
Int. J. Embedded Systems, Vol. 7, No. 1, 2015 11

Copyright © 2015 Inderscience Enterprises Ltd.

Peripheral-conscious energy-efficient scheduling
for weakly hard real-time systems

Linwei Niu*
Department of Math and Computer Science,
West Virginia State University,
Institute, WV 93311, USA
Email: lniu@wvstateu.edu
*Corresponding author

Gang Quan
Electrical and Computer Engineering Department,
Florida International University,
Engineering Center 3911, 10555 West Flagler Street,
Miami, FL 33174, USA
Email: gang.quan@fiu.edu

Abstract: In this paper, we study the problem of reducing the energy consumption for a weakly
hard real-time system. The weakly hard real-time system is modelled by the (m, k)-constraints,
which require that at least m out of any k consecutive jobs of a task meet their deadlines. Since
the system energy is consumed not only by the processor alone but also in a large part by other
peripheral devices, we first propose a static approach, with the specifications of peripheral
devices taken into consideration, to partition the jobs into mandatory/optional jobs to achieve the
dual goals of (m, k)-guarantee and overall energy minimisation. Based on that, we present a
dynamic scheduling algorithm that adopts preemption control technique and dynamic
mandatory/optional partitioning strategy to reduce the energy consumption of the whole system
dynamically. Our approach can effectively minimise the system-wide energy consumption and
guarantee the (m, k)-deadlines at the same time. The novelty and effectiveness of our techniques
are demonstrated through extensive simulation studies.

Keywords: peripheral; energy-efficient scheduling; weakly hard real-time systems.

Reference to this paper should be made as follows: Niu, L. and Quan, G. (2015)
‘Peripheral-conscious energy-efficient scheduling for weakly hard real-time systems’, Int. J.
Embedded Systems, Vol. 7, No. 1, pp.11–25.

Biographical notes: Linwei Niu received his BS in Computer Science and Technology from
Peking University, Beijing, China in 1998, his MS in Computer Science from the State
University of New York at Stony Brook in 2001, and his PhD in Computer Science and
Engineering from the University of South Carolina in 2006. Currently, he is an Associate
Professor in the Department of Math and Computer Science, West Virginia State University,
USA. His research interests include power-aware design for embedded systems, design
automation, real-time scheduling and software/hardware co-design.

Gang Quan is currently an Associate Professor in the Electrical and Computer Engineering
Department, Florida International University. He received his PhD degree from the Department
of Computer Science and Engineering, University of Notre Dame, USA, his MS degree from the
Chinese Academy of Sciences, Beijing, China, and his BS degree from the Department of
Electronic Engineering, Tsinghua University, Beijing, China. His research interests and expertise
include real-time systems, embedded system design, power-/thermal-aware computing, advanced
computer architecture and reconfigurable computing. He is the recipient of a National Science
Foundation Faculty Career Award.

12 L. Niu and G. Quan

1 Introduction

Energy reduction is critical to increase the mobility for
today’s pervasive computing systems and thus becomes a
widespread research area (Kathuria, 2013; Yang et al.,
2013; Ji et al., 2013). Power aware scheduling has been
proven to be an effective way to reduce the energy
consumption. Rooted in the traditional real-time scheduling
technology, the power aware scheduling techniques change
the system computing performance accordingly based on
the dynamically varying computation demand. Two main
types of techniques are reported in the literature. The first
one is commonly known as the dynamic power down
(DPD), i.e., to shut down a processing unit and save power
when it is idle. The second one is called dynamic voltage
scaling (DVS) which updates the processor’s supply
voltages and working frequencies dynamically.

Extensive power aware scheduling techniques have
been published for energy reduction, but most of them
(e.g., Aydin et al., 2001; Kim et al., 2002; Quan et al., 2009)
have been focused solely on reducing the processor energy
consumption. While the processor is one of the major power
hungry units in the system, other peripherals such as
network interface card, memory banks, disks also consume
significant amount of power. The empirical study by
Viredaz and Wallach (2003) on a Itsy pocket computer,
which is a typical portable electronic systems based on the
StrongARM SA-1100 processor, reveals that the processor
core consumes around 28.8% of total power when playing a
video file on a hardware testbed (Viredaz and Wallach,
2003) for handheld devices, while the DRAM consumes
about 28.4% of the total power. Note that this testbed
(Viredaz and Wallach, 2003) lacks disk storage and wireless
networking capability, which may contribute as much
power consumption as the processor core if not more
(Zedlewski et al., 2003; Doherty et al., 2001). This implies
that the techniques that attack the processor energy alone
may not be overall energy efficient. On the other hand,
while DVS techniques have proven to be able to
dramatically reduce the dynamic power consumption of the
processor, most of the peripheral devices do not have the
DVS capabilities. For peripheral devices, the most efficient
way to save power is simply shut them down when they are
not in use. As a result, the research on employing a
combination of DVS and DPM has also gained its
momentum to reduce the system-wide energy consumption.

Recently, several techniques (e.g., Kim and Ha, 2001)
have been proposed to reduce the energy consumption for
hard real-time systems consisting of both core processors
and peripheral devices. However, few real-time applications
are truly hard real-time, i.e., many practical real-time
applications can allow some deadline misses provided
that user’s perceived quality of service (QoS) constraints
(Wang et al., 2012) can be satisfied. While the statistic
information such as the average deadline miss rate is
commonly used to quantify the QoS requirements for the
system, this metric can be problematic for some real-time
applications. For example, many real-time applications can
tolerate occasional deadline misses of the real-time tasks,

and the information carried by these tasks can be estimated
to a reasonable accuracy using techniques such as
interpolation. However, even with very low overall miss
rate tolerance, it is still possible that a large number of
deadline misses could occur consecutively in a short period
of time such that critical information could be lost (in those
time periods).

The weakly hard real-time model is more suitable for
this type of applications. In the weakly-hard real-time
model, tasks have both firm deadlines (i.e., task instances
that missed their deadlines are not counted as valid ones)
and a throughput requirement (i.e., sufficient task instances
must meet deadlines to provide required quality levels).
Ramamritham and Stankovic (1994) proposed a so-called
(m, k)-model, with a periodic task being associated with a
pair of integers, i.e., (m, k), such that among any k
consecutive instances of the task, at least m of the instances
must finish by their deadlines for the system behaviour to be
acceptable. A dynamic failure occurs, which implies that the
temporal QoS constraint is violated and the scheduler is thus
considered failed, if within any consecutive k jobs more
than (k − m) job instances miss their deadlines. Based on
this (m, k)-model, Ramanathan (1999) proposed to partition
the jobs into mandatory and optional jobs. So long as
all the mandatory jobs can meet their deadlines, the
(m, k)-constraints can be ensured.

In this paper, we study the problem of reducing the
system wide energy consumption for the weakly hard
real-time system modelled with the (m, k)-model. The
problem becomes more challenging since we need to deal
with not only the tradeoffs between DVS and DPD, but also
the mandatory/optional partitioning problems, i.e., to
determine which jobs are mandatory (whose deadlines have
to be met to guarantee no dynamic failure occur) and which
jobs can be optional. This problem is known as NP-hard
(Quan and Hu, 2000). In this paper, we propose a novel
mandatory/optional job partitioning strategy and a
sufficient condition for checking the feasibility. Based on
which, we present a dynamic scheduling scheme that adopts
preemption control (Kim and Roy, 2004) technique and
mandatory job pattern adjustment (Niu and Quan, 2006a)
simultaneously to achieve higher efficiency in energy
savings.

The rest of the paper is organised as follows. Section 2
talks about the related work. Section 3 presents the system
model, and motivations. Section 4 presents our new
approach in determining the mandatory/optional job
partitioning and a feasibility condition to guarantee the
(m, k)-firm deadlines. Section 5 presents our dynamic
algorithm to reduce the system energy. In Section 6, we
presents our experimental results. Section 7 draws the
conclusions.

2 Related work

Several weakly hard models have been proposed for soft
real time systems, e.g., Bernat and Burns (1997), Quan and
Hu (2000), Hamdaoui and Ramanathan (1995) and

 Peripheral-conscious energy-efficient scheduling for weakly hard real-time systems 13

Ramanathan (1999). Koren and Shasha (1995) proposed a
static partitioning strategy, called the deeply-red pattern or
R-pattern. According to this scheme, for job τij, i.e., the jth
job of task τi, we have

1 0
0 otherwise 0,1, ···, 1

i i
ij

i

j mod k m
j k

π
≤ <⎧

= ⎨ = −⎩
 (1)

Therefore, τij is mandatory if its corresponding bit is ‘1’ and
optional otherwise. Ramanathan (1999) proposed another
partitioning strategy as follows.

1 if

0 otherwise 0,1, ···, 1

i i

ij i i

i

j m k
j

k m

j k

π

⎧ ⎢ ⎥⎡ ⎤×
= ×⎪ ⎢ ⎥⎢ ⎥= ⎨ ⎢ ⎥⎢ ⎥⎣ ⎦

⎪ = −⎩

 (2)

The mandatory jobs defined with formula (2) are evenly
distributed along the pattern, and thus referred as the evenly
distributed pattern or E-pattern. Bernat and Cayssials
(2001) proposed a bi-modal scheduler in which the tasks are
first scheduled according to the generic scheduling policy in
the normal mode and then switched to the panic mode if the
dynamic failure is likely to occur.

Recently, there have been increasing research efforts
(Lee et al., 2003; Jejurikar et al., 2004; Jejurikar and Gupta,
2004b; Kong et al., 2011) that use real-time scheduling
techniques to reduce energy consumption for real-time
embedded systems. To balance the dynamic power and
static power during the execution of a job, Jejurikar et al.
(2004) propose to use the critical speed as the lower bound
for speed scaling. Since the critical speed may require the
processor to run at higher-than-necessary speeds to execute
a given set of real-time tasks, it can potentially fragment the
execution of tasks and cause a large number of scattered
idle intervals. To effectively reduce the energy consumption
during these idle intervals, procrastination scheduling was
proposed in Jejurikar et al. (2004) with the purpose of
extending the idle intervals to facilitate shut down. Their
approach assumes all tasks running with worst case
execution times. Considering early completion of jobs,
which is pervasive in most real-time systems, new dynamic
reclaiming technique was proposed in Jejurikar et al. (2005)
to incorporate job slack time into procrastination
scheduling. However, as shown in Niu (2011), their
approach might not be able to merge the idle intervals
efficiently and is therefore less efficient in reducing the
overhead of shutting-down. Lee et al. (2003) proposed a
leakage reduction scheduling technique called LC-DP, by
extending the dual-priority (DP) scheduling model
presented in Davis and Wellings (1995) for real-time
systems based on fixed-priority (FP) scheme. However, as
shown in Jejurikar and Gupta (2004b), the LC-DP algorithm
cannot guarantee the deadlines of tasks because of its
discrepancy with the original dual priority scheduling
algorithm (Davis and Wellings, 1995). To guarantee
deadlines, Jejurikar and Gupta (2004b) further proposed to
delay the execution of tasks by the minimal promotion time
over all lower and equal priority tasks based on the dual

priority scheduling. However, as shown in Chen and Kuo
(2006), this approach cannot guarantee the deadlines for
real-time tasks based on FP scheme either. Also Chen
and Kuo (2006) proposed an FP-based online
simulated-scheduling (VOSS) algorithm which scales the
job speed when the idle time length is less than the break
even time or the ‘effective power’ based on virtual
schedules can be less. However, their approach must
assume worst case execution times for all real-time jobs
(to construct the virtual schedule) and might not be
applicable when real-time jobs present actual execution
times less than their worst case. In order to facilitate
processor shut-down, Awan and Petters (2011) proposed a
‘race to halt’ approach which attempts to put the processor
into sleeping mode whenever the reclaimable slack time
reaches certain length limit for the idle interval. However,
since this idle interval length limit is statically computed by
assuming all real-time jobs will present their worst case
execution times, it is rather pessimistic in a more common
situation where most real-time jobs present actual execution
times much less than their worst case. As a result, it may not
be able to merge the sleeping intervals efficiently to further
reduce the energy overhead of shutting-down. Kim and Roy
(2004) proposed a preemption control technique to reduce
preemptions among tasks and hence the energy cost
incurred by preemptions among tasks. However, their
approach needs to increase the processing speeds of the jobs
under consideration, which could, to some extent,
counteract the energy reduction from reducing preemptions.
Bambagini et al. (2013) proposed an energy reduction
framework by exploring the limited preemptive scheduling
framework (Buttazzo et al., 2013; Bertogna and Baruah,
2010), which attempts to reduce the preemption among
tasks by using lower priority tasks to ‘block’ higher priority
tasks. Their approaches need to handle the ‘blocking’
among tasks (based on the blocking protocols) at each job
arrival, which will incur significant overall time/energy
overhead. Moreover, their approach is based on FP scheme
and needs to divide each real-time task into a set of
non-preemptive regions, which might not be effective for
general fully preemptive EDF scheduling.

The above approaches are focused on saving energy
consumed by the processor only. More recently, a number
of researches (e.g., Jejurika and Gupta, 2004a; Kim and Ha,
2001; Kim and Roy, 2004; Zhuo and Chakrabarti, 2005) are
reported to reduce the energy consumption for systems
consisting of DVS processors and peripheral devices.
Kim and Ha (2001) proposed a technique for hard
real-time system, while scheduling decisions are made on a
timeslot-by-timeslot basis. To facilitate a run-time
mechanism, the processor speed for each task is determined
by analysing the energy savings based on a pre-determined
set of execution times. Jejurikar and Gupta (2004a)
introduced a heuristic search method to find the critical
speed to balance the energy consumption between the
processor and peripheral devices. Zhuo and Chakrabarti
(2005) proposed a theoretical formulation of the optimal
scaling factor and computed it numerically. Based on

14 L. Niu and G. Quan

which, they also incorporated the idea of preemption control
in Kim and Roy (2004) to improve the energy savings. In
Zhao and Aydin (2009) and Devadas and Aydin (2012), the
interplay between DVS and DPD were studied to minimise
energy consumption for real time systems containing a core
processor and multiple devices. The system model of their
approach contains only a single task with its deadline equal
to the period. Kong et al. (2010) proposed an offline
approach based on mathematical programming to integrate
DVS and DPD to deal with system energy minimisation for
multiple tasks. Their approaches target the so called
‘frame-based’ system which is a very special case of
real-time applications that all tasks have the same deadlines
and periods. In Devadas and Aydin (2010), more advanced
techniques were provided to minimise the system level
energy consumption by inserting so-called ‘device
forbidden region’ (DFR) into real time tasks. The DFRs are
some precomputed time intervals during which the devices
are forced into sleeping mode and will be treated as separate
tasks with higher priority than all the original tasks in the
system. However, as shown in Devadas and Aydin (2010),
the problem of generating feasible schedule with DFRs is
NP-hard in the strong sense. Although the authors explored
some heuristics to determine the DFRs offline for hard
real-time systems with deadlines equal to periods, it is not
clear if that approach could be applied to systems with
weakly hard constraints. There are also a number of
researches investigating the scheduling problem for system
with non-DVS processor and I/O devices (Cheng and
Goddard, 2006).

All the approaches above target hard real-time systems.
We are more interested in developing scheduling

techniques for weakly hard real-time systems. Hua and Qu
(2004) introduced a greedy approach to minimise the energy
consumption for systems with (m, k)-constraints running on
a processor with two different speeds. However, their
approach cannot guarantee the (m, k)-constraints, even
though the system is underloaded. AlEnawy and Aydin
(2005) introduced a scheduling technique to maximise
(instead of guarantee) the quality service level under energy
constraints for real-time systems with (m, k)-constraints.
Niu and Quan (2006a) presented a combined static/dynamic
DVS scheduling method to reduce processor energy with
(m, k)-guarantee. All of these techniques only take the
processor energy consumption into consideration. To
incorporate the energy of the peripheral devices into
consideration, Niu and Quan, (2006b) investigated the
scheduling problem for a system that consists of a non-DVS
processor and a single peripheral device. In this paper, we
target reducing the system-wide energy for a weakly hard
real time system model that contains a DVS processor and
multiple peripheral devices. And each device can have
different power characteristics.

3 Preliminary

In this section, we first introduce the system and
architecture model, followed by a motivation example.

3.1 System models

The real-time system considered in this paper contains n
independent periodic tasks, T = {τ0, τ1, ···, τn−1}, scheduled
according to the earliest deadline first (EDF) policy. Each
task contains an infinite sequence of periodically arriving
instances called jobs. Task τi is characterised using five
parameters, i.e., (Ti, Di, Ci, mi, ki). Ti, Di (Di ≤ Ti), and Ci
represent the period, the relative deadline and the worst case
execution time for τi, respectively. A pair of integers,
i.e., (mi, ki) (0 < mi ≤ ki), represent the QoS requirement for
τi, requiring that, among any ki consecutive jobs of τi, at
least mi jobs meet their deadlines. Each periodic task
consists of a sequence of instances, called jobs. When it
does not cause confusion, we use Ji = (ri, ci, di) to represent
the current or upcoming job of task τi, where ri, ci, and di are
the arrival time, actual execution cycles, and absolute
deadline, respectively.

The system architecture consists of a core DVS
processor and a number of devices, M0, M1, ..., Mp. The
DVS processor used in our system can operate at a finite set
of discrete supply voltage levels V = {V1, ...,Vmax}, each
with an associated speed. To simplify the discussion, we
normalise the processor speeds to Smax, the speed
corresponding to Vmax, which results in S = {S1, ..., 1}. We
assume that Ci is the worst case execution time for task τi in
the highest voltage mode. Therefore, if τi is executed under
speed Sj, the worst case execution time for τi becomes .i

j

C
S

The devices do not have DVS capability and can only
support the DPD mechanism.

We denote the processor power with Pcact when running
a task, and Pcidle when the processor is idle (yet still on).
When the processor is shut down, its power consumption is
denoted as Pcsleep. Besides running on the DVS processor,
each task τi requires to access a subset of peripheral devices
Φi ⊆ {M0, M1, ..., Mp}. At any particular time, at most one
task can access the same device.

Each peripheral device can be in one of the two states:
active or sleep. When the task is active, its corresponding
associated peripheral device(s) must also be in active mode
to provide timely service. The power consumption for the
device Mi is denoted as i

dactP and i
dsleepP for its active mode

and sleep mode, respectively. It will not be feasible or
beneficial to shut down the processor or the devices if the
time interval is not long enough. We use min

iL to represent
the minimal time interval during which the device Mi can be
feasibly shut down with positive energy gain. For
convenience, we also call min

iL the minimal shut-down
interval for device Mi. The general idea is: if we assume the
energy and time overhead of powering-down/waking-up
device Mi to be i

oE and i
ot respectively, then the device can

be shut down with positive energy gain only if the length
of the idle interval is larger than min ,iL which can be
computed as

 Peripheral-conscious energy-efficient scheduling for weakly hard real-time systems 15

min max , .
i i i
o dsleep oi i

oi i
dact dsleep

E P t
L t

P P

⎧ ⎫− ×⎪ ⎪= ⎨ ⎬
−⎪ ⎪⎩ ⎭

 (3)

The minimal shut-down interval for the core processor
can be computed in a similar way and we use Tmin to
represent it.

3.2 The motivations

Our goal is to employ DVS and DPD judiciously to save
energy and guarantee the (m, k)-constraints in the mean
time. Note that for weakly hard real-time systems with
(m, k) requirements, the mandatory/optional partition has
great impact on the processor/device power consumption.
For example, the E-pattern helps to distribute the mandatory
jobs evenly for a task. The work by Niu and Quan (2006a)
shows that significant energy can be saved for tasks with
E-patterns than that with R-patterns, since the processor
speed can be reduced further without violating the
deadlines. On the other hand, however, E-patterns distribute
the mandatory jobs evenly, which leads to short scattered
idle intervals that is not in favour of shutting down the
devices. Consider a task set of two tasks, i.e., τ1 = (4, 4, 2, 2,
4) and τ2 = (8, 8, 4, 2, 4). Suppose the device shut down
intervals 1

min 6L = and 2
min 16L = and the power

consumption for the devices 1 0.2dactP = and 2 0.5.dactP =

Figure 1(a) shows the EDF schedule based on E-pattern.
Note that in Figure 1(a) the speed of task τ1 can be scaled
efficiently but the devices for both tasks cannot be shut
down.

R-pattern, on the other hand, seems to be a better choice
in this scenario because it congregates the mandatory jobs
and makes longer and fewer idle intervals possible.
However, owing to the poor schedulability of R-pattern, the
processor speed cannot be effectively scaled down. As
shown in Figure 1(b), τ1 has to be executed at a much higher
processor speed (represented by the height of the rectangles)
than that in Figure 1(a).

Figure 1(c) presents a schedule that can achieve the dual
goal of scaling down the processor speed for task τ1 and
shut down the peripheral device for task τ2 simultaneously.
A careful study of Figure 1(c) would reveal that such
solution is obtained by employing a combination of the
E-pattern and R-pattern, i.e., partitioning τ1 with E-pattern
and τ2 with R-pattern. In this way, we can effectively scale
down the processor speed and also maintain long idle
interval to shut down devices with high power consumption
(i.e., device 2). As a result, the total power consumption
within LCM can be greatly reduced, i.e., by 31% when
compared with that by E-pattern in Figure 1(a) and 18%
when compared with that by R-pattern in Figure 1(b).

Figure 1 (a) Executing the mandatory jobs of task set (τ1 = (4, 4, 2, 2, 4); τ2 = (8, 8, 4, 2, 4);) according to their E-patterns
(b) Executing the mandatory jobs of the same task set according to their R-patterns (c) Executing the mandatory
jobs of the same task set according to their hyb-patterns

(a) (b)

(c)

16 L. Niu and G. Quan

4 The hybrid partitioning strategy

The motivation example implies that different partitioning
strategies may have profound impacts on the energy
savings. Unlike previous work that adopts either
E-pattern or R-pattern alone, we intend to adopt a hybrid
partitioning strategy, using both E-pattern and R-pattern
simultaneously for the same task set. Two immediate
problems follow:

1 how to ensure the schedulability of a task set with
mixed E-pattern and R-pattern

2 how to assign the appropriate E-pattern or R-pattern to
each task. In what follows, we address these two
problems separately.

4.1 The feasibility condition

One of the key problems in our approach is the capability to
predicate the schedulabilty of a task set with designated
mandatory/optional pattern assignment. The following
theorem provides us a practical way to predict the
schedulability for the resulting mandatory job set.

Before we introduce this theorem, the following
notation, i.e., ⎡x⎤+, helps us to formulate the problem and
present the proof.

1x x+⎡ ⎤ = + ⎣ ⎦ (4)

With the definition of ⎡x⎤+, the following theorem allows
one to predict the schedulability for a mandatory job set by
checking only a limited number of time points (the proof is
provided in Niu and Quan, 2013).

Theorem 1: Given system T, let R and E be the subsets of T
that are partitioned according to the R-pattern and E-pattern,
respectively. Also, let

(0,)

min , ;

R
i

i i
i

i i i ii i
i

i i

W t

t D t Dt D
m m m CT TT

k k

+ +
+

⎛ ⎞⎧ ⎫⎛ ⎞⎢ ⎥ ⎢ ⎥⎡ ⎤ ⎡ ⎤− −⎜ ⎟⎪ ⎪⎜ ⎟⎡ ⎤−⎢ ⎥ ⎢ ⎥⎪ ⎪⎢ ⎥ ⎢ ⎥⎜ ⎟= + −⎜ ⎟⎨ ⎬⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎜ ⎟⎢ ⎥⎜ ⎟⎪ ⎪⎢ ⎥ ⎢ ⎥⎜ ⎟⎣ ⎦ ⎣ ⎦⎪ ⎪⎝ ⎠⎩ ⎭⎝ ⎠

 (5)

if task τi ∈ R and

(0,) ,E i i
i i

i i

m t D
W t C

k T

+⎛ ⎞⎡ ⎤⎡ ⎤−⎜ ⎟⎢ ⎥= ⎢ ⎥⎜ ⎟⎢ ⎥⎢ ⎥⎢ ⎥⎝ ⎠
 (6)

if task τi ∈ E.
Then T is schedulable if all the mandatory jobs arriving

within [0, L] can meet their deadlines, i.e.,

(0,) (0,)R E
i i

i i

W t W t t+ ≤∑ ∑
R E

 (7)

for all t ≤ L where L is either the ending point of the first
busy period (Niu and Quan, 2006a) or the least common
multiple of Ti, i = 0, ..., (n − 1), whichever is smaller, and

, , mod ,

, , .

i i i i i

i
i i i

i

pT D p Z p k m
t k

q T D q Z
m

τ

τ

+ ∈ ≤ ∀ ∈⎧
⎪= ⎢ ⎥⎨ + ∈ ∀ ∈⎢ ⎥⎪
⎣ ⎦⎩

R

E
 (8)

Theorem 1 indicates that the schedulability of the
mandatory jobs can be guaranteed if the mandatory jobs
within the first busy interval or the LCM of the periods can
meet their deadlines. The detailed proof of it is provided in
Niu and Quan (2013).

Algorithm 1 The hybrid pattern assignment (algorithm PAHYB)

1: Input: T, scrit and min
iL for τi;

2: E = T, R = Ù;

3: Update = TRUE;
4: while Update do
5: Update = FALSE;
6: { | () 1, };i crit i isτ τ τ′ = ≥ ∈E E

7: if ′ ≠E Ø then

8: Let τ ′ ′∈E such that ()crits τ ′ is the largest;

9: if τ ′−E schedulable then

10: ;τ ′= −E E

11: ;τ ′= −R R

12: Update = TRUE;
13: end if
14: else
15: for τi ∈ E do

16: Let Er(τi) (Ee(τi)) represent the energy
consumption on τi within one ki window
according to R-pattern (E-pattern) assignment;

17: if Er > Ee AND E − τi is schedulable then
18: ;τ ′= −E E

19: ;τ ′= −R R

20: Update = TRUE;
21: end if
22: end for
23: end if
24: end while

4.2 The pattern assignment

The problem then becomes how to assign R-patterns and
E-patterns for different tasks appropriately to balance the
processor and device power in order to save the overall
energy. Based on Theorem 1, we present a heuristic for
E/R-pattern assignment that incorporates such factors as the
relative power consumption of the device and processor, the
length of the minimal idle intervals, and task attributes
among others.

Several observations help to develop our heuristic.
Considering a job with workload w, the total energy

 Peripheral-conscious energy-efficient scheduling for weakly hard real-time systems 17

(Etotal(s)) consumed to finish this job with speed s can be
represented as

()() () .total cact dact
wE s P s P
s

= + × (9)

Hence, the speed (scrit)that can minimise Etotal(s) in
equation (9), so called the critical speed (Jejurika and
Gupta, 2004a; Zhuo and Chakrabarti, 2005), can balance the
processor and device power and minimise the overall
energy consumption. Note that E-patterns tend to fragment
the idle intervals for the devices. Therefore, when devices
have long minimal idle intervals, it is desirable to choose
R-pattern than E-pattern. Based upon the above
observations and Theorem 1, we propose the pattern
assignment algorithm in Algorithm 1.

Algorithm 1 works as follows: all tasks are initially
assigned as E-patterns since E-pattern has better
schedulability that R-pattern and has more potential to scale
down the task speed. However, when the critical speed of
task is larger than the maximal available speed on the
processor, both E-pattern and R-pattern should not scale
down the tasks speed below the maximal processor speed.
At the same time, R-pattern tends to provide more
opportunities to shut-down the device as it can provide
longer idle intervals. So the assignment for a task will be
updated when:

1 its critical speed is higher than 1

2 it cannot be shut down even in the longest possible idle
interval with E-pattern but could be done so with
R-pattern.

The algorithm terminates if no pattern assignment is
updated.

After mandatory/optional patterns are assigned to each
task, we can then scale down the processor speed for each
task to their critical speed as much as possible to save
energy. This can be done by exploiting Theorem 1 together
with branch and bound scheme similar to that in Niu and
Quan (2006a).

5 The dynamic scheduling algorithm

After performing the mandatory/optional job partitioning
according to Algorithm 1 and computing the appropriate
scaling factor based on Theorem 1, we are able to schedule
the given task set and guarantee the (m, k)-constraints.
Our dynamic scheduling algorithm consists of two parts:
dynamic preemption control and dynamic pattern
adjustment.

5.1 Dynamic preemption control

Since the peripheral devices do not have DVS capabilities,
the most efficient way to save power is simply shut down
the devices during its idle intervals. Moreover, when there

are multiple tasks being executed in the system, the
preemption effects among tasks will be pervasive.
According to the experiment report in Kim and Min (2003),
the number of task preemptions can grow up to 500% under
DVS over non-DVS executions, which can have negative
impact on the system-wide energy consumption in several
ways (Kim and Roy, 2004): first, the preemption overhead
may increase the energy consumption in memory
subsystems; second, the lengthened lifespan of the
preempted task may increase the energy consumption in the
peripherals associated to it; third, as the number of active
tasks increases, the number of active peripheral devices is
likely to increase, consuming more energy.

In order to address the negative impact of preemptions
on system-wide energy consumption, one effective way is to
adopt the so called ‘preemption control’ technique. The
main idea is: if the lower priority job can be finished earlier
before it is preempted by the upcoming higher priority jobs,
the lifespan of the lower priority job can be shortened. This
is shown by the example in Figure 2. As shown in
Figure 2(b), by temporarily withholding the executions of
the upcoming higher priority job from task 1, the chances
for the lower priority job from task 2 to be preempted by
task 1 could be greatly reduced. Therefore, the lifespan of
task 2 during which the devices associated to it must be in
active mode could be shortened significantly. On the other
hand, the shut-down interval of the devices associated with
task 1 before the dispatch time of the second job of task 1
could also be extended effectively. As a result, the energy
consumption of both the devices associated with higher
priority jobs and those associated with lower priority jobs
could be reduced.

In Kim and Roy (2004) and Zhuo and Chakrabarti
(2005), preemption control techniques are proposed to
reduce the chance for the current task to be preempted by
higher priority jobs. However, their approach needs to
increase the processing speeds of the jobs, which would
increase the processor energy consumption and therefore
might not necessarily be energy efficient. In Buttazzo et al.
(2013), Bertogna and Baruah, (2010) and Bambagini et al.
(2013), the limited preemptive scheduling framework based
on ‘blocking tolerance’ was adopted to reduce the
preemption among tasks. Their approaches need to handle
the ‘blocking’ among tasks (based on blocking protocols) at
each task arrival, which could incur significant overall
time/energy cost. Moreover, it is not clear whether their
approach could merge the shut-down intervals of peripheral
devices.

In what follows, we adopt a novel strategy to reduce the
preemptions by procrastinating the execution of higher
priority jobs. Different from the approach in Kim and Roy
(2004) and Zhuo and Chakrabarti (2005), we do not need to
increase the processor speed and therefore have a better
energy saving potential.

18 L. Niu and G. Quan

Figure 2 Reducing the lifespan of task 2 with preemption control, (a) task set schedule without procrastinating task 1 generated long
lifespan (LS1) for task 2 (b) procrastinating task 1 shortened the lifespan (LS2) for task 2 greatly (see online version for colours)

(a) (b)

Before introducing our strategy, we first introduce the
following definition.

Definition 1 (Niu and Quan, 2006b): Assume that M is the
mandatory job sets from T according to the hybrid pattern
and can be schedulable, and let Ri be the worst case
response time of τi. The delay factor for τi (denoted as Yi) is
defined as Yi = (Di − Ri).

The worst case response time Ri can be computed in a
similar way to that in Spuri (1996), which can be computed
offline. With the definition of delay factor Yi, we have the
following theorem (the proof is provided in the Appendix).

Theorem 2: Let Tm be the mandatory job set such that no
more than mi mandatory jobs are assigned for any ki
consecutive jobs from τi ∈ T. Also let hp(Ji) be the set of
jobs in which each job Jp has arrival time rp > ri and priority
higher than Ji. All jobs in Tm can meet their deadlines if the
starting execution time of hp(Ji) is delayed to tnp, where

()
()

min .
p i

np p pJ hp J
t r Y

∈
= + (10)

Theorem 2 allows us to delay the higher priority jobs safely.
Although it is similar to Theorem 2 in Niu and Quan
(2006b) in a sense that they all try to find the maximal delay
of the future jobs, the major difference here is that in
Theorem 2 in Niu and Quan (2006b), the higher priority
jobs are delayed only when the processor is idle to get
longer idle intervals. Here we delay the higher priority jobs
once the current job gets chance to be executed or the
processor begins to idle because we want to achieve the
dual goals of reducing the number of preemptions and
extending the idle intervals, as well as shortening the
lifespan of the task and shutting down the processor/devices
whenever possible to do so. Note that the delay factor Yp
can be computed offline and applied online. More
importantly, the processing speeds for the higher priority
jobs do not have to be increased even if they are delayed.

5.2 Dynamic (m, k)-pattern adjustment

Although the static analysis based on a predetermined
hybrid pattern helps to ensure the feasibility of the
mandatory job sets and thus guarantees the QoS levels, it is
usually performed based on the worst case scenario and
rather pessimistic. Considering the large run-time variations
in embedded systems, it would be extremely profitable to

employ a scheduling technique that can exploit the
irregularities and variations online. We are therefore
interested in developing a dynamic scheduling technique to
achieve better energy-saving performance.

Niu and Quan (2006a) proposed a strategy to change the
mandatory job dynamically. The rationale is that, if some
optional job can be finished at a lower processor speed,
other mandatory jobs can be demoted to optional and save
energy. While this technique is proposed for all tasks to be
assigned with E-pattern, we can prove that after
modification it is still applicable to our case when different
tasks may be assigned different patterns. In addition, with
the incorporation of peripheral devices, more issues need to
be considered in choosing the optional jobs to dispatch and
in determining their running speed.

When no mandatory job is available to be executed,
some optional jobs can also meet their deadlines with low
speed. That give us more opportunities to reduce the energy
further by adjusting the pattern dynamically. In the dynamic
pattern adjustment, two job ready queues, i.e., the
mandatory job queue (MJQ) and the optional job queue
(OJQ) will be maintained. Upon arrival, a job, i.e., Ja ∈ τi is
designated as mandatory job or optional job based on its
predetermined E-pattern or R-pattern and inserted to the
MJQ or OJQ correspondingly. The jobs in MJQ always
have higher priority than those in OJQ. If the MJQ is empty,
then the jobs in OJQ will have chance to be executed. It is
not difficult to see that there may be more than one optional
jobs in OJQ, and selecting which one to execute may have
profound impacts on the future job executions. While the
optional jobs can be selected arbitrarily without causing any
dynamic failure, we use a more delicate heuristic to achieve
better energy saving performance. Specifically, when the
processor is idle, we first check whether there are some
optional jobs in OJQ that can be finished with their critical
speed before mini(ri +Yi) of the upcoming mandatory jobs.
Note that the inspected optional job(s) should be chosen
only when the associated device(s) cannot be shut down
during this idle interval. At the same time, the qualified
optional job should not finish earlier than the earliest arrival
time of the upcoming mandatory jobs, either, because if it
cannot consume the idle interval completely it will generate
new scattered idle intervals which cannot be shut down.
After that, the qualified optional job in OJQ that has the
lowest energy cost will be chosen to be executed.

If one optional job in OJQ is chosen to be executed and
finished by its deadline, the (m, k)-pattern for the task it

 Peripheral-conscious energy-efficient scheduling for weakly hard real-time systems 19

belongs to will be adjusted correspondingly by shifting the
pattern to the right by one position. The details are
presented in Algorithm 2.

As shown, Algorithm 2 combines both the dynamic
mandatory job pattern adjustment and dynamic preemption
control and therefore can achieve much better energy
performance, which will be demonstrated using
experimental results in Section 6. Moreover, to ensure the
effectiveness and efficiency of this algorithm, we have the
following theorem (the proof is provided in Niu and Quan,
2013).

Theorem 3: Algorithm 2, with complexity of O(n), can
ensure the (m, k)-requirements for T if T is schedulable
under the hybrid patterns assigned according to
Algorithm 1.

Algorithm 2 The peripheral conscious dynamic scheduling
algorithm (algorithm MKPC)

1: Input: The MJQ, OJQ, and the current time tcur;

2: if MJQ is not empty then

3: choose the job in MJQ that has the highest priority
according to EDF as the current job Ji;

4: else if OJQ is not empty then

5: choose the qualified job in OJQ that has the lowest
energy cost as the current job Ji;

6: end if

7:

8: Compute tnp for the current job Ji based on equation (10);

9: Execute Ji non-preemptively within [tcur, tnp];

10: Update tcur;

11: if Jcur is completed then

12: Let ta be the arrival time of the next coming
mandatory job from the same task;

13: if min() i
a curt t L− > then

14: Shut down the device Li and set up the wake up
timer to be (ta − tcur);

15: end if

16: if Ji is optional job then

17: Shift the pattern correspondingly;

18: end if

19: end if

6 Experimental results

In this section, we evaluate the performance of our approach
using simulations. We used two groups of real-time task
sets as test cases in our experiments, one was randomly
generated and the other one was drawn from practical
applications. Specifically, we implemented and
compared the energy saving performance of the following
approaches

• PCR: The task sets are statically partitioned with
R-patterns, and the mandatory jobs are executed with
the statically determined speed. We use its results as the
reference results.

• PCE: The mandatory/optional jobs are partitioned based
on E-patterns.

• PCHYB: The static hybrid patterns proposed in Section
4.2 are adopted in partitioning the mandatory/optional
jobs.

• PCHYB-p: Based on the static hybrid patterns proposed in
Section 4.2, we try to delay the mandatory jobs to
facilitate dynamic preemption control and shut-down.

• PCHYB-dyn: Based on the static hybrid patterns proposed
in Section 4.2, dynamic pattern adjustment are adopted
during the online phase.

• PCHYB-dyn-p Based on the static hybrid patterns proposed
in Section 4.2, we combine the dynamic preemption
control and pattern adjustment as shown in Section 5.

Besides the above approaches, we also studied the following
approach that can exploit reducing the preemptions between
the tasks to saving the system energy:

• lppcDP: This approach was proposed by Kim and Roy
(2004) which takes the preemptions between tasks into
considerations. It tried to use some preemption control
techniques to shorten the life time of the tasks and thus
to reduce the period during which the peripheral
devices must stay in active mode. Here we incorporate
this approach into our static hybrid partitioning
strategy.

6.1 Experimental results for the synthesised task sets

Four sets of experiments were conducted in this case. In the
first set of experiments, we study the energy-saving
performance by different approaches corresponding to
different workloads. We randomly generated periodic task
set with five tasks. The periods were randomly chosen in the
range of [5, 50] ms. The worst case execution time (WCET)
of a task was set to be uniformly distributed from 1 ms to its
deadline, and the actual execution time of a job was
randomly picked from [0.4WCET, WCET]. The mi and ki
for the (m, k)-constraints were also randomly generated such
that ki is uniformly distributed between 4 to 10, and 2 ≤ mi <
ki. We varied the (m, k)-utilisation, i.e., ,i i

i i

m C
k Ti∑ of the task

set by steps of 0.1, and generated at least 20 schedulable
task sets within each interval or until at least 5,000 task sets
have been generated. The devices associated with each task
were randomly chosen from three types of devices: M1 =
(0.5, 5), M2 = (1, 15), and M3 = (5, 30), where device type
Mi is characterised by a pair of parameters min(,),i i

dactP L
representing its relative power (compared with the
processor) and minimal shut-down interval length (in ms).
We assume that the processor minimal shut-down interval
length Tmin = 2 ms. The results are shown in Figure 3(a).

20 L. Niu and G. Quan

Figure 3 (a) The average total energy consumption by the different approaches (b) The energy comparison for different shut-down
interval lengths (c) The energy comparison for different preemption control techniques (see online version for colours)

(a) (b)

(c)

While it is shown (Niu and Quan, 2006a) that E-pattern
assignment always dominates R-pattern assignment in
reducing the processor energy, this is not necessarily true
any more when peripheral devices are taken into
consideration, as shown in Figure 3(a). This is mainly
because R-pattern can provide longer maximal idle intervals
than E-pattern and thus have more chances for the devices
to be shut down. Also, one can immediately see from the
results that, by adopting hybrid patterns, PCHYB can achieve
much better energy efficiency than those adopting E-pattern
or R-pattern alone, i.e., up to around 18%. Moreover, by
delaying the mandatory job, PCHYB-p can reduce the energy
consumption further. On the other hand, the dynamic
pattern adjustment by PCHYB-dyn can also improve the energy
efficiency of PCHYB obviously. It is also interesting to see
that when the (m, k)-utilisation is relatively low, PCHYB-dyn
dominated PCHYB-p, while when the (m, k)-utilisation is
relatively high, PCHYB-p dominated PCHYB-dyn. This is
because when the (m, k)-utilisation is relatively low, there is
more space to execute the optional jobs and to adjust
the patterns dynamically, while with the increase of the
(m, k)-utilisation the space for dynamic pattern adjustment

is becoming much less. The best energy efficiency is
achieved when the two approaches are combined together.
As can be seen from Figure 3(a), the combined dynamic
algorithm, i.e., PCHYB-dyn-p, can reduce the energy of PCHYB
further by up to 15%.

In the second set of experiments, we investigate the
energy saving performance for devices with different
minimal shut-down intervals. The powers of the devices
remain the same. Three sub-sets of experiments were
conducted with the minimal shut-down interval sets
of the devices randomly selected from one of three ranges
[2, 20] ms, [20, 40] ms, and [40, 60] ms, respectively. The
results for task sets (generated in the same way as those for
the first set) with (m, k)-utilisation falling into representative
interval [0.3, 0.4] are shown in Figure 3(b).

As shown in Figure 3(b), when the minimal
shut-down intervals are chosen from shorter interval range,
i.e., [2, 20] ms, in most cases both E-pattern and R-pattern
can help shut the peripheral devices. In this case E-pattern
has better energy performance since E-pattern helps to
better slow down the processor speed and thus reduce the
overall energy. However, as the minimal shut-down interval

 Peripheral-conscious energy-efficient scheduling for weakly hard real-time systems 21

length grows, R-pattern becomes much better as it
provides more chances for the devices to be shut down for
the same reason as stated above, especially when the
minimal shut-down interval becomes significantly large,
i.e., [40, 60] ms in Figure 3(b). Note that in all three cases,
using hybrid pattern (PCHYB) can achieve the best energy
performance among them. And similar to the results above,
either dynamic preemption control (PCHYB-p) or dynamic
pattern adjustment (PCHYB-dyn) alone can reduce the energy
consumption further. And the lowest energy consumption is
achieved by combining them together. Compared to PCHYB,
the combined approach PCHYB-dyn-p can reduce the energy
further by around 15%.

The third set of experiments mainly evaluate the
effectiveness of our technique on dynamic preemption
control. Since the preemption control scheme by Kim and
Roy (2004) can also be incorporated into our approach
PCHYB, we are interested in how much our approach can
help improve the approach proposed in Kim and Roy (2004)
(represented by lppcDP). The task sets were generated in the
same way as that for the second set. For the devices, we
fixed their minimal shut-down intervals but vary their
relative power consumption. Three sub-sets of tests were
also conducted, within each we randomly selected the
relative power consumption for devices from one of three
power ranges, [0.2, 1], [1, 2], and [2, 10]. The results,
normalised to that by lppcDP, are shown in Figure 3(c).

As shown in Figure 3(c), when the device power is very
small, the improvements of our approaches, i.e., PCHYB-p and
PCHYB-dyn, over lppcDP are limited as the critical speed of the
task is much smaller than the maximal speed, which
provides more space for lppcDP to adjust the job speed and
delay the higher priority mandatory jobs. However, as the
device power increases, the improvement of PCHYB-p and
PCHYB-dyn becomes more significant.

This is because when the device power becomes larger,
the critical speed for each task becomes closer to or higher
than the maximal processor speed, which makes little slack
for lppcDP to adjust speeds for the higher priority mandatory
jobs. And as expected, when PCHYB-p and PCHYB-dyn are
combined together, the energy saving is even much better.
For example, when the device power is larger than twice the
processor power, the improvement of PCHYB-dyn-p over
lppcDP can be around 15% as shown in the figure.

6.2 Experimental results from real applications

Next, we tested our approach in a more practical
environment. Instead of random examples, we generated the
test cases with specifications drawn from three real world
applications: computerised numerical control (CNC)
machine controller (Kim et al., 1996), inertial navigation
system (INS) (Burns et al., 1995), and Webphone
(Shin et al., 2001). The timing parameters such as the
deadlines, periods, and execution times were adopted from
these practical applications directly. The actual execution
time of a job was randomly picked from [0.4WCET,
WCET] and the (m, k)-constraints were generated as we did

for the synthesised task sets. Similarly, we divided the total
(m, k)-utilisation into intervals of length 0.1. Within each
interval, we generated at least 20 task sets that were
schedulable with the R-pattern, or until at least 5,000 task
sets had been generated. The total energy consumption of
the system for each approach in each test were collected. All
the results were normalised to those by PCR and shown in
Figure 4.

The experimental results based on the practical
applications further demonstrate the effectiveness of our
proposed approaches based on hybrid pattern (i.e., PCHYB)
and dynamic preemption control and dynamic pattern
adjustment (i.e., PCHYB-p and PCHYB-dyn). From the
experiment results in Figure 4, it is interesting to see that
different static pattern assignments can have different
impacts on the energy consumption of different
applications. For example, for the CNC [Figure 4(a)] and
INS application [Figure 4(c)], it seems that most of the time
R-pattern has better energy performance than E-Pattern
because the shut down interval lengths of the peripheral
devices are relatively large when compared to the periods of
the tasks. However, for the Webphone application
[Figure 4(b)], E-pattern has better energy performance over
R-pattern for most of the intervals because E-pattern can
scale down the processor speeds more efficiently than
R-pattern. Also, it is interesting to see that for all three
applications the static approach based on hybrid pattern
(i.e., PCHYB) is always better or close to the lowest one
among them. The maximal improvement by the hybrid
pattern can be nearly 40% over E-pattern and up to 25%
over R-pattern. More importantly, adopting dynamic
preemption control and pattern adjustment techniques can
further improve the energy reduction greatly. For CNC, as
we can see from Figure 4(a), the energy reduction of PCHYB-

p over PCHYB can be up to 40% because it can reduce the
preemptions between tasks and thus shorten the lifespan of
the tasks and reduce the energy of the peripheral devices
significantly. On the other hand, the energy reduction of
PCHYB-dyn over PCHYB can be up to 58% because by adjusting
the pattern of the tasks dynamically, the jobs are partitioned
into mandatory/optional jobs more adaptively during the
run-time, which could help reduce the total energy
consumption efficiently. The maximal energy reduction is
achieved when these two techniques are integrated together.
As can be observed in Figure 4(a), compared to PCHYB, the
energy reduction by PCHYB-dyn-p can be up to 80% on CNC.
Similarly, for Webphone and INS, the energy reduction of
PCHYB-dyn-p over PCHYB can be up to 15% and 60%,
respectively, as shown in Figures 4(b) and 4(c). Also as we
can see from these results, the energy savings differ from
different applications. This is because the applications with
relatively lower processor utilisation requirement, such as
the CNC and INS, can have better energy saving potential in
applying preemption-control and dynamic pattern
adjustment, than the ones with much higher processor
utilisation requirement such as Webphone.

22 L. Niu and G. Quan

Figure 4 The energy comparison for the different approaches based on real word applications, (a) CNC (Kim et al., 1996) (b) Webphone
(Shin et al., 2001) (c) INS (Burns et al., 1995) (see online version for colours)

(a) (b)

(c)

In summary, the experimental results based on both the
synthesised systems as well as the practical applications
have shown that our proposed approaches can achieve
significantly better energy savings with guaranteed QoS
levels when compared with the conventional ones.

7 Summary

In this paper, we present a dynamic scheduling algorithm
to minimise the system wide energy consumption with
(m, k)-guarantee. The system consists of a core processor
and a number of peripheral devices, which can have
different power characteristics. Different from previous
work that adopted single known mandatory/optional
partitioning strategy, we proposed to incorporate different
partitioning strategies based on the power characteristics of
the devices as well as the application specifications. We
introduced theorems that can predict the feasibility of such a

strategy, and based on which, we proposed an algorithm to
perform the mandatory/optional job partitions dynamically.
We also proposed novel preemption control schemes, which
can be well incorporated into our dynamic scheduling
algorithm. Extensive experiments based on both synthesised
task sets and real world applications have been performed to
demonstrate the effectiveness of our approach.

Acknowledgements

This work is supported in part by NSF under projects
CNS-0969013, CNS-0917021, and CNS-1018108.

References
AlEnawy, T.A. and Aydin, H. (2005) ‘Energy-constrained

scheduling for weakly-hard real-time systems’, RTSS.

 Peripheral-conscious energy-efficient scheduling for weakly hard real-time systems 23

Awan, M.A. and Petters, S.M. (2011) ‘Enhanced race-to-halt:
a leakage-aware energy management approach for dynamic
priority systems’, in Proceedings of the 23rd Euromicro
Conference on Real-Time Systems, ECRTS ‘11, pp.92–101,
IEEE Computer Society, Washington, DC, USA.

Aydin, H., Melhem, R., Mosse, D. and Alvarez, P. (2001)
‘Determining optimal processor speeds for periodic real-time
tasks with different power characteristics’, in ECRTS01, June.

Bambagini, M., Bertogna, M., Marinoni, M. and Buttazzo, G.C.
(2013) ‘An energy-aware algorithm exploiting limited
preemptive scheduling under fixed priorities’, in SIES.

Bernat, G. and Burns, A. (1997) ‘Combining (n, m)-hard deadlines
and dual priority scheduling’, in RTSS, December.

Bernat, G. and Cayssials, R. (2001) ‘Guaranteed on-line
weakly-hard real-time systems’, in RTSS.

Bertogna, M. and Baruah, S. (2010) ‘Limited preemption EDF
scheduling of sporadic task systems’, Industrial Informatics,
IEEE Transactions on, Vol. 6, No. 4, pp.579–591.

Burns, A., Tindell, K. and Wellings, A. (1995) ‘Effective analysis
for engineering real-time fixed priority schedulers’, IEEE
Transactions on Software Engineering, May, Vol. 21, No. 5,
pp.920–934.

Buttazzo, G., Bertogna, M. and Yao, G. (2013) ‘Limited
preemptive scheduling for real-time systems. A survey’,
Industrial Informatics, IEEE Transactions on, Vol. 9, No. 1,
pp.3–15.

Chen, J-J. and Kuo, T-W. (2006) ‘Procrastination for
leakage-aware rate-monotonic scheduling on a dynamic
voltage scaling processor’, SIG-PLAN Notices, Vol. 7,
pp.153–162.

Cheng, H. and Goddard, S. (2006) ‘Online energy-aware I/O
device scheduling for hard real-time systems’, DATE.

Davis, R. and Wellings, A. (1995) ‘Dual priority scheduling’,
in RTSS.

Devadas, V. and Aydin, H. (2010) ‘DFR-EDF: a unified energy
management framework for real-time systems’, Real-Time
and Embedded Technology and Applications Symposium,
IEEE, pp.121–130.

Devadas, V. and Aydin, H. (2012) ‘On the interplay of
voltage/frequency scaling and device power management for
frame-based real-time embedded applications’, IEEE
Transactions on Computers, Vol. 61, No. 1, pp.31–44.

Doherty, L., Warneke, B., Boser, B. and Pister, K. (2001) ‘Energy
and performance considerations for smart dust’, International
Journal of Parallel Distributed Systems and Networks, Vol. 4,
No. 3, pp.121–133.

Hamdaoui, M. and Ramanathan, P. (1995) ‘A dynamic priority
assignment technique for streams with (m, k)-firm deadlines’,
IEEE Transactions on Computes, December, Vol. 44, No. 12,
pp.1443–1451.

Hua, S. and Qu, G. (2004) ‘Energy-efficient dual-voltage soft
real-time system with (m, k)-firm deadline guarantee’,
in CASE ‘04.

Jejurikar, R. and Gupta, R. (2004a) ‘Dynamic voltage scaling for
system-wide energy minimization in real-time embedded
systems’, ISLPED.

Jejurikar, R. and Gupta, R. (2004b) ‘Procrastination scheduling in
fixed priority real-time systems’, LCTES.

Jejurikar, R., Pereira, C. and Gupta, R. (2004) ‘Leakage aware
dynamic voltage scaling for real-time embedded systems’,
DAC.

Jejurikar, R., Pereira, C. and Gupta, R. (2005) ‘Dynamic slack
reclamation with procrastination scheduling in realtime
embedded systems’, DAC.

Ji, Y.C., Zhang, G-A., Zhang, X-G. and Huang, X. (2013)
‘Outage-optimal power allocation for space-time cooperative
network coding with amplify-and-forward protocol’,
International Journal of Embedded Systems, Vol. 5, No. 3,
pp.127–133.

Kathuria, J. (2013) ‘Low power clock gating techniques for
synchronous buffer-based queue for 3D MPSOC’,
International Journal of Embedded Systems, Vol. 5, Nos. 1/2,
pp.36–43.

Kim, C. and Roy, K. (2004) ‘Preemption-aware dynamic voltage
scaling in hard real-time systems’, ISLPED.

Kim, J.K.W. and Min, S.L. (2003) ‘Quantitative analysis of
dynamic voltage scaling algorithms for hard real-time
systems’, Proceedings of the SoC Design Conference,
November.

Kim, M. and Ha, S. (2001) ‘Hybrid run-time power management
technique for real-time embedded system with voltage
scalable processor’, OM ‘01, pp.11–19.

Kim, N., Ryu, M., Hong, S., Saksena, M., Choi, C. and Shin, H.
(1996) ‘Visual assessment of a real-time system design:
a case study on a CNC controller’, in RTSS, December.

Kim, W., Kim, J. and Min, S.L. (2002) ‘A dynamic voltage scaling
algorithm for dynamic-priority hard real-time systems using
slack analysis’, DATE.

Kong, F., Deng, Q. and Yi, W. (2011) ‘Energy-efficient scheduling
of real-time tasks on cluster-based multicores’, in DATE.

Kong, F., Wang, Y., Deng, Q. and Yi, W. (2010) ‘Minimizing
multi-resource energy for real-time systems with discrete
operation modes’, in Proceedings of the 22nd Euromicro
Conference on Real-Time Systems, ECRTS ‘10, pp.113–122,
IEEE Computer Society, Washington, DC, USA.

Koren, G. and Shasha, D. (1995) ‘Skip-over: algorithms and
complexity for overloaded systems that allow skips’, in RTSS.

Lee, Y., Reddy, K. and Krishna, C. (2003) ‘Scheduling techniques
for reducing leakage power in hard real-time systems’,
ECRTS.

Niu, L. (2011) ‘Energy efficient scheduling for real-time systems
with QoS guarantee’, Journal of Real-Time System, Vol. 47,
No. 2, pp.75–108.

Niu, L. and Quan, G. (2006a) ‘Energy minimization for real-time
systems with (m, k)-guarantee’, IEEE Trans. on VLSI,
Special section on Hardware/Software Codesign and System
Synthesis, pp.717–729, July.

Niu, L. and Quan, G. (2006b) ‘System wide dynamic power
management for weakly hard real-time systems’, ISM.

Niu, L. and Quan, G. (2013) Peripheral-conscious Energy-efficient
Scheduling for Weakly Hard Real-time Systems, in Technical
Report TR-2013-1002.

Quan, G. and Hu, X. (2000) ‘Enhanced fixed-priority scheduling
with (m, k)-firm guarantee’, in RTSS, pp.79–88.

Quan, G., Niu, L., Hu, X.S. and Mochocki, B. (2009) ‘Real time
scheduling for reducing overall energy on variable voltage
processors’, International Journal of Embedded System:
Special Issue on Low Power Embedded Computing, Vol. 4,
No. 2, pp.127–140.

Ramamritham, K. and Stankovic, J.A. (1994) ‘Scheduling
algorithms and operating system support for real-time
systems’, Proceedings of the IEEE, January, Vol. 82, No. 1,
pp.55–67.

24 L. Niu and G. Quan

Ramanathan, P. (1999) ‘Overload management in real-time control
applications using (m, k)-firm guarantee’, IEEE Trans. on
Paral. and Dist. Sys., June, Vol. 10, No. 6, pp.549–559.

Shin, D., Kim, J. and Lee, S. (2001) ‘Intra-task voltage scheduling
for low-energy hard real-time applications’, IEEE Design and
Test of Computers, March–April, Vol. 18, No. 2.

Spuri, M. (1996) Analysis of Deadline Scheduled Real-Time
Systems, in Rapport de Recherche RR-2772, INRIA, France.

Viredaz, M.A. and Wallach, D.A. (2003) ‘Power evaluation of a
handheld computer’, IEEE Micro, Vol. 23, No. 1, pp.66–74.

Wang, X., Du, Z., Xue, Y., Fan, L. and Wang, R. (2012)
‘Self-adaptive QoS-aware resource allocation and reservation
management in virtualised environments’, International
Journal of Computational Science and Engineering, October,
Vol. 7, No. 4, pp.308–318.

Yang, C., Sheng, M., Li, J., Li, H. and Li, J. (2013) ‘Energy-aware
joint power and rate control in overlay cognitive radio
networks: a Nash bargaining perspective’, International
Journal of Embedded Systems, Vol. 5, No. 3, pp.118–126.

Zedlewski, J., Sobti, S., Garg, N., Zheng, F., Krishnamurthy, A.
and Wang, R. (2003) ‘Modeling hard-disk power
consumption’, FAST ‘03, pp.217–230.

Zhao, B. and Aydin, H. (2009) ‘Minimizing expected energy
consumption through optimal integration of DVS and DPM’,
in ICCAD.

Zhuo, J. and Chakrabarti, C. (2005) ‘System level energy efficient
dynamic task scheduling’, DAC.

Appendix

Proof for Theorem 2

To prove Theorem 2, we first need to prove the following
lemma.

Lemma 1: Let M be the mandatory job set from T according
to the hybrid pattern. Then if the processor starts its
execution at ts = min(Yi), i = 0, 1, ..., n−1, no mandatory job
in M will miss its deadline.

Proof: Use contradiction. Assume that when the processor
starts its execution at ts, some mandatory job Jp = {rp, cp, dp}
misses its deadline, where rp, cp, and dp represent the arrival
time, execution time and absolute deadline of Jp. Jp must be
in the first busy interval since the delay of the processor
execution would not cause Jp to miss its deadline otherwise.
Therefore

() ()0, .i p p s
i

W d d t> −∑ (11)

where Wi(t1, t2) represents the work demand between
interval [t1, t2].

Assume Jp finishes at fp(rp < fp ≤ dp) when the processor
starts at t = 0. Let

• J (0, dp) represent the mandatory jobs with deadlines no
later than dp

• J (0, df) represent the mandatory jobs arriving earlier
than fp with deadlines no later than dp

• J (df, dp) represent the mandatory jobs arriving NO
earlier than fp with deadlines no later than dp.

It is easy to see that J (0, dp) = J (0, df) ∪ J (df, dp). Let
()W ′ J represent the workload, i.e., total execution time,

of J. Then we have

()W ′ J (12)

and

()()0, .p pW f f′ ≤J (13)

Now consider job Jq = {rq, cq, dq} ∈ J (df, dp) such that Jq
finishes at fq (the latest before dp) when the processor starts
at t = 0. Then we have

()() () (), .p p p p q qW f d d f d f′ ≤ − − −J (14)

As (dq − fq) ≥ (Dq − Rq) = Yq (Definition 1) and Yq ≥ ts, from
equation (14), we have

()() (), .p p p p sW f d d f t′ ≤ − −J (15)

Then from equations (12), (13) and (15), we have

()0, ,i p p s
i

W d d t≤ −∑ (16)

which contradicts equation (11). �

Then we can proceed to prove Theorem 2 based on
Lemma 1. Again we use contradiction. Given at time t0, we
have three possibilities:

1 the processor is idle

2 the processor is executing an optional job Ji

3 the processor is executing a mandatory job Ji.

Here we need to deal with three cases separately

• The processor is idle at t0.

Assume a mandatory job Jp misses its deadline when
the processor resumes its execution at t = t0 + ts.
Therefore we have

()0 , .i p p
i

W t d d t> −∑ (17)

Now consider ′M , the mandatory job set from T
according to the hybrid pattern. Since M is schedulable
when processor delays its execution to ts, we have

()0 00, .i p p s p
i

W d t d t t d t− < − − = −∑ (18)

In addition, for M, there are no more than mi jobs
among any consecutive ki jobs from τi are mandatory.
Therefore, we have

() ()0 00, , ,i p i p p
i i

W d t W t d d t− ≥ > −∑ ∑ (19)

 Peripheral-conscious energy-efficient scheduling for weakly hard real-time systems 25

which contradicts equation (18).

• The processor is executing an optional job Ji at t0.

In this case hp(Ji) is the mandatory job set that arrive
later than Ji. Since the optional job Ji cannot interfere
the execution of all the mandatory jobs, the situation in
this case is the same as the previous case.

• The processor is executing a mandatory job Ji at t0.

Assume a mandatory job Jp misses its deadline after the
execution of hp(Ji) is delay to t = t0 +ts, then Jp cannot
be from hp(Ji) for the same reason as stated above. Jp
cannot be Ji either as delaying the execution of hp(Ji) is
in favour of the earlier completion of Ji when compared
with the non-delay case. In other words, Jp can only be
from some mandatory job with priority lower than Ji. In
this case, the delay of the execution of hp(Ji) to
t = t0 + ts will not change 0(,),i pi

W t d∑ i.e., the total

work demand between [t0, tp]. Since Jp misses its
deadline at dp, we must have

()0 0, .i p p
i

W t d d t> −∑ (20)

Consider ′M , the mandatory job set from T according
to the hybrid pattern. Since ′M is schedulable, we have

()0 00, .i p p
i

W d t d t− < −∑ (21)

Then similar as that in the above cases, we have

() ()0 0 0, 0, .i p i p p
i i

W t d W d t d t≤ − ≤ −∑ ∑ (22)

which contradicts equation (20).

