the mandatory/optional job 
partitioning and a feasibility condition to guarantee the  
(m, k)-firm deadlines. Section 5 presents our dynamic 
algorithm to reduce the system energy. In Section 6, we 
presents our experimental results. Section 7 draws the 
conclusions. 

2 Related work 

Several weakly hard models have been proposed for soft 
real time systems, e.g., Bernat and Burns (1997), Quan and 
Hu (2000), Hamdaoui and Ramanathan (1995) and 
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Ramanathan (1999). Koren and Shasha (1995) proposed a 
static partitioning strategy, called the deeply-red pattern or 
R-pattern. According to this scheme, for job τij, i.e., the jth 
job of task τi, we have 

1 0    
0 otherwise                  0,1,  ···, 1

i i
ij

i

j mod k m
j k

π
≤ <⎧

= ⎨ = −⎩
 (1) 

Therefore, τij is mandatory if its corresponding bit is ‘1’ and 
optional otherwise. Ramanathan (1999) proposed another 
partitioning strategy as follows. 
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The mandatory jobs defined with formula (2) are evenly 
distributed along the pattern, and thus referred as the evenly 
distributed pattern or E-pattern. Bernat and Cayssials 
(2001) proposed a bi-modal scheduler in which the tasks are 
first scheduled according to the generic scheduling policy in 
the normal mode and then switched to the panic mode if the 
dynamic failure is likely to occur. 

Recently, there have been increasing research efforts 
(Lee et al., 2003; Jejurikar et al., 2004; Jejurikar and Gupta, 
2004b; Kong et al., 2011) that use real-time scheduling 
techniques to reduce energy consumption for real-time 
embedded systems. To balance the dynamic power and 
static power during the execution of a job, Jejurikar et al. 
(2004) propose to use the critical speed as the lower bound 
for speed scaling. Since the critical speed may require the 
processor to run at higher-than-necessary speeds to execute 
a given set of real-time tasks, it can potentially fragment the 
execution of tasks and cause a large number of scattered 
idle intervals. To effectively reduce the energy consumption 
during these idle intervals, procrastination scheduling was 
proposed in Jejurikar et al. (2004) with the purpose of 
extending the idle intervals to facilitate shut down. Their 
approach assumes all tasks running with worst case 
execution times. Considering early completion of jobs, 
which is pervasive in most real-time systems, new dynamic 
reclaiming technique was proposed in Jejurikar et al. (2005) 
to incorporate job slack time into procrastination 
scheduling. However, as shown in Niu (2011), their 
approach might not be able to merge the idle intervals 
efficiently and is therefore less efficient in reducing the 
overhead of shutting-down. Lee et al. (2003) proposed a 
leakage reduction scheduling technique called LC-DP, by 
extending the dual-priority (DP) scheduling model 
presented in Davis and Wellings (1995) for real-time 
systems based on fixed-priority (FP) scheme. However, as 
shown in Jejurikar and Gupta (2004b), the LC-DP algorithm 
cannot guarantee the deadlines of tasks because of its 
discrepancy with the original dual priority scheduling 
algorithm (Davis and Wellings, 1995). To guarantee 
deadlines, Jejurikar and Gupta (2004b) further proposed to 
delay the execution of tasks by the minimal promotion time 
over all lower and equal priority tasks based on the dual 

priority scheduling. However, as shown in Chen and Kuo 
(2006), this approach cannot guarantee the deadlines for 
real-time tasks based on FP scheme either. Also Chen  
and Kuo (2006) proposed an FP-based online  
simulated-scheduling (VOSS) algorithm which scales the 
job speed when the idle time length is less than the break 
even time or the ‘effective power’ based on virtual 
schedules can be less. However, their approach must 
assume worst case execution times for all real-time jobs  
(to construct the virtual schedule) and might not be 
applicable when real-time jobs present actual execution 
times less than their worst case. In order to facilitate 
processor shut-down, Awan and Petters (2011) proposed a 
‘race to halt’ approach which attempts to put the processor 
into sleeping mode whenever the reclaimable slack time 
reaches certain length limit for the idle interval. However, 
since this idle interval length limit is statically computed by 
assuming all real-time jobs will present their worst case 
execution times, it is rather pessimistic in a more common 
situation where most real-time jobs present actual execution 
times much less than their worst case. As a result, it may not 
be able to merge the sleeping intervals efficiently to further 
reduce the energy overhead of shutting-down. Kim and Roy 
(2004) proposed a preemption control technique to reduce 
preemptions among tasks and hence the energy cost 
incurred by preemptions among tasks. However, their 
approach needs to increase the processing speeds of the jobs 
under consideration, which could, to some extent, 
counteract the energy reduction from reducing preemptions. 
Bambagini et al. (2013) proposed an energy reduction 
framework by exploring the limited preemptive scheduling 
framework (Buttazzo et al., 2013; Bertogna and Baruah, 
2010), which attempts to reduce the preemption among 
tasks by using lower priority tasks to ‘block’ higher priority 
tasks. Their approaches need to handle the ‘blocking’ 
among tasks (based on the blocking protocols) at each job 
arrival, which will incur significant overall time/energy 
overhead. Moreover, their approach is based on FP scheme 
and needs to divide each real-time task into a set of  
non-preemptive regions, which might not be effective for 
general fully preemptive EDF scheduling. 

The above approaches are focused on saving energy 
consumed by the processor only. More recently, a number 
of researches (e.g., Jejurika and Gupta, 2004a; Kim and Ha, 
2001; Kim and Roy, 2004; Zhuo and Chakrabarti, 2005) are 
reported to reduce the energy consumption for systems 
consisting of DVS processors and peripheral devices.  
Kim and Ha (2001) proposed a technique for hard  
real-time system, while scheduling decisions are made on a  
timeslot-by-timeslot basis. To facilitate a run-time 
mechanism, the processor speed for each task is determined 
by analysing the energy savings based on a pre-determined 
set of execution times. Jejurikar and Gupta (2004a) 
introduced a heuristic search method to find the critical 
speed to balance the energy consumption between the 
processor and peripheral devices. Zhuo and Chakrabarti 
(2005) proposed a theoretical formulation of the optimal 
scaling factor and computed it numerically. Based on 
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which, they also incorporated the idea of preemption control 
in Kim and Roy (2004) to improve the energy savings. In 
Zhao and Aydin (2009) and Devadas and Aydin (2012), the 
interplay between DVS and DPD were studied to minimise 
energy consumption for real time systems containing a core 
processor and multiple devices. The system model of their 
approach contains only a single task with its deadline equal 
to the period. Kong et al. (2010) proposed an offline 
approach based on mathematical programming to integrate 
DVS and DPD to deal with system energy minimisation for 
multiple tasks. Their approaches target the so called  
‘frame-based’ system which is a very special case of  
real-time applications that all tasks have the same deadlines 
and periods. In Devadas and Aydin (2010), more advanced 
techniques were provided to minimise the system level 
energy consumption by inserting so-called ‘device 
forbidden region’ (DFR) into real time tasks. The DFRs are 
some precomputed time intervals during which the devices 
are forced into sleeping mode and will be treated as separate 
tasks with higher priority than all the original tasks in the 
system. However, as shown in Devadas and Aydin (2010), 
the problem of generating feasible schedule with DFRs is 
NP-hard in the strong sense. Although the authors explored 
some heuristics to determine the DFRs offline for hard  
real-time systems with deadlines equal to periods, it is not 
clear if that approach could be applied to systems with 
weakly hard constraints. There are also a number of 
researches investigating the scheduling problem for system 
with non-DVS processor and I/O devices (Cheng and 
Goddard, 2006). 

All the approaches above target hard real-time systems. 
We are more interested in developing scheduling 

techniques for weakly hard real-time systems. Hua and Qu 
(2004) introduced a greedy approach to minimise the energy 
consumption for systems with (m, k)-constraints running on 
a processor with two different speeds. However, their 
approach cannot guarantee the (m, k)-constraints, even 
though the system is underloaded. AlEnawy and Aydin 
(2005) introduced a scheduling technique to maximise 
(instead of guarantee) the quality service level under energy 
constraints for real-time systems with (m, k)-constraints. 
Niu and Quan (2006a) presented a combined static/dynamic 
DVS scheduling method to reduce processor energy with 
(m, k)-guarantee. All of these techniques only take the 
processor energy consumption into consideration. To 
incorporate the energy of the peripheral devices into 
consideration, Niu and Quan, (2006b) investigated the 
scheduling problem for a system that consists of a non-DVS 
processor and a single peripheral device. In this paper, we 
target reducing the system-wide energy for a weakly hard 
real time system model that contains a DVS processor and 
multiple peripheral devices. And each device can have 
different power characteristics. 

3 Preliminary 

In this section, we first introduce the system and 
architecture model, followed by a motivation example. 

3.1 System models 

The real-time system considered in this paper contains n 
independent periodic tasks, T = {τ0, τ1, ···, τn−1}, scheduled 
according to the earliest deadline first (EDF) policy. Each 
task contains an infinite sequence of periodically arriving 
instances called jobs. Task τi is characterised using five 
parameters, i.e., (Ti, Di, Ci, mi, ki). Ti, Di (Di ≤ Ti), and Ci 
represent the period, the relative deadline and the worst case 
execution time for τi, respectively. A pair of integers,  
i.e., (mi, ki) (0 < mi ≤ ki), represent the QoS requirement for 
τi, requiring that, among any ki consecutive jobs of τi, at 
least mi jobs meet their deadlines. Each periodic task 
consists of a sequence of instances, called jobs. When it 
does not cause confusion, we use Ji = (ri, ci, di) to represent 
the current or upcoming job of task τi, where ri, ci, and di are 
the arrival time, actual execution cycles, and absolute 
deadline, respectively. 

The system architecture consists of a core DVS 
processor and a number of devices, M0, M1, ..., Mp. The 
DVS processor used in our system can operate at a finite set 
of discrete supply voltage levels V = {V1, ...,Vmax}, each 
with an associated speed. To simplify the discussion, we 
normalise the processor speeds to Smax, the speed 
corresponding to Vmax, which results in S = {S1, ..., 1}. We 
assume that Ci is the worst case execution time for task τi in 
the highest voltage mode. Therefore, if τi is executed under 
speed Sj, the worst case execution time for τi becomes .i

j

C
S  

The devices do not have DVS capability and can only 
support the DPD mechanism. 

We denote the processor power with Pcact when running 
a task, and Pcidle when the processor is idle (yet still on). 
When the processor is shut down, its power consumption is 
denoted as Pcsleep. Besides running on the DVS processor, 
each task τi requires to access a subset of peripheral devices 
Φi ⊆ {M0, M1, ..., Mp}. At any particular time, at most one 
task can access the same device. 

Each peripheral device can be in one of the two states: 
active or sleep. When the task is active, its corresponding 
associated peripheral device(s) must also be in active mode 
to provide timely service. The power consumption for the 
device Mi is denoted as i

dactP  and i
dsleepP  for its active mode 

and sleep mode, respectively. It will not be feasible or 
beneficial to shut down the processor or the devices if the 
time interval is not long enough. We use min

iL  to represent 
the minimal time interval during which the device Mi can be 
feasibly shut down with positive energy gain. For 
convenience, we also call min

iL  the minimal shut-down 
interval for device Mi. The general idea is: if we assume the 
energy and time overhead of powering-down/waking-up 
device Mi to be i

oE  and i
ot  respectively, then the device can 

be shut down with positive energy gain only if the length  
of the idle interval is larger than min ,iL  which can be 
computed as 
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min max , .
i i i
o dsleep oi i

oi i
dact dsleep

E P t
L t

P P

⎧ ⎫− ×⎪ ⎪= ⎨ ⎬
−⎪ ⎪⎩ ⎭

 (3) 

The minimal shut-down interval for the core processor  
can be computed in a similar way and we use Tmin to 
represent it. 

3.2 The motivations 

Our goal is to employ DVS and DPD judiciously to save 
energy and guarantee the (m, k)-constraints in the mean 
time. Note that for weakly hard real-time systems with  
(m, k) requirements, the mandatory/optional partition has 
great impact on the processor/device power consumption. 
For example, the E-pattern helps to distribute the mandatory 
jobs evenly for a task. The work by Niu and Quan (2006a) 
shows that significant energy can be saved for tasks with  
E-patterns than that with R-patterns, since the processor 
speed can be reduced further without violating the 
deadlines. On the other hand, however, E-patterns distribute 
the mandatory jobs evenly, which leads to short scattered 
idle intervals that is not in favour of shutting down the 
devices. Consider a task set of two tasks, i.e., τ1 = (4, 4, 2, 2, 
4) and τ2 = (8, 8, 4, 2, 4). Suppose the device shut down 
intervals 1

min 6L =  and 2
min 16L =  and the power 

consumption for the devices 1 0.2dactP =  and 2 0.5.dactP =  

Figure 1(a) shows the EDF schedule based on E-pattern. 
Note that in Figure 1(a) the speed of task τ1 can be scaled 
efficiently but the devices for both tasks cannot be shut 
down. 

R-pattern, on the other hand, seems to be a better choice 
in this scenario because it congregates the mandatory jobs 
and makes longer and fewer idle intervals possible. 
However, owing to the poor schedulability of R-pattern, the 
processor speed cannot be effectively scaled down. As 
shown in Figure 1(b), τ1 has to be executed at a much higher 
processor speed (represented by the height of the rectangles) 
than that in Figure 1(a). 

Figure 1(c) presents a schedule that can achieve the dual 
goal of scaling down the processor speed for task τ1 and 
shut down the peripheral device for task τ2 simultaneously. 
A careful study of Figure 1(c) would reveal that such 
solution is obtained by employing a combination of the  
E-pattern and R-pattern, i.e., partitioning τ1 with E-pattern 
and τ2 with R-pattern. In this way, we can effectively scale 
down the processor speed and also maintain long idle 
interval to shut down devices with high power consumption 
(i.e., device 2). As a result, the total power consumption 
within LCM can be greatly reduced, i.e., by 31% when 
compared with that by E-pattern in Figure 1(a) and 18% 
when compared with that by R-pattern in Figure 1(b). 

Figure 1 (a) Executing the mandatory jobs of task set (τ1 = (4, 4, 2, 2, 4); τ2 = (8, 8, 4, 2, 4);) according to their E-patterns  
(b) Executing the mandatory jobs of the same task set according to their R-patterns (c) Executing the mandatory  
jobs of the same task set according to their hyb-patterns 

   

(a)       (b) 

 

(c) 
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4 The hybrid partitioning strategy 

The motivation example implies that different partitioning 
strategies may have profound impacts on the energy 
savings. Unlike previous work that adopts either  
E-pattern or R-pattern alone, we intend to adopt a hybrid 
partitioning strategy, using both E-pattern and R-pattern 
simultaneously for the same task set. Two immediate 
problems follow: 

1 how to ensure the schedulability of a task set with 
mixed E-pattern and R-pattern 

2 how to assign the appropriate E-pattern or R-pattern to 
each task. In what follows, we address these two 
problems separately. 

4.1 The feasibility condition 

One of the key problems in our approach is the capability to 
predicate the schedulabilty of a task set with designated 
mandatory/optional pattern assignment. The following 
theorem provides us a practical way to predict the 
schedulability for the resulting mandatory job set. 

Before we introduce this theorem, the following 
notation, i.e., ⎡x⎤+, helps us to formulate the problem and 
present the proof. 

1x x+⎡ ⎤ = + ⎣ ⎦  (4) 

With the definition of ⎡x⎤+, the following theorem allows 
one to predict the schedulability for a mandatory job set by 
checking only a limited number of time points (the proof is 
provided in Niu and Quan, 2013). 

Theorem 1: Given system T, let R and E be the subsets of T 
that are partitioned according to the R-pattern and E-pattern, 
respectively. Also, let 

(0, )

min , ;

R
i

i i
i

i i i ii i
i

i i

W t

t D t Dt D
m m m CT TT

k k

+ +
+
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 (5) 

if task τi ∈ R and 

(0, ) ,E i i
i i

i i

m t D
W t C

k T

+⎛ ⎞⎡ ⎤⎡ ⎤−⎜ ⎟⎢ ⎥= ⎢ ⎥⎜ ⎟⎢ ⎥⎢ ⎥⎢ ⎥⎝ ⎠
 (6) 

if task τi ∈ E. 
Then T is schedulable if all the mandatory jobs arriving 

within [0, L] can meet their deadlines, i.e., 

(0, ) (0, )R E
i i

i i

W t W t t+ ≤∑ ∑
R E

 (7) 

for all t ≤ L where L is either the ending point of the first 
busy period (Niu and Quan, 2006a) or the least common 
multiple of Ti, i = 0, ..., (n − 1), whichever is smaller, and 

, , mod ,

, , .

i i i i i

i
i i i

i

pT D p Z p k m
t k

q T D q Z
m

τ

τ

+ ∈ ≤ ∀ ∈⎧
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⎣ ⎦⎩

R

E
 (8) 

Theorem 1 indicates that the schedulability of the 
mandatory jobs can be guaranteed if the mandatory jobs 
within the first busy interval or the LCM of the periods can 
meet their deadlines. The detailed proof of it is provided in 
Niu and Quan (2013). 

Algorithm 1 The hybrid pattern assignment (algorithm PAHYB) 

1: Input: T, scrit and min
iL  for τi; 

2: E = T, R = Ù; 

3:  Update = TRUE; 
4:  while Update do 
5:   Update = FALSE; 
6:   { | ( ) 1, };i crit i isτ τ τ′ = ≥ ∈E E  

7:  if ′ ≠E Ø  then 

8:   Let τ ′ ′∈E  such that ( )crits τ ′  is the largest; 

9:   if τ ′−E  schedulable then 

10:    ;τ ′= −E E  

11:    ;τ ′= −R R  

12:    Update = TRUE; 
13:   end if 
14:  else 
15:   for τi ∈ E do 

16:    Let Er(τi) (Ee(τi)) represent the energy 
consumption on τi within one ki window 
according to R-pattern (E-pattern) assignment; 

17:    if Er > Ee AND E − τi is schedulable then 
18:     ;τ ′= −E E  

19:     ;τ ′= −R R  

20:     Update = TRUE; 
21:    end if 
22:   end for 
23:  end if 
24: end while 

4.2 The pattern assignment 

The problem then becomes how to assign R-patterns and  
E-patterns for different tasks appropriately to balance the 
processor and device power in order to save the overall 
energy. Based on Theorem 1, we present a heuristic for 
E/R-pattern assignment that incorporates such factors as the 
relative power consumption of the device and processor, the 
length of the minimal idle intervals, and task attributes 
among others. 

Several observations help to develop our heuristic. 
Considering a job with workload w, the total energy 
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(Etotal(s)) consumed to finish this job with speed s can be 
represented as 

( )( ) ( ) .total cact dact
wE s P s P
s

= + ×  (9) 

Hence, the speed (scrit)that can minimise Etotal(s) in 
equation (9), so called the critical speed (Jejurika and 
Gupta, 2004a; Zhuo and Chakrabarti, 2005), can balance the 
processor and device power and minimise the overall 
energy consumption. Note that E-patterns tend to fragment 
the idle intervals for the devices. Therefore, when devices 
have long minimal idle intervals, it is desirable to choose  
R-pattern than E-pattern. Based upon the above 
observations and Theorem 1, we propose the pattern 
assignment algorithm in Algorithm 1. 

Algorithm 1 works as follows: all tasks are initially 
assigned as E-patterns since E-pattern has better 
schedulability that R-pattern and has more potential to scale 
down the task speed. However, when the critical speed of 
task is larger than the maximal available speed on the 
processor, both E-pattern and R-pattern should not scale 
down the tasks speed below the maximal processor speed. 
At the same time, R-pattern tends to provide more 
opportunities to shut-down the device as it can provide 
longer idle intervals. So the assignment for a task will be 
updated when: 

1 its critical speed is higher than 1 

2 it cannot be shut down even in the longest possible idle 
interval with E-pattern but could be done so with  
R-pattern. 

The algorithm terminates if no pattern assignment is 
updated. 

After mandatory/optional patterns are assigned to each 
task, we can then scale down the processor speed for each 
task to their critical speed as much as possible to save 
energy. This can be done by exploiting Theorem 1 together 
with branch and bound scheme similar to that in Niu and 
Quan (2006a). 

5 The dynamic scheduling algorithm 

After performing the mandatory/optional job partitioning 
according to Algorithm 1 and computing the appropriate 
scaling factor based on Theorem 1, we are able to schedule 
the given task set and guarantee the (m, k)-constraints.  
Our dynamic scheduling algorithm consists of two parts: 
dynamic preemption control and dynamic pattern 
adjustment. 

5.1 Dynamic preemption control 

Since the peripheral devices do not have DVS capabilities, 
the most efficient way to save power is simply shut down 
the devices during its idle intervals. Moreover, when there 

are multiple tasks being executed in the system, the 
preemption effects among tasks will be pervasive. 
According to the experiment report in Kim and Min (2003), 
the number of task preemptions can grow up to 500% under 
DVS over non-DVS executions, which can have negative 
impact on the system-wide energy consumption in several 
ways (Kim and Roy, 2004): first, the preemption overhead 
may increase the energy consumption in memory 
subsystems; second, the lengthened lifespan of the 
preempted task may increase the energy consumption in the 
peripherals associated to it; third, as the number of active 
tasks increases, the number of active peripheral devices is 
likely to increase, consuming more energy. 

In order to address the negative impact of preemptions 
on system-wide energy consumption, one effective way is to 
adopt the so called ‘preemption control’ technique. The 
main idea is: if the lower priority job can be finished earlier 
before it is preempted by the upcoming higher priority jobs, 
the lifespan of the lower priority job can be shortened. This 
is shown by the example in Figure 2. As shown in  
Figure 2(b), by temporarily withholding the executions of 
the upcoming higher priority job from task 1, the chances 
for the lower priority job from task 2 to be preempted by 
task 1 could be greatly reduced. Therefore, the lifespan of 
task 2 during which the devices associated to it must be in 
active mode could be shortened significantly. On the other 
hand, the shut-down interval of the devices associated with 
task 1 before the dispatch time of the second job of task 1 
could also be extended effectively. As a result, the energy 
consumption of both the devices associated with higher 
priority jobs and those associated with lower priority jobs 
could be reduced. 

In Kim and Roy (2004) and Zhuo and Chakrabarti 
(2005), preemption control techniques are proposed to 
reduce the chance for the current task to be preempted by 
higher priority jobs. However, their approach needs to 
increase the processing speeds of the jobs, which would 
increase the processor energy consumption and therefore 
might not necessarily be energy efficient. In Buttazzo et al. 
(2013), Bertogna and Baruah, (2010) and Bambagini et al. 
(2013), the limited preemptive scheduling framework based 
on ‘blocking tolerance’ was adopted to reduce the 
preemption among tasks. Their approaches need to handle 
the ‘blocking’ among tasks (based on blocking protocols) at 
each task arrival, which could incur significant overall 
time/energy cost. Moreover, it is not clear whether their 
approach could merge the shut-down intervals of peripheral 
devices. 

In what follows, we adopt a novel strategy to reduce the 
preemptions by procrastinating the execution of higher 
priority jobs. Different from the approach in Kim and Roy 
(2004) and Zhuo and Chakrabarti (2005), we do not need to 
increase the processor speed and therefore have a better 
energy saving potential. 
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Figure 2 Reducing the lifespan of task 2 with preemption control, (a) task set schedule without procrastinating task 1 generated long 
lifespan (LS1) for task 2 (b) procrastinating task 1 shortened the lifespan (LS2) for task 2 greatly (see online version for colours) 

   
(a)       (b) 

 
Before introducing our strategy, we first introduce the 
following definition. 

Definition 1 (Niu and Quan, 2006b): Assume that M is the 
mandatory job sets from T according to the hybrid pattern 
and can be schedulable, and let Ri be the worst case 
response time of τi. The delay factor for τi (denoted as Yi) is 
defined as Yi = (Di − Ri). 

The worst case response time Ri can be computed in a 
similar way to that in Spuri (1996), which can be computed 
offline. With the definition of delay factor Yi, we have the 
following theorem (the proof is provided in the Appendix). 

Theorem 2: Let Tm be the mandatory job set such that no 
more than mi mandatory jobs are assigned for any ki 
consecutive jobs from τi ∈ T. Also let hp(Ji) be the set of 
jobs in which each job Jp has arrival time rp > ri and priority 
higher than Ji. All jobs in Tm can meet their deadlines if the 
starting execution time of hp(Ji) is delayed to tnp, where 

( )
( )

min .
p i

np p pJ hp J
t r Y

∈
= +  (10) 

Theorem 2 allows us to delay the higher priority jobs safely. 
Although it is similar to Theorem 2 in Niu and Quan 
(2006b) in a sense that they all try to find the maximal delay 
of the future jobs, the major difference here is that in 
Theorem 2 in Niu and Quan (2006b), the higher priority 
jobs are delayed only when the processor is idle to get 
longer idle intervals. Here we delay the higher priority jobs 
once the current job gets chance to be executed or the 
processor begins to idle because we want to achieve the 
dual goals of reducing the number of preemptions and 
extending the idle intervals, as well as shortening the 
lifespan of the task and shutting down the processor/devices 
whenever possible to do so. Note that the delay factor Yp 
can be computed offline and applied online. More 
importantly, the processing speeds for the higher priority 
jobs do not have to be increased even if they are delayed. 

5.2 Dynamic (m, k)-pattern adjustment 

Although the static analysis based on a predetermined 
hybrid pattern helps to ensure the feasibility of the 
mandatory job sets and thus guarantees the QoS levels, it is 
usually performed based on the worst case scenario and 
rather pessimistic. Considering the large run-time variations 
in embedded systems, it would be extremely profitable to 

employ a scheduling technique that can exploit the 
irregularities and variations online. We are therefore 
interested in developing a dynamic scheduling technique to 
achieve better energy-saving performance. 

Niu and Quan (2006a) proposed a strategy to change the 
mandatory job dynamically. The rationale is that, if some 
optional job can be finished at a lower processor speed, 
other mandatory jobs can be demoted to optional and save 
energy. While this technique is proposed for all tasks to be 
assigned with E-pattern, we can prove that after 
modification it is still applicable to our case when different 
tasks may be assigned different patterns. In addition, with 
the incorporation of peripheral devices, more issues need to 
be considered in choosing the optional jobs to dispatch and 
in determining their running speed. 

When no mandatory job is available to be executed, 
some optional jobs can also meet their deadlines with low 
speed. That give us more opportunities to reduce the energy 
further by adjusting the pattern dynamically. In the dynamic 
pattern adjustment, two job ready queues, i.e., the 
mandatory job queue (MJQ) and the optional job queue 
(OJQ) will be maintained. Upon arrival, a job, i.e., Ja ∈ τi is 
designated as mandatory job or optional job based on its 
predetermined E-pattern or R-pattern and inserted to the 
MJQ or OJQ correspondingly. The jobs in MJQ always 
have higher priority than those in OJQ. If the MJQ is empty, 
then the jobs in OJQ will have chance to be executed. It is 
not difficult to see that there may be more than one optional 
jobs in OJQ, and selecting which one to execute may have 
profound impacts on the future job executions. While the 
optional jobs can be selected arbitrarily without causing any 
dynamic failure, we use a more delicate heuristic to achieve 
better energy saving performance. Specifically, when the 
processor is idle, we first check whether there are some 
optional jobs in OJQ that can be finished with their critical 
speed before mini(ri +Yi) of the upcoming mandatory jobs. 
Note that the inspected optional job(s) should be chosen 
only when the associated device(s) cannot be shut down 
during this idle interval. At the same time, the qualified 
optional job should not finish earlier than the earliest arrival 
time of the upcoming mandatory jobs, either, because if it 
cannot consume the idle interval completely it will generate 
new scattered idle intervals which cannot be shut down. 
After that, the qualified optional job in OJQ that has the 
lowest energy cost will be chosen to be executed. 

If one optional job in OJQ is chosen to be executed and 
finished by its deadline, the (m, k)-pattern for the task it 
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belongs to will be adjusted correspondingly by shifting the 
pattern to the right by one position. The details are 
presented in Algorithm 2. 

As shown, Algorithm 2 combines both the dynamic 
mandatory job pattern adjustment and dynamic preemption 
control and therefore can achieve much better energy 
performance, which will be demonstrated using 
experimental results in Section 6. Moreover, to ensure the 
effectiveness and efficiency of this algorithm, we have the 
following theorem (the proof is provided in Niu and Quan, 
2013). 

Theorem 3: Algorithm 2, with complexity of O(n), can 
ensure the (m, k)-requirements for T if T is schedulable 
under the hybrid patterns assigned according to  
Algorithm 1. 

Algorithm 2 The peripheral conscious dynamic scheduling 
algorithm (algorithm MKPC) 

1: Input: The MJQ, OJQ, and the current time tcur; 

2: if MJQ is not empty then 

3:  choose the job in MJQ that has the highest priority 
according to EDF as the current job Ji; 

4: else if OJQ is not empty then 

5:  choose the qualified job in OJQ that has the lowest 
energy cost as the current job Ji; 

6: end if 

7: 

8: Compute tnp for the current job Ji based on equation (10); 

9: Execute Ji non-preemptively within [tcur, tnp]; 

10: Update tcur; 

11: if Jcur is completed then 

12:  Let ta be the arrival time of the next coming 
mandatory job from the same task; 

13:  if min(   ) i
a curt t L− >  then 

14:   Shut down the device Li and set up the wake up 
timer to be (ta − tcur); 

15:  end if 

16:  if Ji is optional job then 

17:   Shift the pattern correspondingly; 

18:  end if 

19: end if 

6 Experimental results 

In this section, we evaluate the performance of our approach 
using simulations. We used two groups of real-time task 
sets as test cases in our experiments, one was randomly 
generated and the other one was drawn from practical 
applications. Specifically, we implemented and  
compared the energy saving performance of the following 
approaches 

• PCR: The task sets are statically partitioned with  
R-patterns, and the mandatory jobs are executed with 
the statically determined speed. We use its results as the 
reference results. 

• PCE: The mandatory/optional jobs are partitioned based 
on E-patterns. 

• PCHYB: The static hybrid patterns proposed in Section 
4.2 are adopted in partitioning the mandatory/optional 
jobs. 

• PCHYB-p: Based on the static hybrid patterns proposed in 
Section 4.2, we try to delay the mandatory jobs to 
facilitate dynamic preemption control and shut-down. 

• PCHYB-dyn: Based on the static hybrid patterns proposed 
in Section 4.2, dynamic pattern adjustment are adopted 
during the online phase. 

• PCHYB-dyn-p Based on the static hybrid patterns proposed 
in Section 4.2, we combine the dynamic preemption 
control and pattern adjustment as shown in Section 5. 

Besides the above approaches, we also studied the following 
approach that can exploit reducing the preemptions between 
the tasks to saving the system energy: 

• lppcDP: This approach was proposed by Kim and Roy 
(2004) which takes the preemptions between tasks into 
considerations. It tried to use some preemption control 
techniques to shorten the life time of the tasks and thus 
to reduce the period during which the peripheral 
devices must stay in active mode. Here we incorporate 
this approach into our static hybrid partitioning 
strategy. 

6.1 Experimental results for the synthesised task sets 

Four sets of experiments were conducted in this case. In the 
first set of experiments, we study the energy-saving 
performance by different approaches corresponding to 
different workloads. We randomly generated periodic task 
set with five tasks. The periods were randomly chosen in the 
range of [5, 50] ms. The worst case execution time (WCET) 
of a task was set to be uniformly distributed from 1 ms to its 
deadline, and the actual execution time of a job was 
randomly picked from [0.4WCET, WCET]. The mi and ki 
for the (m, k)-constraints were also randomly generated such 
that ki is uniformly distributed between 4 to 10, and 2 ≤ mi < 
ki. We varied the (m, k)-utilisation, i.e., ,i i

i i

m C
k Ti∑  of the task 

set by steps of 0.1, and generated at least 20 schedulable 
task sets within each interval or until at least 5,000 task sets 
have been generated. The devices associated with each task 
were randomly chosen from three types of devices: M1 = 
(0.5, 5), M2 = (1, 15), and M3 = (5, 30), where device type 
Mi is characterised by a pair of parameters min( , ),i i

dactP L  
representing its relative power (compared with the 
processor) and minimal shut-down interval length (in ms). 
We assume that the processor minimal shut-down interval 
length Tmin = 2 ms. The results are shown in Figure 3(a). 
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Figure 3 (a) The average total energy consumption by the different approaches (b) The energy comparison for different shut-down 
interval lengths (c) The energy comparison for different preemption control techniques (see online version for colours) 

   
(a)       (b) 

 
(c) 

 
While it is shown (Niu and Quan, 2006a) that E-pattern 
assignment always dominates R-pattern assignment in 
reducing the processor energy, this is not necessarily true 
any more when peripheral devices are taken into 
consideration, as shown in Figure 3(a). This is mainly 
because R-pattern can provide longer maximal idle intervals 
than E-pattern and thus have more chances for the devices 
to be shut down. Also, one can immediately see from the 
results that, by adopting hybrid patterns, PCHYB can achieve 
much better energy efficiency than those adopting E-pattern 
or R-pattern alone, i.e., up to around 18%. Moreover, by 
delaying the mandatory job, PCHYB-p can reduce the energy 
consumption further. On the other hand, the dynamic 
pattern adjustment by PCHYB-dyn can also improve the energy 
efficiency of PCHYB obviously. It is also interesting to see 
that when the (m, k)-utilisation is relatively low, PCHYB-dyn 
dominated PCHYB-p, while when the (m, k)-utilisation is 
relatively high, PCHYB-p dominated PCHYB-dyn. This is 
because when the (m, k)-utilisation is relatively low, there is 
more space to execute the optional jobs and to adjust  
the patterns dynamically, while with the increase of the  
(m, k)-utilisation the space for dynamic pattern adjustment 

is becoming much less. The best energy efficiency is 
achieved when the two approaches are combined together. 
As can be seen from Figure 3(a), the combined dynamic 
algorithm, i.e., PCHYB-dyn-p, can reduce the energy of PCHYB 
further by up to 15%. 

In the second set of experiments, we investigate the 
energy saving performance for devices with different 
minimal shut-down intervals. The powers of the devices 
remain the same. Three sub-sets of experiments were 
conducted with the minimal shut-down interval sets  
of the devices randomly selected from one of three ranges 
[2, 20] ms, [20, 40] ms, and [40, 60] ms, respectively. The 
results for task sets (generated in the same way as those for 
the first set) with (m, k)-utilisation falling into representative 
interval [0.3, 0.4] are shown in Figure 3(b). 

As shown in Figure 3(b), when the minimal  
shut-down intervals are chosen from shorter interval range, 
i.e., [2, 20] ms, in most cases both E-pattern and R-pattern 
can help shut the peripheral devices. In this case E-pattern 
has better energy performance since E-pattern helps to 
better slow down the processor speed and thus reduce the 
overall energy. However, as the minimal shut-down interval 
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length grows, R-pattern becomes much better as it  
provides more chances for the devices to be shut down for 
the same reason as stated above, especially when the 
minimal shut-down interval becomes significantly large, 
i.e., [40, 60] ms in Figure 3(b). Note that in all three cases, 
using hybrid pattern (PCHYB) can achieve the best energy 
performance among them. And similar to the results above, 
either dynamic preemption control (PCHYB-p) or dynamic 
pattern adjustment (PCHYB-dyn) alone can reduce the energy 
consumption further. And the lowest energy consumption is 
achieved by combining them together. Compared to PCHYB, 
the combined approach PCHYB-dyn-p can reduce the energy 
further by around 15%. 

The third set of experiments mainly evaluate the 
effectiveness of our technique on dynamic preemption 
control. Since the preemption control scheme by Kim and 
Roy (2004) can also be incorporated into our approach 
PCHYB, we are interested in how much our approach can 
help improve the approach proposed in Kim and Roy (2004) 
(represented by lppcDP). The task sets were generated in the 
same way as that for the second set. For the devices, we 
fixed their minimal shut-down intervals but vary their 
relative power consumption. Three sub-sets of tests were 
also conducted, within each we randomly selected the 
relative power consumption for devices from one of three 
power ranges, [0.2, 1], [1, 2], and [2, 10]. The results, 
normalised to that by lppcDP, are shown in Figure 3(c). 

As shown in Figure 3(c), when the device power is very 
small, the improvements of our approaches, i.e., PCHYB-p and 
PCHYB-dyn, over lppcDP are limited as the critical speed of the 
task is much smaller than the maximal speed, which 
provides more space for lppcDP to adjust the job speed and 
delay the higher priority mandatory jobs. However, as the 
device power increases, the improvement of PCHYB-p and 
PCHYB-dyn becomes more significant. 

This is because when the device power becomes larger, 
the critical speed for each task becomes closer to or higher 
than the maximal processor speed, which makes little slack 
for lppcDP to adjust speeds for the higher priority mandatory 
jobs. And as expected, when PCHYB-p and PCHYB-dyn are 
combined together, the energy saving is even much better. 
For example, when the device power is larger than twice the 
processor power, the improvement of PCHYB-dyn-p over 
lppcDP can be around 15% as shown in the figure. 

6.2 Experimental results from real applications 

Next, we tested our approach in a more practical 
environment. Instead of random examples, we generated the 
test cases with specifications drawn from three real world 
applications: computerised numerical control (CNC) 
machine controller (Kim et al., 1996), inertial navigation 
system (INS) (Burns et al., 1995), and Webphone  
(Shin et al., 2001). The timing parameters such as the 
deadlines, periods, and execution times were adopted from 
these practical applications directly. The actual execution 
time of a job was randomly picked from [0.4WCET, 
WCET] and the (m, k)-constraints were generated as we did 

for the synthesised task sets. Similarly, we divided the total 
(m, k)-utilisation into intervals of length 0.1. Within each 
interval, we generated at least 20 task sets that were 
schedulable with the R-pattern, or until at least 5,000 task 
sets had been generated. The total energy consumption of 
the system for each approach in each test were collected. All 
the results were normalised to those by PCR and shown in 
Figure 4. 

The experimental results based on the practical 
applications further demonstrate the effectiveness of our 
proposed approaches based on hybrid pattern (i.e., PCHYB) 
and dynamic preemption control and dynamic pattern 
adjustment (i.e., PCHYB-p and PCHYB-dyn). From the 
experiment results in Figure 4, it is interesting to see that 
different static pattern assignments can have different 
impacts on the energy consumption of different 
applications. For example, for the CNC [Figure 4(a)] and 
INS application [Figure 4(c)], it seems that most of the time 
R-pattern has better energy performance than E-Pattern 
because the shut down interval lengths of the peripheral 
devices are relatively large when compared to the periods of 
the tasks. However, for the Webphone application  
[Figure 4(b)], E-pattern has better energy performance over 
R-pattern for most of the intervals because E-pattern can 
scale down the processor speeds more efficiently than  
R-pattern. Also, it is interesting to see that for all three 
applications the static approach based on hybrid pattern 
(i.e., PCHYB) is always better or close to the lowest one 
among them. The maximal improvement by the hybrid 
pattern can be nearly 40% over E-pattern and up to 25% 
over R-pattern. More importantly, adopting dynamic 
preemption control and pattern adjustment techniques can 
further improve the energy reduction greatly. For CNC, as 
we can see from Figure 4(a), the energy reduction of PCHYB-

p over PCHYB can be up to 40% because it can reduce the 
preemptions between tasks and thus shorten the lifespan of 
the tasks and reduce the energy of the peripheral devices 
significantly. On the other hand, the energy reduction of 
PCHYB-dyn over PCHYB can be up to 58% because by adjusting 
the pattern of the tasks dynamically, the jobs are partitioned 
into mandatory/optional jobs more adaptively during the 
run-time, which could help reduce the total energy 
consumption efficiently. The maximal energy reduction is 
achieved when these two techniques are integrated together. 
As can be observed in Figure 4(a), compared to PCHYB, the 
energy reduction by PCHYB-dyn-p can be up to 80% on CNC. 
Similarly, for Webphone and INS, the energy reduction of 
PCHYB-dyn-p over PCHYB can be up to 15% and 60%, 
respectively, as shown in Figures 4(b) and 4(c). Also as we 
can see from these results, the energy savings differ from 
different applications. This is because the applications with 
relatively lower processor utilisation requirement, such as 
the CNC and INS, can have better energy saving potential in 
applying preemption-control and dynamic pattern 
adjustment, than the ones with much higher processor 
utilisation requirement such as Webphone. 
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Figure 4 The energy comparison for the different approaches based on real word applications, (a) CNC (Kim et al., 1996) (b) Webphone 
(Shin et al., 2001) (c) INS (Burns et al., 1995) (see online version for colours) 

  
(a)       (b) 

 
(c) 

 
In summary, the experimental results based on both the 
synthesised systems as well as the practical applications 
have shown that our proposed approaches can achieve 
significantly better energy savings with guaranteed QoS 
levels when compared with the conventional ones. 

7 Summary 

In this paper, we present a dynamic scheduling algorithm  
to minimise the system wide energy consumption with  
(m, k)-guarantee. The system consists of a core processor 
and a number of peripheral devices, which can have 
different power characteristics. Different from previous 
work that adopted single known mandatory/optional 
partitioning strategy, we proposed to incorporate different 
partitioning strategies based on the power characteristics of 
the devices as well as the application specifications. We 
introduced theorems that can predict the feasibility of such a 

strategy, and based on which, we proposed an algorithm to 
perform the mandatory/optional job partitions dynamically. 
We also proposed novel preemption control schemes, which 
can be well incorporated into our dynamic scheduling 
algorithm. Extensive experiments based on both synthesised 
task sets and real world applications have been performed to 
demonstrate the effectiveness of our approach. 
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Appendix 

Proof for Theorem 2 

To prove Theorem 2, we first need to prove the following 
lemma. 

Lemma 1: Let M be the mandatory job set from T according 
to the hybrid pattern. Then if the processor starts its 
execution at ts = min(Yi), i = 0, 1, ..., n−1, no mandatory job 
in M will miss its deadline. 

Proof: Use contradiction. Assume that when the processor 
starts its execution at ts, some mandatory job Jp = {rp, cp, dp} 
misses its deadline, where rp, cp, and dp represent the arrival 
time, execution time and absolute deadline of Jp. Jp must be 
in the first busy interval since the delay of the processor 
execution would not cause Jp to miss its deadline otherwise. 
Therefore 

( ) ( )0, .i p p s
i

W d d t> −∑  (11) 

where Wi(t1, t2) represents the work demand between 
interval [t1, t2]. 

Assume Jp finishes at fp(rp < fp ≤ dp) when the processor 
starts at t = 0. Let 

• J (0, dp) represent the mandatory jobs with deadlines no 
later than dp 

• J (0, df) represent the mandatory jobs arriving earlier 
than fp with deadlines no later than dp 

• J (df, dp) represent the mandatory jobs arriving NO 
earlier than fp with deadlines no later than dp. 

It is easy to see that J (0, dp) = J (0, df ) ∪ J (df, dp). Let 
( )W ′ J  represent the workload, i.e., total execution time,  

of J. Then we have 

( )W ′ J  (12) 

and 

( )( )0, .p pW f f′ ≤J  (13) 

Now consider job Jq = {rq, cq, dq} ∈ J (df, dp) such that Jq 
finishes at fq (the latest before dp) when the processor starts 
at t = 0. Then we have 

( )( ) ( ) ( ),     .p p p p q qW f d d f d f′ ≤ − − −J  (14) 

As (dq − fq) ≥ (Dq − Rq) = Yq (Definition 1) and Yq ≥ ts, from 
equation (14), we have 

( )( ) ( ),    .p p p p sW f d d f t′ ≤ − −J  (15) 

Then from equations (12), (13) and (15), we have 

( )0, ,i p p s
i

W d d t≤ −∑  (16) 

which contradicts equation (11). � 

Then we can proceed to prove Theorem 2 based on  
Lemma 1. Again we use contradiction. Given at time t0, we 
have three possibilities: 

1 the processor is idle 

2 the processor is executing an optional job Ji 

3 the processor is executing a mandatory job Ji. 

Here we need to deal with three cases separately 

• The processor is idle at t0. 

Assume a mandatory job Jp misses its deadline when 
the processor resumes its execution at t = t0 + ts. 
Therefore we have 

( )0 , .i p p
i

W t d d t> −∑  (17) 

Now consider ′M ,  the mandatory job set from T 
according to the hybrid pattern. Since M is schedulable 
when processor delays its execution to ts, we have 

( )0 00, .i p p s p
i

W d t d t t d t− < − − = −∑  (18) 

In addition, for M, there are no more than mi jobs 
among any consecutive ki jobs from τi are mandatory. 
Therefore, we have 

( ) ( )0 00, , ,i p i p p
i i

W d t W t d d t− ≥ > −∑ ∑  (19) 
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which contradicts equation (18). 

• The processor is executing an optional job Ji at t0. 

In this case hp(Ji) is the mandatory job set that arrive 
later than Ji. Since the optional job Ji cannot interfere 
the execution of all the mandatory jobs, the situation in 
this case is the same as the previous case. 

• The processor is executing a mandatory job Ji at t0. 

Assume a mandatory job Jp misses its deadline after the 
execution of hp(Ji) is delay to t = t0 +ts, then Jp cannot 
be from hp(Ji) for the same reason as stated above. Jp 
cannot be Ji either as delaying the execution of hp(Ji) is 
in favour of the earlier completion of Ji when compared 
with the non-delay case. In other words, Jp can only be 
from some mandatory job with priority lower than Ji. In 
this case, the delay of the execution of hp(Ji) to  
t = t0 + ts will not change 0( , ),i pi

W t d∑  i.e., the total 

work demand between [t0, tp]. Since Jp misses its 
deadline at dp, we must have 

( )0 0, .i p p
i

W t d d t> −∑  (20) 

Consider ′M ,  the mandatory job set from T according 
to the hybrid pattern. Since ′M  is schedulable, we have 

( )0 00, .i p p
i

W d t d t− < −∑  (21) 

Then similar as that in the above cases, we have 

( ) ( )0 0 0, 0, .i p i p p
i i

W t d W d t d t≤ − ≤ −∑ ∑  (22) 

which contradicts equation (20). 


