
Leakage-Aware Scheduling for Embedded Real-Time Systems with
(m,k)-Constraints

Abstract

In this paper, we study the problem of reducing both the dynamic and leakage energy consumption for real-time
systems with (m,k)-constraints, which require that at least m out of any k consecutive jobs of a task meet their
deadlines. Two energy efficient scheduling approaches incorporating both dynamic voltage scheduling (DVS) and
dynamic power down (DPD) are proposed in this paper. The first one statically determines the mandatory jobs
that need to meet their deadlines in order to satisfy the (m,k)-constraints, and the second one does so dynami-
cally. The simulation results demonstrate that, with more accurate workload estimation, our proposed techniques
outperformed previous research in both overall and idle energy reduction while providing the (m,k)-guarantee.

Keywords leakage, power-aware scheduling, (m,k)-guarantee, real-time system

1 Introduction

As transistor density continues to grow, the power/energy conservation problem becomes more and more critical
in the design of pervasive embedded real-time systems. For CMOS circuits, the power consumption comes from
the dynamic power consumption (mainly due to switching activities) and the static power consumption (mainly
due to leakage current). As VLSI technology continues its evolution toward the submicron and nanoscale era, the
rapidly elevating leakage power dissipation is becoming too prominent to be ignored [19].

The dynamic voltage scaling (DVS) strategy (e.g., [3, 22, 42]), i.e., by dynamically changing the supply voltage
as well as the working frequency, has long be recognized as an effective method to reduce the dynamic energy.
However, as the leakage power continues to increase, the energy saving achievable via DVS alone is becoming
severely limited. This is because DVS prolongs the active period of the processor and thus can increase the total
leakage energy consumption [21]. The dynamic power down (DPD) strategy, on the other hand, dynamically turns
the system on and off and is thus an effective way to control the leakage energy consumption at the system level.
Therefore, to obtain the maximal reduction in the overall energy consumption, some researchers [21, 26, 7, 8] have
proposed to combine DVS and DPD to reduce both the dynamic power and leakage power simultaneously. Most
of the approaches have targeted the hard real-time systems, i.e., the systems requiring that all the task instances
meet their deadlines.

While the hard real-time model is the simplest model for real-time systems, few real-time applications are truly
hard real-time. For example, many practical real-time applications such as multimedia processing or real-time
communication systems exhibit more complicated characteristics that can only be captured with more complex re-
quirements, generally called the Quality of Service (QoS) requirements. For example, some applications may have
soft deadlines where tasks that do not finish by their deadlines can still be completed with a reduced value [28]
or they can simply be dropped without compromising the desired QoS levels. Energy reduction under QoS re-
quirement falls within the framework of more general resource management/scheduling, such as the QoS-based

2

Resource Allocation Model (Q-RAM) [38]. A key to the success is the ability to integrate the QoS requirements
into resource management/scheduling decisions in such a way that the overall “benefit” of the system is opti-
mized. The techniques based on the traditional hard real-time systems become inefficient or inadequate when QoS
requirements are imposed on the systems.

To quantify the QoS requirements, some statistic information such as the average deadline miss rate is com-
monly used. Although the statistical deadline miss rate can ensure the quality of service in a probabilistic manner,
this metric can be problematic for some real-time applications. For example, for certain real-time systems, when
the deadline misses happened to some tasks, the information carried by those tasks can be estimated in a reason-
able accuracy using techniques such as interpolation. However, even a very low overall miss rate tolerance cannot
prevent a large number of deadline misses from occurring in such a short period of time that the data cannot be
successfully reconstructed. To avoid possible severe consequences, one can always treat the system as a hard real-
time system. The problem, however, is that when the system is overloaded (this is especially common when energy
conservation techniques such as DVS are applied to the system, as reducing the processor voltage/frequcies will
increase the execution times of the tasks and thus easily cause the systems to be “overloaded”), the approaches for
hard real-time systems are no longer valid as deadline missing will become inevitable in such kind of scenarios.
As a result, critical information that cannot be reconstructed may be lost, thus the service quality can be severely
degraded from the user’s perspective.

To provide deterministic QoS to the real-time system, the system should not only support the overall guarantee
of the QoS statistically, but also be able to provide a lower bounded, predictable level of QoS locally. The (m,k)-
model, proposed by Hamdaoui et al. [14], can serve well for this purpose. According to this model, a repetitive
task of the system is associated with an (m,k)(0 < m ≤ k) constraint requiring that m out of any k consecutive
job instances of the task meet their deadlines. A dynamic failure occurs, which implies that the temporal QoS
constraint is violated and the scheduler is thus considered failed, if within any sliding window of k consecutive jobs
less than m job instances meet their deadlines. Due to its intuitiveness and capability of capturing the deterministic
QoS requirements, (m,k)-model has been widely studied, e.g., [5, 35, 14, 39, 15].

In this paper, we study the problem of reducing the overall energy consumption for real-time systems under the
(m,k)−constraints. In order to guarantee the (m,k)−constraints be satisfied all the time, a key aspect of this prob-
lem is to judiciously partition the jobs into mandatory jobs and optional jobs such that as far as all the mandatory
jobs can meet their deadlines, the (m,k)-constraints can be ensured. We proposed two approaches to address this
problem. In the first approach, the mandatory/optional partition is conducted statically. The mandatory jobs are
carefully procrastinated with the purpose of merging the idle intervals so that the processor can be shut down ef-
fectively. In the second approach, we dynamically adjust the mandatory/optional job partitioning to accommodate
the dynamic nature of real-time embedded systems. In particular, a look-ahead strategy is proposed that can more
accurately estimate the workload and therefore make better decisions in the mandatory/optional job partitioning.
Moreover, considering the variations in job execution times at runtime, we also developed a new dynamic re-
claiming approach with looking forward technique that can incorporate some previous work [4, 22] to improve the
energy saving performance. Different from the previous works [20, 26, 36, 7, 9, 8] that use the so called “critical
speed” as the lower bound to optimize the overall energy, we found that executing the jobs with speed lower than
the critical speed can sometimes be more beneficial in overall energy savings. With a practical processor model
and technology parameters [17], our experiment results show that our approach significantly outperformed the
existing research in energy saving performance while providing the (m,k)-guarantee.

The rest of the paper is organized as follows. Section 2 discusses about the related work. Section 3 introduces
the system models and some preliminaries. Section 4 introduces our static approach. Section 5 introduces our
dynamic approach. The effectiveness and energy efficiency of our approaches are evaluated in section 7. In
section 8, we offer the conclusions and future work.

3

2 Related work

Many scheduling techniques (e.g.[42, 18, 4, 33, 34, 45, 46]) have been proposed to reduce the power/energy
consumption for real-time embedded systems. Most of them have focused on reducing the dynamic power/energy
consumption. However, as VLSI technology marching towards deep submicron and nanoscale circuits operating
at multi-GHz frequencies, the rapidly elevated leakage power dissipation will soon become comparable to, if not
exceeding, the dynamic power consumption [19]. To balance the dynamic power and leakage power, the concept of
critical speed was proposed, which is the speed that can minimize the active energy of a job during its execution.
Based on it, many scheduling techniques [20, 26, 36, 7, 9, 8] have been proposed to reduce dynamic power and
leakage power simultaneously. And most of them use the critical speed as the lower bound for speed reduction.
Since the critical speed may require the processor to run at higher-than-necessary speeds and can result in a large
number of idle intervals, more advanced techniques [21, 26, 36, 7] based on procrastination of jobs have been
proposed to merge/prolong the idle intervals. However, is it necessary to always keep the job speed above the
critical speed? In this paper, we show that sometimes it can be more beneficial to execute the jobs with speed
lower than the critical speed in saving the overall energy consumption.

Some researchers [9, 10, 7, 47] have also noticed the possibility of improving energy efficiency by reducing
the job speed below the critical speed. However, few in-depth efforts were made to explore the advantages of
breaking-through this lower bound for general task sets under the context of QoS constraints. In [23, 44, 12],
advanced techniques were provided to minimize the system-wide energy consumption by exploring the interplay
between DVS and DPD for real time systems containing a core processor and multiple devices. Their approaches
target the so called “frame-based” system which is a very special case of real-time applications that all tasks have
the same deadlines and periods. And the impact of task procrastination on speed selection is not considered, either.

Some previous researches have also been reported to reduce the energy for real time systems with (m,k) require-
ments. In [31], a hybrid approach was introduced to reduce the dynamic energy consumption for real time systems
with (m,k)-guarantee. With QoS requirements formulated as a tolerable statistical deadline miss rate, Hua et
al. [16] introduced several techniques to reduce energy by exploiting processor slack time due to the missed dead-
lines. In [2], Alenawy et. al. proposed an approach to minimize the number of dynamic failures for (m,k)-firm
systems with fixed energy budget constraint. In [25], a dynamic approach is proposed to minimize the energy con-
sumption for dual-voltage-mode weakly hard real-time systems. In [32], Niu et al. proposed an approach to reduce
energy for weakly hard real-time systems with peripheral devices. All of these techniques targeted dynamic power
reduction and none of them considered reducing the dynamic and leakage energy consumption simultaneously.

3 Preliminary

In this section, we first give the system model and power model. Then we introduce some concepts and obser-
vations important to our research in this paper.

3.1 System model

The real-time system considered in this paper contains n independent periodic tasks, T = {τ0,τ1, · · · ,τn−1},
scheduled according to the earliest deadline first (EDF) policy [27]. Each task contains an infinite sequence of
periodically arriving instances called jobs. Task τi is characterized using five parameters, i.e., (Ti, Di, Ci, mi, ki).
Ti, Di(Di ≤ Ti), and Ci represent the period, the deadline and the worst case execution time for τi, respectively. The
QoS requirement for τi is represented by a pair of integers, i.e., (mi,ki) (0 < mi ≤ ki), which require that, among
any ki consecutive jobs of τi, at least mi jobs must meet their deadlines. The jth job of task τi is represented with
Ji j and its arrival time, actual execution time and absolute deadline are represented by ri j, ci j and di j. It is not
hard to see that the arrival times ri j of Ji j can be computed as ri j = (j−1)∗Ti and its absolute deadline di j can be
computed as di j = ri j +Di. Also we assume once job Ji j arrives, its actual execution time ci j can be available.

4

4
T1

(a)

0
T2

128 16

8 16

1 1 0 0

1 0

4
T1

(b)

0
T2

128 16

8 16

1 10 0

1 0

pattern

Figure 1. (a) The schedule of a task set (τ1 = (4,4,2,2,4); τ2 = (8,8,3,1,2)) partitioned with R-Pattern;
(b) The schedule of the same task set partitioned with E-Pattern.

3.2 The power model

In a CMOS circuit, the power consumption includes both dynamic and static components during its active
operation. The dynamic power consumption (Pdyn) mainly consists of the switching power for charging and
discharging the load capacitance, which can be represented [6] as

Pdyn = αCLV 2 f , (1)

where α is the switching activity, CL is the load capacitance, V is the supply voltage, and f is the system clock
frequency. The static power (Pleak) can be expressed [29] as

Pleak = IleakV, (2)

where Ileak is the leakage current which consists of both the subthreshold leakage current and the reverse bias junc-
tion current in the CMOS circuit. Leakage current increases rapidly with the scaling of the devices and becomes
particularly significant with the reduction of the threshold voltage. Therefore, the leakage power consumption is
becoming a major part of the the active power consumption (Pact = Pdyn +Pleak) in future CMOS circuits with low
supply voltage and high transistor density.

To reduce the overall energy consumption, one common method is to use the so called critical speed [20]
(denoted as scrit) to minimize the active energy of executing a job. From [20], using a processor speed higher or
lower than the critical speed will consume more active energy than the one using the critical speed to complete the
same workload.

The DVS processor used in our system can operate at a finite set of discrete supply voltage levels V =
{V1, ...,Vmax}, each with an associated speed. To simplify the discussion, we normalize the processor speeds
to Smax, the speed corresponding to Vmax, which results in S = {S1, ...,1}. We assume that Ci is the worst case
execution time for task τi in the highest voltage mode. Therefore, if τi is executed under speed S j, the worst case
execution time for τi becomes Ci

S j
.

The processor can be in one of the three states: active, idle and sleeping states. When the processor is idle,
the major portion of the power consumption comes from the leakage which increases rapidly with the dramatic
increasing of the leakage power consumption. Shutting-down strategy, i.e., put the processor into its sleeping state,
can greatly reduce the leakage energy. However, it has to pay extra energy and timing overhead to shut down and
later wake up the processor. Assume that the power consumptions of a processor in its idle state and sleeping state
are Pidle and Psleep, respectively, and the energy overhead and the timing overhead of shutdown/wakeup is Eo and
to. Then the processor can be shut down with positive energy gains only when the length of the idle interval is
larger than Tth = max(Eo

Pidle−Psleep
, to). We call Tth as the shut down threshold interval.

5

3.3 Meeting the (m,k)-constraints

A key problem for meeting the (m,k)-constraints is to judiciously partition the jobs into mandatory jobs and
optional jobs [35]. The partition can be done statically or dynamically. Two well-known partition strategies
proposed are the deeply-red pattern (or R-pattern) and evenly distributed pattern (or E-pattern) [31]. One example
of mandatory/optional job partitioning with R-pattern and E-pattern for a given task set is shown in Figure 1.

The most significant advantage of applying static patterns is that they enable the application of theoretic real-
time techniques to analyze system feasibility. The problem, however, is its poor adaptivity in dealing with the
run-time variations, which is inherent in many real-time applications. As shown, the R-pattern assigns the first
m jobs as mandatory and tends to generate longer idle intervals, which are more beneficial for powering down
the system dynamically. It has been proved that as long as all mandatory jobs selected from R-pattern can meet
their deadlines, the mandatory jobs selected from any other (m,k)-pattern can also meet their deadlines [31]. The
mandatory/optional partitioning according to E-pattern has the property that it helps to spread out the mandatory
jobs evenly in each task along the time. Interested readers can refer to [31] for more technical details about the
R-pattern and E-pattern. Based on the mandatory/optional job partitioning, in the following sections, we introduce
our static and dynamic approaches to reduce the overall energy consumption while ensuring the (m,k)-guarantee.

4 The static approach

In our static approach, we first decide the mandatory job set based on E-patterns. As shown in [31], with the
E-patterns, a minimal number of mandatory jobs are determined. Therefore, no energy is wasted to execute jobs
that are nonessential for the (m,k)-guarantee. Moreover, since E-pattern in general helps to spread the workload
evenly, it helps to better reduce the processor speed.

Once the mandatory jobs are determined with the E-pattern, we could scale down the processor speed for all
tasks with the feasibility condition introduced in [31]. Since executing the job with the critical speed can minimize
the active energy consumption when completing the same job workload, here we try to scale the processor speeds
for all tasks as low as (but not below) the critical speed scrit and use them as the predetermined speeds for the
mandatory jobs. Note that, even after scaling down, there still exist a large number of idle intervals due to the
potentially higher than necessary speed assignment. Some of them will be too short for the processor to shut
down. Even if some idle intervals are longer than the shut down threshold Tth, too many idle intervals will also
increase the energy consumption significantly due to the overheads of frequently shutting down and waking up
the processor. In our static approach we try to reduce this part of energy by procrastinating the execution of some
mandatory jobs.

4.1 Mandatory jobs procrastination

Procrastinating the execution of mandatory jobs can help extend or merge the idle intervals [21, 26]. However,
it might potentially cause some other mandatory jobs with lower priorities to miss their deadlines. In addition,
delaying the mandatory jobs not sufficiently might generate new scattered idle intervals that can not be shut down.
The problem then becomes how to determine the maximal delay to merge the idle intervals without causing any
mandatory jobs to miss their deadlines. In the following, we introduce two sufficient conditions to help identify
the delays for mandatory jobs. Before that, we first introduce the following definitions.

Definition 1 (Level-i busy period) Given task set T = {τ0,τ1, ...,τn−1} with tasks ordered by increasing value of
Di, the level-i busy period is defined to be the busy period in which only mandatory instances of tasks with relative
deadlines less than or equal to Di executed.

6

Note that here we borrow the concept of level-i busy period from [24] to represent the busy period under EDF
scheme. And it is shown in [13] that the length of the first level-i busy period is independent of the scheduling
algorithm and must be the smallest t such that the accumulated level-i workload within the interval [0, t] equals t.

Moreover, we have the following Theorem.

Theorem 1 Given task set T = {τ0,τ1, ...,τn−1} with tasks ordered by increasing value of Di, let E be the manda-
tory jobs selected from T based on their E-patterns, and let L be the ending point of the first busy period when
executing the mandatory jobs. Let Bi be the blocking factor for task τi, i.e., the longest time that a job of τi can be
blocked by other lower priority jobs. E is schedulable if

∑
Di≤t

(dmi

ki
b t +Ti−Di

Ti
ce)Ci +Bl(t) ≤ t (3)

for all t ≤ L, t = bp ki
mi
cTi +Di, p ∈ Z, i = 0, ...,n−1 and l(t) = max{l|Dl ≤ t}.

(The proof is provided in the Appendix part A.)
Based on Theorem 1, given a real-time system T with tasks ordered by increasing value of Di, the maximal

tolerable blocking factor Bi for each task τi under E-pattern satisfying Equation (3) can be computed by: (Similar
theorem can be established based on R-patten as well and the maximal tolerable blocking factor under R-pattern
can be found in the same way.)

Bi = min{t−∑
j≤i

(dmi

ki
b t +Ti−Di

Ti
ce)Ci} (4)

for all t = bp k j
m j
cTj +D j, p ∈ Z, j = 0, ..., i such that Di ≤ t ≤ b Li

Tj
cTj +D j, where Li is the length of the first level-i

busy period in which only mandatory instances of tasks with deadlines less than or equal to Di execute.
It is not hard to see that the blocking factor Bi computed by Equation (4) can satisfy Equation (3). Moreover,

although the definition of Bi in Theorem 1 is based on Stack Resource Policy [41] and the Dynamic Priority Ceiling
Protocols [11], it can also be used in our system model to implement procrastination on the mandatory jobs, which
is stated in the following theorem (The proof is provided in the Appendix part B):

Theorem 2 Given task set T = {τ0,τ1, ...,τn−1}, let E be the mandatory jobs selected from T based on their E-
patterns. Let Bi be the blocking factor for task τi computed by Equation (4). For any mandatory job Ji of τi in E ,
if it is procrastinated by no more than Bi time units after its arrival, no mandatory job in E will miss its deadline.

With Theorem 2, we can formulate the first sufficient condition as follows.

Theorem 3 Let M be the mandatory job set based on E-pattern or R-pattern, and let Bi be the corresponding
blocking factor for task τi computed by Equation (4). Let the current time be t, and let the coming mandatory job
set (i.e. with arrival time ri no earlier than t) be J ′. If the execution of J ′ is delayed to

TLS(J ′) = min
Ji∈J ′

(ri +Bi), i = 0,1, ...,n−1, (5)

no mandatory job in M will miss its deadline.

The proof can be done based on Theorem 2 and is provided in Appendix part C.
Theorem 3 provides one method to calculate the latest time that the upcoming mandatory jobs can be delayed

without incurring any deadline misses for the mandatory jobs. Moreover, given that Bi is available, we can also
develop another method to identify the maximal delay for a mandatory job set, as stated in Theorem 4 (The proof
is provided in Appendix part D).

7

������Task 1

(a)

0

Task 2

40 488 2416 32 56

5418 36

14 28 5642

40

14

48

28

54

8

Task 1

(b)

0

Task 2

2416 32

18 36

56

56

TB d*2 = 52

42

td

Task 3

Task 3

idle intervals

21

21

45

shutdown interval

Figure 2. (a) The schedule of a task set (τ1 = (8,8,4,2,4); τ2 = (18,18,7,2,4); τ2 = (14,14,6,1,2)) with
mandatory jobs determined with E-Pattern; (b) With mandatory jobs procrastination, the same task
set merged the idle intervals effectively.

Theorem 4 Let M be the mandatory job set based on E-pattern or R-pattern, and let Bi be the corresponding
blocking factor for task τi computed by Equation (4). Let the processor speed for each task τk be sk. Assuming
the current time is t = t0, and let the coming mandatory job set (i.e. with arrive time ri later than t0) be J ′. Let
the earliest deadline for the mandatory jobs in J ′ be TB. Then no mandatory job in J ′ will miss its deadline if the
execution of all mandatory jobs in J ′ is delayed to TLS(J ′), where

TLS(J ′) = min
Ji∈Js

(d∗i − ∑
Jk∈hp(Ji)

ck

sk
), (6)

where Js consists of mandatory jobs from J ′ with arrival times earlier than TB but later than t0, hp(Ji) are the jobs
with equal or higher priorities than Ji and

d∗i = min
p

(di,rp +Bp),∀Jp ∈ J ′,Jp /∈ Js and dp > di. (7)

The fundamental difference between our technique in Theorem 4 and the one in [26] is the way that the effective
deadline d∗i is defined. From Equation (7), the effective deadline for a mandatory job is prolonged with the blocking
factor Bp of the next mandatory jobs. This in turn will allow the mandatory jobs to be delayed further. While it
might not be always energy efficient to delay the mandatory jobs to the maximal extent, having larger delay interval
can provide us more flexibility in determining the most energy efficient speeds for jobs online. Note that since
both Theorem 3 and Theorem 4 are sufficient conditions, the larger one from equation (15) and (6) can be used as
the latest starting time td for the upcoming mandatory jobs. Finally, since our sufficient conditions in Theorem 3
and Theorem 4 do not depend on whether the system is idle at time t or not, so they can be used to compute
the maximal delay for the upcoming mandatory job set not only when the processor is idle, but also when the
processor is busy at time t, which will be very useful for our dynamic approach introduced in Section 5.

8

4.2 One example

As an example, consider a the task set of three tasks (τ1 =(8,8,4,2,4); τ2 =(18,18,7,2,4); τ2 =(14,14,6,1,2)).
Assume all tasks are executed with the highest speed, i.e., s1 = s2 = s3 = 1. The task schedule for mandatory jobs
determined with E-pattern is shown in Figure 2(a). If we assume the shutdown threshold Tth = 10, as seen in
Figure 2(a), 2 idle intervals were generated at t = 21 and t = 45 respectively and neither of them can be shut down.

However, if we apply Theorem 3 and Theorem 4 at t = 21, as shown in Figure 2(b), the future mandatory jobs
can be delayed to td = 32 and as a result the two short idle intervals can be merged into a longer one which can
be shut down safely. (Here according to Equation (4), B1 = 4, B2 = 1, and B3 = 4. So at t = 21, by applying
Theorem 3, the future mandatory jobs can be delayed to t = 32. Note that, when applying Theorem 4, task τ2
alone can be delayed further because at t = 21, TB = 40 and from Equation (7), the effective deadline for τ2 is
d∗2 = 52, as shown in Figure 2(b). Therefore the effective starting time for τ2 can be up to t = 45. However, since
in Theorem 4, according to Equation (6), the latest starting time for the upcoming mandatory jobs, i.e., TLS(J ′), is
constrained by all future mandatory jobs arriving before TB, TLS(J ′) should be chosen such that the deadlines of
all upcoming mandatory jobs could be ensured. Consequently the latest starting time computed with d∗2 = 52 is
still t = 32.)

4.3 The algorithm for static approach

Based on Theorem 3 and Theorem 4, the algorithm for our static approach can be formulated as followed.

Algorithm 1 The algorithm for static approach. (Algorithm LKST)
1: Input: The current time tcur.
2: td = the latest starting time for the upcoming mandatory jobs according to Theorem 3 and Theorem 4;
3: if the processor is idle then
4: if (td − tcur) > Tth then
5: Shut down the processor and set up the wake up timer to be (td − tcur);
6: end if
7: else if Ji is the only job in the ready queue then
8: s′i = max{ cisi

(min{td ,di}−tcur)
,scrit};

9: fi = tcur + cisi
s′i

; // scale si to be no less than scrit

10: if (td − fi) > Tth then
11: Execute Ji with s′i and upon completion of Ji shut down the processor and set up the wake up timer to be

(td − fi);
12: else
13: s′i = cisi

(min{td ,di}−tcur)
;// scale si as low as possible

14: end if
15: else
16: Run jobs in the ready queue with their predetermined speeds according to EDF;
17: end if

As shown in Algorithm 1, a timer is maintained to keep track of time and wake up the processor after a specified
time interval. At current time tcur, if the processor begins to idle, we compute the latest starting time td for
the upcoming mandatory jobs and shut down the processor if (td − tcur) > Tth. Otherwise we will schedule the
mandatory jobs with their predetermined speeds according to EDF scheme. One special case for the latter one is
whenever there is only one mandatory job in the ready queue, by delaying the upcoming mandatory jobs to td , we
can always use the available time to scale the speed of Ji as low as scrit first. If there is still extra idle time before

9

td and it is larger than Tth, we can shut down the processor during this idle interval (Line 6 - Line 9). Otherwise
instead of letting the processor idle during this interval, we can utilize the remaining time to reduce the speed of Ji

as low as possible to achieve further energy savings (Line 11).
Note that the difference between our static approach and the approach in [21] is that the approach in [21] is based

on individual job procrastination upon its arrival, while our approach is based on computing the latest starting
time for the whole upcoming mandatory job set at any time. As stated in the proof procedure of Theorem 2,
in our approach, the procrastination time for any of the upcoming mandatory job Ji is not necessarily Bi time
units in practice even if the processor is idle at ri. On the contrary, in the approach from [20], each job Ji is always
procrastinated by Zi time units only if the processor is already in the sleeping state at ri (interested readers can refer
to [20] for more details). Consequently, to guarantee the schedulability of the task set, one additional constraint has
to be imposed on the procrastination time Zi for each task τi, i.e, ∀k≤ i,Zk ≤Zi. As a result, the procrastination time
Zi achievable in the approach from [20] is rather pessimistic. Generally our approach can predict the idle interval
length and shut down the processor more efficiently than the approach in [20]. Moreover, when (m,k)−constraits
are imposed to the system, the utilization based condition in [20] to compute the procrastination time Zi is not
applicable any more while our approach can be applied with more general system model.

5 The dynamic approach

The advantages of the static approach introduced above are that the mandatory job set is the minimal, and the
mandatory jobs are evenly distributed with respect to each task. However, even though the mandatory jobs for
each task are evenly distributed, the overall mandatory workload are not necessarily evenly distributed. Moreover,
since E-pattern tends to separate mandatory jobs away from each other, it may generate a large number of idle
intervals. It is thus desirable that the mandatory jobs be determined dynamically to improve the energy-saving
efficiency.

5.1 The general algorithm for dynamic approach

Our dynamic approach is shown in Algorithm 2. In general, our dynamic approach consists of two phases: an
off-line phase followed by an online phase. During the offline phase, to ensure the (m,k)-constraints, the feasibility
of the task set under R-pattern is tested according to Theorem 1 in [25]. Then based on it, for schedulable task sets,
the speeds for the mandatory jobs for each task are scaled down as low as scrit at the task level and will be used
as predetermined speeds for the mandatory jobs. Then the blocking factor Bi for each task under the R-pattern is
computed using the method similar to that in Theorem 1.

During the on-line phase, two job ready queues are maintained, i.e., the mandatory job queue (MQ) and the
optional job queue (OQ), with jobs in MQ always having higher priority than those in OQ. Upon arrival, a job,
i.e., Jip ∈ τi is determined as mandatory job or optional job based on the execution results of the ki− 1 jobs in
the most recent history. It is determined as mandatory only if one more deadline miss will incur dynamic failure.
The mandatory jobs in MQ will generally be executed with their speeds predetermined during the off-line phases.
However, whenever there is zero or only one mandatory job in MQ, opportunities exist to update the execution
speed for the upcoming mandatory jobs and save energy consumption more aggressively. More details of this
method can be found in Section 5.2.

In our dynamic approach, not only the mandatory jobs but also the optional jobs can be executed. The execution
of optional job has great potential in help reducing the overall energy consumption. For example, some optional
job with actual execution time much shorter than its worst case can also meet its deadline with speed lower than
its predetermined speed. And that will help to reduce the possibility of having to run mandatory jobs at higher
processor speeds in the future. However, executing the optional job might incur extra energy cost, which needs
to be addressed carefully. Otherwise, the energy reduction achieved from executing the optional job might not be

10

Algorithm 2 The algorithm for dynamic approach. (Algorithm LKDN)
1: Upon job completion:
2: if MQ is empty then
3: tcur = the current time;
4: td = the latest starting time for the upcoming mandatory jobs according to Theorem 3 and Theorem 4 for

R-pattern;
5: if OQ is not empty then
6: Select and run Ji ∈ OQ with energy efficient speed s′i determined in Section 5.2 non-preemptively;
7: else if (td − tcur) > Tth then
8: Shut down the processor and set up the wake up timer to be (td − tcur);
9: end if

10: end if
11:

12: Upon job arrival or expiration of timer:
13: if MQ is not empty then
14: if Ji is the only job in MQ then
15: Run Ji with energy efficient speed s′i determined in Section 5.2 non-preemptively;
16: else
17: Run jobs in MQ with their current scaled speeds according to preemptive EDF;
18: end if
19: end if

able to compensate the energy cost. Therefore, it is not only important to choose an appropriate optional job to
execute, but also to determine the appropriate speed to execute the job. We introduce our method in choosing the
optional job and its speed in section 5.3.

If no optional job is qualified to execute and the predicted idle interval is longer than the shut down threshold
Tth, we shut down the processor and set the timer to be the idle interval length.

5.2 Update the predetermined speeds for mandatory jobs

When there exists only one mandatory job, i.e. Ji, in MQ, from Theorem 3 and Theorem 4, we can see that
the speed of Ji can be scaled safely so long as Ji finishes no later than td . One comman strategy is to scale the
speed of Ji as low as scrit . If there is still available time, then the upcoming mandatory jobs are procrastinated
and the processor is shut down if the length of idle time before td is larger than Tth. However, this strategy is not
necessarily always the best strategy in saving energy.

Consider a task set consisting of two tasks (τ1 = (20,20,5,2,4); τ2 = (40,40,15,1,2)). Assume the task set
will be executed on the Intel XScale processor model [17]. According to [7], the power consumption function for
Intel XScale [17] can be modeled approximately as Pact(s) = 1.52s3 +0.08 Watt by treating 1GHz as the reference
speed 1. And the normalized critical speed in such a model is about 0.3 (at 297 MHz) with power consumption
0.12 Watt [7]. We assume the shut down overhead to be Eo = 0.8mJ [7]. If the minimal processor speed is 0, the
idle power consumption of the processor is 0.08 Watt and the corresponding shut down threshold is Tth = 10ms.

The scaled speed for the task set under E-pattern is 0.5 and the schedule of the static approach is shown in
Figure 3(a). The energy consumption under the static approach is (1.52× 0.53 + 0.08)× 40 + (1.52× 0.33 +
0.08)×16.67+0.8 = 13.61mJ. The scaled speed for the task set under R-pattern is 0.625. As shown in Figure 3(b),
according to our optional job selection strategy in Section 5.3 (for brevity here we set the job selection control
coefficient κ to be 1), our dynamic approach will choose to schedule the optional job for τ2 first in the interval
[0,40] and scale its speed to be 0.375 (after completion, its dynamic pattern is updated from 0 to be 1). Then at

11

time t = 40, the dynamic approach will schedule the job J13 for τ1. Since J13 is the only mandatory job in the ready
queue and the latest starting time td for the future mandatory job(s) is 72, there is enough space to scale the speed
for J13 to scrit and shut down the processor upon completion of J13 at t = 56.7. Then at time t = 72, the processor
will be waken up and continue to execute J14 at its predetermined speed 0.625. The energy consumption within the
hyper period for the schedule in Figure 3(b) will be (1.52×0.3753 +0.08)×40+(1.52×0.33 +0.08)×16.67+
0.8+(1.52×0.6453 +0.08)×8 = 12.81mJ.

However, a different schedule in Figure 3(c) which, instead of shutting down, uses the available space to help
scale the speed of J14 to scrit = 0.3 and keeps the processor idle for the rest of the time, has energy consumption of
(1.52×0.3753 +0.08)×40+0.12×33.33+0.08×6.67 = 10.92mJ, which is 15.6% lower than that in Figure 3(b).
Moreover, another schedule in Figure 3(d) uses the idle time to further reduce the speeds for job J13 and J14 to 0.25,
which is below the critical speed, can achieve an additional 3.3% energy reduction compared with the schedule in
Figure 3(c) (the energy consumption in Figure 3(d) is (1.52×0.3753 +0.08)×40+(1.52×0.253 +0.08)×40 =
10.56mJ).

In this example, we can see that the approach in Figure 3(b) considers only reducing the speed for the current job
Ji. When looking forward, it might be more beneficial for the future mandatory jobs to compete for the available
idle time to scale their speeds instead of shutting down the processor. With this in mind, we proposed a look-ahead
approach which incorporates the speed information of the future mandatory jobs in scaling the speed of the current
job Ji and shutting down the processor when necessary.

Specifically, when the current job Ji is ready, we temporarily scale its speed as low as scrit first, i.e, set its
current speed s′i = max{ cisi

(min{td ,di}−tcur)
,scrit}. Then by considering the speed information for the future mandatory

jobs arriving before td , this temporary speed s′i might need to be updated depending on the expected finishing time
fi(= tcur + cisi

s′i
) of Ji under speed s′i. (For easy of presentation, we call the future mandatory jobs arriving before

td look− ahead job set and denote it as JLA . Although for each of the mandatory jobs in JLA we can consider
them separately and eventually choose the one that can provide the best energy efficiency in the interval [tcur, td],
to reduce the online time complexity, we only choose the mandatory job with the highest predetermined speed in
JLA to be considered. For simplicity, we call it look− ahead job and denote it as Jla.) Specifically, we need to
consider three cases:

• 1) (td− fi)≤ Tth. In this case, it is not energy beneficial to shut down the processor at all. Instead, we should
use the idle time to scale the speed of Ji and Jla as low as possible. Particularly, if (td − fi) < 0 there is no
need to update s′i and the speeds for the jobs in JLA because the processor can continue to execute the new
upcoming jobs upon completion of Ji and no new idle interval will be generated before td;

• 2) (td − fi) > Tth and sla = scrit . In this case, Jla’s speed is not higher than scrit and the new idle interval
generated between [fi, td] can be shut down if we procrastinate the upcoming mandatory jobs to td . So
keeping the current value of s′i and shutting down the processor while delaying the future mandatory jobs to
td will be a good choice.

• 3) (td − fi) > Tth and sla > scrit . In this case, the idle interval generated between [fi, td] can be shut down if
we procrastinate the upcoming mandatory jobs to td . However, we need to compare the beneficial between
shutting down the processor and using the available time space to scale the speeds of Ji and Jla. In order to
do so, we check whether both the speeds of Ji and Jla can be scaled to scrit while the remaining idle time
space within [tcur, td] is still long enough to shut down the processor. (This can be done by assuming the
worst case execution time of Jla to be Cla and setting s′la = max{ Clasla

(td−max{rla, fi})+Cla)
,scrit}). If the remaining

time space trem = (td − fi− (C′la−Cla)) is longer than Tth, then we shut down the processor at fi and set the
wake up timer to be trem (here C′la is the worst case execution time of Jla under s′la). Otherwise there is not
enough space to shut down the processor if Jla is scaled and we should reduce the speed of Ji and Jla as low
as possible within [tcur, td], as we did in Figure 3(d).

12

20
T1

(c)

0
T2

6040 80

40 80

0 10 1

0
20

T1

(d)

0
T2

6040 80

40 80

0 10 1

1 0���20
T1

0
T2

6040 80

40 80

1 10 0

1 0

(a)

s=0.25

s=0.375 ���s=0.3 s=0.3 s=0.25

s=0.375
1

shut down
interval

idle intervals

20
T1

(b)

0
T2

6040 80

40 80

0 10 1

0
s=0.375

s=0.3
s=0.625

1

shut down
interval

td=72

56.7

s=0.3

s=0.5

s=0.5

Figure 3. (a) The schedule of task set (τ1=(20,20,5,2,4); τ2=(40,40,15,1,2)) under the static approach;
(b) The schedule under dynamic pattern with the Scale-to-Critical-Speed-and-Shut-Down Strategy; (c)
The schedule under dynamic pattern with look-ahead approach; (d) The schedule under dynamic
pattern and with speed reduced below the critical speed.

13

Note that in case 1) and 3), the speeds of Ji and Jla can be scaled below the critical speed scrit (e.g., job J13
and job J14 in Figure 3(d)). However, the energy efficiency can be better than the ones without looking-ahead.
The overhead of this approach mainly comes from computing td which has been shown to have very low online
overhead in [26].

5.3 Executing optional jobs

As stated before, when the mandatory queue MQ is empty, it can be energy beneficial to execute certain optional
jobs in OQ. To choose the appropriate optional job to execute, we first introduce the following two definitions.

Definition 2 The Task Energy Intensity of each task τi (denoted as T EIi) is defined as

T EIi =
miE(si)

kiTi
(8)

where E(si) is the energy consumption to execute a mandatory job of τi under its predetermined speed si.

Definition 3 The Job Energy Intensity of a job Ji (denoted as JEIi) is defined as

JEIi =
E(s′i)

Ti
(9)

where E(s′i) is the energy consumption to execute job Ji under its current energy efficient speed s′i.

Note that if the optional job cannot meet its deadline, it does not help in energy reduction or pattern adjustment.
To guarantee the optional job can meet its deadline, we run the selected optional job non-preemptively. The
potential energy efficient speed s′i for each optional job Ji in OQ can be computed individually at the online phase
by treating it as if it were the only ready job in OQ, similar to the speed determination approach in Section 5.2 (in
this case the speed for the future mandatory jobs should also be updated correspondingly in the same way.)

Whenever a job completes and the MQ is empty, we first check each optional job Ji in OQ by inspecting its job
energy intensity JEIi under its potential energy efficient speed s′i within the interval [tcur, td]. Only those optional
jobs with JEIi < κT EIi will be chosen as candidate jobs, where κ(> 0) is a user defined parameter to fine tune
the optional job selections. Generally κ can be set to be 1 for energy saving purpose. But the user can also
vary the value of κ to control the chances that optional jobs will be scheduled and thus provide the micro-tunable
performance (QoS versus energy) levels that can be achieved without affecting the schedulability of the whole
task set.

For each candidate job, we can then calculate its energy-gain/criticality ratio as ∆E(Ji)/Cri, where ∆E(Ji) =
E(si)−E(s′i) and the criticality Cri is the number of deadline misses allowed before a dynamic failure occurs
to Ji. Since the energy-gain ∆E(Ji) reflects the potential energy saving that can be achieved by executing the
optional job and the criticality Cri reflects the relative urgency to schedule the optional job in order to meet the
(m,k)-constraint, the candidate job with the maximal ∆E(Ji)/Cri will be chosen to be executed.

Compared with the static approach, the dynamic approach can lead to more aggressive energy reduction due
to its adaptive pattern adjustment and speed determination with the run-time conditions. To ensure the (m,k)-
constraints can be guaranteed, we have the following theorem (the proof is provided in the Appendix part E):

Theorem 5 Let T = {τ0,τ1, ...,τn−1} be executed in a variable voltage processor , where τi = {Ti, Di, Ci, mi,
ki}. The dynamic approach, with complexity of O(n), can ensure the (m,k)-requirements for T if T is schedulable
with R-pattern.

14

�idle invervals; ����T1

(b)

T2

15 30

60

45 60

0
T3

606 5033

s31=0.3

s14 =0.3

28

T1

(c)

T2

15 30

60

45 60

0
T3

606 18

s31 =0.25

s14 =0.2
s12 =0.25

s13 =0.2

T1

(a)

T2

15 30

60

45 60

0

T3

60

slack time; shutdown intervals.

Figure 4. (a) The task set (τ1 = (15,15,3,1,1); τ2 = (60,60,42,1,1); τ3 = (60,60,6,1,1)) schedule
with actual execution times (c21 = 3 and c31 = 3) and corresponding slack times; (b) The dynamic
reclaiming schedule based on the algorithm in [21]; (c) The dynamic reclaiming schedule with our
approach in Section 6.

15

6. Dynamic reclaiming

When there are more than one mandatory jobs in the ready queue and some of them present actual execution
times shorter than their worst case, slack times can also be available to be reclaimed among mandatory jobs.
In [21], the leakage-aware dynamic reclaiming approach was proposed to reduce the energy. The main idea is:
assuming at time t, the processor is in sleeping state and the mandatory jobs Ji arrives with an amount of available
slack Si(t) with priorities higher than or equal to it, the slack time Si(t) is used to reduce the speed of Ji to be no
less than scrit such that the active energy of Ji can be minimized (if Si(t) is not used up, the residue part can be
used for dynamic procrastination).

However, minimizing the active energy alone might not be sufficient to reduce the total energy consumption.
Consider a task set of three tasks {τ1 = (15,15,3,1,1); τ2 = (60,60,42,1,1); τ3 = (60,60,6,1,1)} to be exe-

cuted on the same Intel XScale processor model as above, the task worst case execution schedule, actual execution
times and slack times are shown in Figure 4(a). According to [21], the procrastination time Zi for each task are
Z1 = Z2 = Z3 = 0. Also since the total utilization of the task set is 1, the static speed for each task is 1.

As shown in Figure 4(b), at time t = 6, job J31 began to execute with slack time S3(t) = 39 time units from
higher priority job. Since the static speed s31 of job J31 is 1, it could be reduced to the critical speed scrit safely
by reclaiming 7 time units from the slack time available. Since there is still slack time left, the rest slack time
can be used to procrastinate J31. However, at t = 15, since Z1 = 0 and the slack times from job J21 and J31 did
not have priorities higher than or equal to job J12, according to [21], J12 could not be procrastinated in this case.
The same situation also happened to J13 at t = 30. Only when J14 arrived at t = 45, since the rest slack times
from job J21 and J31 had higher priorities than J14, they could be used to reduce the speed of J14 to the citical
speed scrit . And the residue part of the slack could be used to procrastinate J14 to t = 50. As a result, the idle
interval generated, i.e., [33,50] could be shut down. The total energy consumption within the interval [0,LCM(Ti)]
is E = (1.52×13 +0.08)×6+0.08×9+(1.52×13 +0.08)×3+(1.52×0.33 +0.08)×10+0.08×2+(1.52×
13 + 0.08)×3 + 0.8 +(1.52×0.33 + 0.08)×10 = 21.84mJ. However, a different schedule in Figure 4(c) which
utilizes the slack time S3(6) available to J31 at t = 6 to reduce the speed of job J31 and the look-ahead job J12
generated total energy consumption within the interval [0,LCM(Ti)] as E = (1.52× 13 + 0.08)× 6 + (1.52×
0.253 +0.08)×24+(1.52×0.23 +0.08)×15×2 = 14.97mJ, which is 31.4% lower than that from Figure 4(b).
Note that in the schedule of Figure 4(c), at t = 30, even the slack time from the early completion of J21 does not
have priority higher than J13, but it can still be reclaimed by our algorithm to reduce the speed for the current job
J13 and the look-ahead job J14.

In this example, we can see that when reclaiming the slack time, it might be more beneficial to look into the
future jobs to achieve better energy saving performance. With this in mind, we propose a look-ahead dynamic
reclaiming approach by incorporating the speed information of the future jobs. Specifically, when the current
job Ji is ready with reclaimable slack time Si(t), we also temporarily scale its speed as low as scrit first, i.e, set its
current speed si to be s̃i = max{ ci×si

ci+Si(t)
,scrit}. Then the expected finishing time (denoted as FJ) for all uncompleted

mandatory jobs in the ready queue (denoted as J , and Ji ∈ J) can be computed as FJ = tcur +∑Jp∈J cp, where cp is
the remaining actual execution time of job Jp under its current scaled speed. After that, depending on the value of
FJ , the current speeds for Ji and other mandatory jobs in J as well as that for the look ahead job Jla might need to
be updated, which can be classified into three cases:

• 1) (td −FJ) ≤ Tth. In this case, it is not energy beneficial to shut down the processor at all and we should
use the slack/idle time to scale the speeds of jobs in FJ and Jla as low as possible. The speeds of the jobs in
J can be reduced in the same way as case 1) in Section 5.2.

• 2) (td −FJ) > Tth and sla = scrit . In this case, Jla’s speed is not higher than scrit and the new idle interval
generated between [FJ , td] can be shut down if we procrastinate the upcoming mandatory jobs to td . So

16

keeping the current value of s′i and shutting down the processor while delaying the future mandatory jobs to
td will be a good choice.

• 3) (td − FJ) > Tth and sla > scrit . In this case, the idle interval generated between [FJ , td] can be shut
down if we procrastinate the upcoming jobs to td . However, we need to compare the beneficial between
shutting down the processor and using the available slack time to scale the speeds of Jla. In order to do
so, we need to check whether both the speeds of Ji and Jla can be scaled to scrit while the remaining idle
time space within [tcur, td] is still long enough to shut down the processor. This can be done by setting
s′la = max{ Clasla

(td−max{ta,FJ })+Cla)
,scrit} first. If the remaining time space trem = (td −FJ − (C′la−Cla)) is longer

than Tth, then we shut down the processor at FJ and set the wake up timer to be trem (here C′la is the worst
case execution time of Jla under s′la). Otherwise there is no enough space to shut down the processor if Jla is
scaled and we should reduce the speeds of jobs in FJ and Jla as low as possible within [tcur, td], as in case 1).

Note that in case 1) and 3), it is also possible that the speeds of jobs in FJ and Jla can be reduced to below the
critical speed scrit , (e.g., job J31 and job J12 in Figure 4(c)). Moreover, another difference between our dynamic
approach and the approach in [21] is that our approach does not require the slack time Si(t) available to the current
job Ji have higher priority than Ji. So the previous aggressive slack reclaiming approach that can steal slack from
lower priority jobs (e.g., [3, 22]) can be incorporated into our approach to achieve better energy efficiency.

7 Experimental results

Six different approaches are studied using experiments in this section. In the first approach, the task sets are
statically partitioned with E-pattern, and the mandatory jobs are executed with the highest processor speed. We
refer this approach as NoDV S and use its results as the reference results. In the second approach, the task sets
are statically partitioned with E-pattern, but the speeds of the tasks are scaled down at the task level as low as
possible, We refer this approach as DV S. In the third approach, the task sets are statically partitioned with E-
pattern, and the speed of the tasks are scaled as low as scrit at the task level, then the approach in [21] based on
individual task procrastination is applied, we call this approach CSDV S-P. The fourth approach, namely LKST ,
is our static approach introduced in Section 4. The task sets are statically partitioned with E-pattern, and the
speeds of the tasks are scaled as low as scrit . When the system is idle, we tried to delay the mandatory jobs with
the approaches introduced in Section 4 and shut down the processor whenever necessary. Since the parameter
controlled procrastination approach in [7] can also be applied to our static approach, in the fifth approach, we will
also incorporate this strategy into our static approach with the parameter set correspondingly (according to [7], the
best value should be around 0.6 for our processor model), we refer this approach as LKST P. The sixth approach
LKDN is our dynamic approach as explained in Section 5. In this approach, we dynamically vary the job patterns
according to the run time conditions and reduce the job speed (below the critical speed when necessary) as well as
shut down the processor whenever possible. Since the value of κ, i.e., the job selection coefficient in our dynamic
approach, can affect the selection of optional jobs and thus the performance of the algorithm, we also vary the
value of κ within the range of (0.4, 0.6, 0.8, 1.0, 1.2) to compare their performance. For the processor model we
will adopt the same processor model as used in [7], i.e. the Intel XScale processor. The parameters are the same
as used in Section 5.2.

We first studied the energy consumption of these approaches based on the synthesized task sets. The periodic
task sets tested in our experiments were randomly generated with the periods and the worst case execution times
(WCET) of the tasks randomly chosen in the range of [10ms,100ms] and [1ms,30ms], respectively. The deadlines
of the tasks were set to be less than or equal to their periods. The actual execution time of a job was randomly
picked from [0.1WCET, WCET]. The mi and ki for the (m,k)-constraints were also randomly generated such that
ki is uniformly distributed between 2 to 10, and mi ≤ ki. The total utilization, i.e., ∑i

miCi
kiTi

, is divided into intervals

17

(a)

(b)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.0 -
0.1

0.1 -
0.2

0.2 -
0.3

0.3 -
0.4

0.4 -
0.5

0.5 -
0.6

0.6 -
0.7

0.7 -
0.8

0.8 -
0.9

0.9 -
1.0

no
rm

al
iz

ed
 id

le
 e

ne
rg

y

CSDVS-P LKST LKST^P
LKDN with k=1.2 LKDN with k=1 LKDN with k=0.8
LKDN with k=0.6 LKDN with k=0.4

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0.0 -
0.1

0.1 -
0.2

0.2 -
0.3

0.3 -
0.4

0.4 -
0.5

0.5 -
0.6

0.6 -
0.7

0.7 -
0.8

0.8 -
0.9

0.9 -
1.0

no
rm

al
iz

ed
 to

ta
l e

ne
rg

y

No_DVS DVS CSDVS-P
LKST LKST^P LKDN with k=1.2
LKDN with k=1 LKDN with k=0.8 LKDN with k=0.6
LKDN with k=0.4

Figure 5. (a) The total energy comparison by the different approaches. (b) The idle energy comparison
by the different approaches.

18

of length 0.1 and we randomly generate 50 feasible task sets for each interval. The energy consumption for each
approach was normalized to that by NoDV S, and the results are shown in Figure 5(a) and (b).

From Figure 5(a), DV S will cause dramatic increase in the total energy consumption for low utilization intervals.
For example, when the utilization is between [0.0, 0.1], the energy consumption by DV S is more than 60% of that
by NoDV S. On the contrary, voltage scaling approaches with static energy and procrastination in mind can reduce
the total energy consumption significantly. Moreover, with effective procrastination for the mandatory jobs and
dynamic pattern adjustment, our static approach and dynamic approach can reduce the energy consumption further
effectively. For example, compared with CSDV S-P, LKST can lead to a total energy reduction by around 10%.
The LKST P has a marginal improvement over LKST and its energy consumption in some intervals can be slightly
higher than that by LKST . Our dynamic approach LKDN can reduce the total energy more significantly. Compared
with CSDV S-P, the maximal reduction can be around 26%. It is also noticed that during some low utilization
interval the total energy consumption by LKDN is close to LKST and LKST P for small κ values. This is because,
when the the system utilization is low and the value of κ is small, there is little chance to select candidate optional
jobs and scale the speeds further. In this case, the procrastination and shut-down strategy will dominate. In some
intervals, the energy performance of LKDN with very large value of κ is not the best either because in those cases
LKDN optionally executed some redundant jobs. Although those jobs can help enhance the user perceivable QoS
levels, they might also cost extra energy that cannot be completely compensated by the energy reduction from
varying the job patterns. And it seems the overall energy is the lowest when κ is between [0.8, 1] and generally
setting κ to be around 1 is reasonably good.

Due to the energy overhead of DPD and the dramatic increase of the static power, the energy consumption
during the processor idle time will also account for a significant part of the total energy consumption. We are
therefore interested in investigating how our approach can help reduce this part of energy. Figure 5(b) shows the
average idle energy consumptions by the different approaches. Note that, our approaches, i.e., LKST , LKST P and
LKDN can always lead to much better idle energy savings than the previous approaches. LKST and LKST P both
consume much lower idle energy than CSDV S-P due to effective idle extension and merging. The performance
of LKDN is even better because it utilizes the idle intervals more efficiently to help reduce the job speed (below
the critical speed when necessary) and to facilitate shut-down. Compared with CSDV S-P, LKST and LKST P can
reduce the idle energy by up to around 40% and LKDN can reduce the idle energy by up to around 78%. Also note
that when the value of κ is relatively larger, the idle energy consumption for LKDN is relatively lower because in
this case there are more chances that the idle time will be utilized to schedule the optional jobs. However, setting
the κ value as too high, for example, let κ > 1, might cause too many optional jobs to be scheduled and increase
the total energy consumption. Considering that, setting the value of κ to be around 1.0 tends to provide better
performance in minimizing the total energy and idle energy consumption simultaneously.

Next, we tested our techniques in a more practical environment. The test cases contained two real world appli-
cations: webphone [40], and INS (Inertial Navigation System) [1]. The timing parameters such as the deadlines,
periods, and execution times were adopted from these practical applications. The actual execution times and the
(m,k)-constraints were generated as we did for the synthesized task sets. Since the value of κ around 1.0 tends to
have better performance for our dynamic approach, this time we fixed the value of κ to be 1.0. The normalized
total energy consumptions and idle energy consumptions are shown in Figure 6.

The experimental results based on the practical applications further demonstrate the effectiveness of our ap-
proaches in saving energy. As shown in Figure 6(a) and (b), for the webphone application, the static approach
LKST and LKST P can reduce the total energy consumption by around 8% and idle energy consumption by about
30%. And the energy saving by the dynamic approach (LKDN) can be up to 15% for total energy consumption and
up to 71% for idle energy consumption. For INS application, as shown in Figure 6(c) and (d), the static approach
LKST and LKST P can reduce the total energy consumption by about 12% and idle energy consumption by about
36%. And the energy saving by LKDN can be up to 23% for total energy consumption and 80% for idle energy
consumption.

19

(a) (b)

(c) (d)

Webphone

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0.0 -
0.1

0.1 -
0.2

0.2 -
0.3

0.3 -
0.4

0.4 -
0.5

0.5 -
0.6

0.6 -
0.7

0.7 -
0.8

0.8 -
0.9

0.9 -
1.0

N
o

rm
al

iz
ed

 T
o

ta
l E

n
er

g
y

DVS CSDVS-P LKST

LKST^P LKDN

Webphone

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.0 -
0.1

0.1 -
0.2

0.2 -
0.3

0.3 -
0.4

0.4 -
0.5

0.5 -
0.6

0.6 -
0.7

0.7 -
0.8

0.8 -
0.9

0.9 -
1.0

N
o

rm
al

iz
ed

 Id
le

 E
n

er
g

y

CSDVS-P LKST
LKST^P LKDN

INS

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0.0 - 0.1 0.1 - 0.2 0.2 - 0.3 0.3 - 0.4 0.4 - 0.5 0.5 - 0.6 0.6 - 0.7

N
o

rm
al

iz
ed

 T
o

ta
l E

n
er

g
y

DVS CSDVS-P LKST

LKST^P LKDN

INS

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.0 -
0.1

0.1 -
0.2

0.2 -
0.3

0.3 -
0.4

0.4 -
0.5

0.5 -
0.6

0.6 -
0.7

N
o

rm
al

iz
ed

 Id
le

 E
n

er
g

y CSDVS-P LKST LKST^P LKDN

Figure 6. (a) The total energy comparison for webphone. (b) The idle energy comparison for web-
phone. (c) The total energy comparison for INS. (d) The idle energy comparison for INS.

20

8 Conclusions and future work

Low power/energy consumption and QoS guarantee are two of the most critical factors for the successful design
of pervasive real-time computing platforms. While the dynamic voltage scaling (DVS) techniques are efficient in
reducing the dynamic power consumption for the processor, varying voltage alone becomes less effective for the
overall energy reduction as the static power is growing rapidly. In this paper, we propose two approaches, a static
one and a dynamic one, to reduce the overall energy consumption for real-time systems while guaranteeing the
given QoS requirement in terms of (m,k)-constraints. The static approach determines the mandatory jobs statically
and try to delay the mandatory jobs and shut down the processor whenever possible. The dynamic approach vary
the job pattern dynamically during the runtime and determine the job speed in a more adaptive way. Through
extensive simulations, our approaches outperformed previous research in both overall and idle energy reduction
while providing the (m,k)-guarantee.

For the future work, we plan to expand our current research in the following directions:

• As we know, although our dynamic approach is efficient in reducing the overall energy consumption, it is
very hard to predict the feasibility of the mandatory jobs accurately under the dynamic pattern. In this paper,
we have adopted R-pattern to provide a bottom line of guaranteeing the schedulability of the mandatory jobs
in the worst case (as shown in the proof of Theorem 5). However, this strategy can be kind of conservative
as in practice the worst case might never happen. So in part of our future work we are trying to find better
ways to predict the feasibility of our dynamic approach more accurately and thus further improve its energy
efficiency correspondingly.

• As shown in [43, 37], there is a dependency relationship between leakage and temperature and it plays
an important role in both the power and thermal aware design. As part of our future work, we will ex-
plore minimizing the overall energy with leakage-temperature dependency awareness while still ensuring
the (m,k)-guarantee.

• Since multi-core processors are becoming popular to improve the system performance for next generation
real-time embedded systems, we would also tackle the issues of leakage-aware energy minimization on
multi-core platforms with (m,k)-constraints.

References

[1] A.Burns, K. Tindell, and A. Wellings. Effective analysis for engineering real-time fixed priority schedulers.
IEEE Transactions on Software Engineering, 21:920–934, May 1995.

[2] T. A. AlEnawy and H. Aydin. Energy-constrained scheduling for weakly-hard real-time systems. RTSS,
2005.

[3] H. Aydin, R. Melhem, D. Mosse, and P. Alvarez. Determining optimal processor speeds for periodic real-time
tasks with different power characteristics. In ECRTS01, June 2001.

[4] H. Aydin, R. Melhem, D. Mosse, and P. Alvarez. Dynamic and aggressive scheduling techniques for power-
aware real-time systems. In RTSS01, December 2001.

[5] G. Bernat and A. Burns. Combining (n,m)-hard deadlines and dual priority scheduling. In RTSS, Dec 1997.

[6] A. P. Chandrakasan, S. Sheng, and R. W. Brodersen. Low-power cmos digital design. IEEE Journal of
Solid-State Circuits, 27(4):473–484, April 1992.

21

[7] J.-J. Chen and T.-W. Kuo. Procrastination determination for periodic real-time tasks in leakage-aware dy-
namic voltage scaling systems. In ICCAD, 2007.

[8] J.-J. Chen, N. Stoimenov, and L. Thiele. Feasibility analysis of on-line dvs algorithms for scheduling arbitrary
event streams. In RTSS, 2009.

[9] J.-J. Chen and L. Thiele. Expected system energy consumption minimization in leakage-aware dvs systems.
In ISLPED, 2008.

[10] J.-J. Chen and L. Thiele. Energy-efficient scheduling on homogeneous multiprocessor platforms. SAC’10
(PADO Track), 2010.

[11] M.-I. Chen and K.-J. Lin. Dynamic priority ceilings: A concurrency control protocol for real-time systems.
Journal of Real-Time Systems, 2(4):325–346, 1990.

[12] V. Devadas and H. Aydin. On the interplay of voltage/frequency scaling and device power management for
frame-based real-time embedded applications. IEEE Transactions on Computers, 61(1):31–44, 2012.

[13] L. George, D. D. Voluceau, and B. L. C. C. (france). Preemptive and non-preemptive real-time uni-processor
scheduling, 1996.

[14] M. Hamdaoui and P. Ramanathan. A dynamic priority assignment technique for streams with (m,k)-firm
deadlines. IEEE Transactions on Computes, 44:1443–1451, Dec 1995.

[15] S. Hua and G. Qu. Energy-efficient dual-voltage soft real-time system with (m,k)-firm deadline guarantee.
In CASE’04, 2004.

[16] S. Hua, G. Qu, and S. Bhattacharyya. Energy reduction techniques for multimedia applications with tolerance
to deadline misses. DAC, pages 131–136, 2003.

[17] INTEL-XSCALE. http://developer.intel.com/design/xscale/. 2003.

[18] T. Ishihara and H. Yasuura. Voltage scheduling problem for dynamically variable voltage processors. In
ISLPED, 1998.

[19] ITRS. International Technology Roadmap for Semiconductors. International SEMATECH, Austin, TX.,
http://public.itrs.net/.

[20] R. Jejurikar, C. Pereira, and R. Gupta. Leakage aware dynamic voltage scaling for real-time embedded
systems. DAC, 2004.

[21] R. Jejurikar, C. Pereira, and R. Gupta. Dynamic slack reclamation with procrastination scheduling in real-
time embedded systems. DAC, 2005.

[22] W. Kim, J. Kim, and S.L.Min. A dynamic voltage scaling algorithm for dynamic-priority hard real-time
systems using slack analysis. DATE, 2002.

[23] F. Kong, Y. Wang, Q. Deng, and W. Yi. Minimizing multi-resource energy for real-time systems with discrete
operation modes. In Proceedings of the 2010 22nd Euromicro Conference on Real-Time Systems, ECRTS
’10, pages 113–122, Washington, DC, USA, 2010.

[24] J. Lehoczky. Fixed priority scheduling of periodic task sets with arbitrary deadlines. In RTSS, pages 201–209,
1990.

22

[25] N. Linwei. Energy-aware dual-mode voltage scaling for weakly hard real-time systems. SAC’10 (Real Time
System Track), 2010.

[26] N. Linwei and G. Quan. Reducing both dynamic and leakage energy consumption for hard real-time systems.
CASES’04, Sep 2004.

[27] C. L. Liu and J. W. Layland. Scheduling algorithms for multiprogramming in a hard real-time environment.
Journal of the ACM, 17(2):46–61, 1973.

[28] J. Liu. Real-Time Systems. Prentice Hall, NJ, 2000.

[29] S. Martin, K. Flautner, T. Mudge, and D. Blaauw. Combined dynamic voltage scaling and adaptive body
biasing for lower power microporcessor under dynamic workloads. ICCAD, 2002.

[30] B. Mochocki, X. Hu, and G. Quan. A realistic variable voltage scheduling model for real-time applications.
ICCAD, 2002.

[31] L. Niu and G. Quan. Energy minimization for real-time systems with (m,k)-guarantee. IEEE Trans. on VLSI,
Special Section on Hardware/Software Codesign and System Synthesis, pages 717–729, July 2006.

[32] L. Niu and G. Quan. Peripheral-conscious scheduling on energy minimization for weakly hard real-time
systems. DATE, 2007.

[33] P. Pillai and K. G. Shin. Real-time dynamic voltage scaling for low-power embedded operating systems. In
SOSP, 2001.

[34] X. Qi, D. Zhu, and H. Aydin. Global scheduling based reliability-aware power management for multiproces-
sor real-time systems. Real-Time Syst., 47:109–142, March 2011.

[35] G. Quan and X. Hu. Enhanced fixed-priority scheduling with (m,k)-firm guarantee. In RTSS, pages 79–88,
2000.

[36] G. Quan, N. Linwei, X. S. Hu, and B. Mochocki. Real time scheduling for reducing overall energy on variable
voltage processors. International Journal of Embedded System: Special Issue on Low Power Embedded
Computing, 4(2):127–140, 2009.

[37] G. Quan and Y. Zhang. Leakage aware feasibility analysis for temperature-constrained hard real-time peri-
odic tasks. In ECRTS, 2009.

[38] R. Rajkumar, C. Lee, J. Lehoczky, and D. Siewiorek. A resource allocation model for qos management. In
RTSS, Dec. 1997.

[39] P. Ramanathan. Overload management in real-time control applications using (m,k)-firm guarantee. IEEE
Trans. on Paral. and Dist. Sys., 10(6):549–559, Jun 1999.

[40] D. Shin, J. Kim, and S. Lee. Intra-task voltage scheduling for low-energy hard real-time applications. IEEE
Design and Test of Computers, 18(2), March-April 2001.

[41] T.P.Baker. Stack-based scheduling for real-time processes. Real-Time Systems, 3:67–99, 1991.

[42] F. Yao, A. Demers, and S. Shenker. A scheduling model for reduced cpu energy. In AFCS, pages 374–382,
1995.

23

[43] L. Yuan and G. Qu. Alt-dvs: Dynamic voltage scaling with awareness of leakage and temperature for real-
time systems. In AHS, 2007.

[44] B. Zhao and H. Aydin. Minimizing expected energy consumption through optimal integration of dvs and
dpm. In ICCAD, 2009.

[45] B. Zhao, H. Aydin, and D. Zhu. On maximizing reliability of real-time embedded applications under hard
energy constraint. IEEE Trans. Industrial Informatics, pages 316–328, 2010.

[46] D. Zhu. Reliability-aware dynamic energy management in dependable embedded real-time systems. ACM
Trans. Embed. Comput. Syst., 10:26:1–26:27, January 2011.

[47] Y. Zhu and F. Mueller. Dvsleak: combining leakage reduction and voltage scaling in feedback edf scheduling.
In LCTES, 2007.

A Proof for Theorem 1

Proof: Suppose at time t ′, the first deadline missing happened to a mandatory job from the E-pattern. Let t0 be
the last time before t ′ such that there are no pending mandatory jobs with release times before t0 and deadlines
before or at t ′. (Since no job is released before time 0, t0 is well defined.) Let Φ be the set of periodic tasks
that have periodic instances with release times and deadlines in [t0, t ′]. Then by choice of t0 and t ′ we have Φ
⊆ {τ1, ...,τl(t ′−t0)}. Then according to Baker’s argument in [41], the only mandatory jobs that can execute in [t0, t ′]
are those of tasks in Φ, plus at most one instance of a task τ j (j > l(t ′− t0) that may block a task in Φ. Moreover,
the total length of time that τ j can execute in [t0, t ′] is bounded by the longest time it uses a resource, which, by
definition, is bounded by Bi for each task τi in Φ and also bounded by Bl(t ′−t0) in particular.

In [t0, t ′], there is no idle time. And for every task τi in Φ, the work-demand in [t0, t ′] is bounded by (dmi
ki
b t ′−t0+Ti−Di

Ti
ce)Ci.

Since there is an overflow, the total work-demand for processor time in [t0, t ′] exceeds (t ′− t0). So, we have

∑
Di≤(t ′−t0)

(dmi

ki
b t ′− t0 +Ti−Di

Ti
ce)Ci +Bl(t ′−t0) > (t ′− t0) (10)

let t = t ′− t0, we have

∑
Di≤t

(dmi

ki
b t +Ti−Di

Ti
ce)Ci +Bl(t) > t (11)

which contradicts Equation (3). 2

B Proof for Theorem 2

Proof: If we treat the processor itself as a shared resource that each of the task in T can access, then the con-
currency control protocols which Bi is based on can be reduced to our task procrastination algorithm. The idea is:
suppose we construct a virtual task τ̃ with a non-preemptable critical section c̃s and with an infinite deadline. If we
add τ̃ to the original task set T , obviously τ̃ will always stay in the lowest priority level. Whenever the system is
idle at time t, the virtual task τ̃ will be started and enter its critical section c̃s, which, by definition of the blocking
factor Bi, is bounded by the value of Bi computed by (4) for each task τi in T .

Given the assumption above, for a mandatory Ji of task τi arriving at ri, the procrastination of Ji can be trans-
ferred to the operation of the concurrency control protocols as followed: if the system is idle at r−i , it is experienc-
ing blocking from τ̃ started at r−i . Otherwise, it is experiencing blocking from another lower priority mandatory

24

job executing at r−i . First, we show that such kind of procrastination on Ji can guarantee the deadlines of all
mandatory jobs. We use contradiction.

Suppose at time t ′, the first deadline missing happened to a mandatory job from the E-pattern. Let t0 be the last
time before t ′ such that there are no pending mandatory jobs with release times before t0 and deadlines before or at
t ′. (Since no job is released before time 0, t0 is well defined.) Let Φ be the set of periodic tasks that have periodic
instances with release times and deadlines in [t0, t ′]. Then by choice of t0 and t ′ we have Φ ⊆ {τ1, ...,τl(t ′−t0)}.
Then according to Baker’s argument in [41], the only mandatory jobs that can execute in [t0, t ′] are those of tasks
in Φ, plus at most one instance of a task τ j that may block a task in Φ. There are two cases:

• 1) The system is idle at t−0 : in this case, since t0 must be the arrival time for some task τx in Φ, τ j will be the
virtual task τ̃ which will block/procrastinate some task in Φ for at most c̃s time units, which, by definition,
is bounded by Bl(t ′− t0).

• 2) The system is busy at t−0 : in this case, τ j will be some task in T with deadline D j > (t ′− t0). And
according to to Baker’s argument in [41], the maximal time τ j can execute during the interval [t0, t ′] is
bounded by Bi for each task τi in Φ and also by Bl(t ′− t0) in particular.

In [t0, t ′], there is no idle time after we introduce the virtual task τ̃. And for every task τi in Φ, the work-demand
in [t0, t ′] is bounded by (dmi

ki
b t ′−t0+Ti−Di

Ti
ce)Ci. Since there is an overflow, the total work-demand for processor time

in [t0, t ′] exceeds (t ′− t0). So, we have

∑
Di≤(t ′−t0)

(dmi

ki
b t ′− t0 +Ti−Di

Ti
ce)Ci +Bl(t ′−t0) > (t ′− t0) (12)

let t = t ′− t0, we have

∑
Di≤t

(dmi

ki
b t +Ti−Di

Ti
ce)Ci +Bl(t) > t (13)

which contradicts Equation (3).
Next we show Ji can be further procrastinated up to Bi time units after its arrival time if necessary.
Note that, in the above argument, due to the property of the concurrency control protocol, each mandatory job Ji

can only be blocked by τ̃ or other lower priority job by at most once. So the actual procrastination time Xi of Ji can
be less than Bi. However, in this case we can always procrastinate Ji further by switching execution time between
Ji and other job(s) executing between [ri +Xi,di]. It is not to see that in EDF schedule such kind of execution time
switching is safe for both Ji and the other job(s) so long as the total amount of switching doesn’t exceed (Bi−Xi)
time units. If the amount of switching equals (Bi−Xi), Ji is eventually procrastinated by a total of Bi time units
and all job deadlines are still guaranteed. 2

C Proof for Theorem 3

Proof: From Equation (15), we have

TLS(J ′)≤ (ri +Bi), i = 0,1, ...,n−1, (14)

Thus we have
TLS(J ′)− ri ≤ Bi, i = 0,1, ...,n−1, (15)

which means that, after delay, none of the mandatory job Ji in J ′ can be procrastinated more than Bi time units.
By Theorem 2, no mandatory job in M will miss its deadline. 2

25

D Proof for Theorem 4

Proof: To prove Theorem 1, we first introduce the following lemma.

Lemma 1 [30] Let M be the mandatory job set based on E-pattern. Let

lst(Ji) = di− ∑
Jk∈hp(Ji)

ck

sk
, (16)

where hp(Ji) is the jobs with the same or higher priorities than that of Ji. Then, the latest starting time that jobs
in M can be delayed to without causing any deadline missing is

LST (J) = min
i
{lst(Ji)}. (17)

The rationale behind Lemma 1 is that if the accumulated workload from a mandatory job and all the higher
priority mandatory jobs can be finished between the starting time and its deadline, the deadline of this job can
be satisfied. In addition, the minimal latest starting time of all the mandatory jobs can certainly guarantee all the
deadlines.

In [26], Niu et al. extended Lemma 1 in computing the latest starting time based on information from only a
subset Js of the jobs in M that arrive before the earliest deadline of upcoming mandatory jobs (so called delay
bound and denoted as TB). This approach has a much lower complexity and hence is more suitable for on-line
purpose. However, as pointed out in [26], the latest starting time computed by employing Equation (16) only
for jobs arriving before TB may not be valid since the validity of latest starting time in Lemma 2 is ensured by
employing (16) for every mandatory job in M . In this regard, Niu et al. proposed to use the effective deadline of a
job (i.e. the time before which a job has to be finished such that it will not cause any other job to miss deadline) in
place of the deadline in (16). To keep low complexity of the algorithm, they simply defined the effective deadline
for a job by its own deadline or the earliest arrival time of the upcoming low priority mandatory job, whichever is
smaller.

Here in Theorem 4, in order to get larger value of latest starting time, we prolong the effective deadline for each
mandatory job in Js with the blocking factor Bp of the next upcoming mandatory jobs. And the proof of it can also
be done based on Theorem 2, similar to that of Theorem 3. Specifically, assume the execution of all the upcoming
mandatory jobs in J ′ is delayed to TLS(J ′), for each unfinished mandatory job Ji in M , we consider two case:

• 1) ri > TB: in this case, by the definition of effective deadline in Equation (7), similar to the argument in
Theorem 3, Ji will be procrastinated by no more than Bi time units. By Theorem 2, the schedulability of Ji

can be guaranteed.

• 2) ri ≤ TB: in this case, from Lemma 1, it is easy to see that the schedulability of Ji can also be guaranteed.

2

E Proof for Theorem 5

Proof: The worst case scenario of Algorithm 2 happens when at certain time point t, each task τi already had
ki−mi missed deadlines before t. Then the next mi jobs of each task τi should be designated as mandatory jobs
consecutively in order to meet the (m,k)-constraint, which is equivalent to the R-pattern. Since T is schedula-
ble with R-pattern under their predetermined speed, that means even under the worst case, the deadlines of all
mandatory jobs of Algorithm 2 can still be guaranteed.

the complexity of our dynamic approach mainly comes from three cases:

26

• 1) the current mandatory job queue (MQ) is empty: in this case we need to select the appropriate optional
job from the optional job queue (OQ) to execute;

• 2) the current mandatory queue MQ is not empty but there is only one mandatory job in it: in this case we
might need to update the speed of the current mandatory job;

• 3) there is more than one mandatory jobs in the current mandatory queue MQ: in this case, we just follow
the general preemptive EDF scheme in scheduling the mandatory jobs in MQ with their current speeds.

In case 1) and case 2), we need to compute the latest starting time td for the upcoming mandatory jobs as well
as updating the speed of the look-ahead job. Give Bi for task τi can be computed offline, the online overhead of
computing td based on to Theorem 3 takes at most O(n) time. Moreover, as shown in [26], the online overhead
of computing td based on to Theorem 4 is usually very small for periodic task sets. So the main overhead comes
from the number of context switches in choosing the optional job to execute (in case 1)) or updating the speed of
the current mandatory job (in case 2)) as well as updating the speed for the look-ahead job if necessary. Since in
our algorithm each time we only need to consider at most n optional jobs in OQ or 1 mandatory job in MQ and at
most 1 look-ahead job, the online complexity will not exceed O(n).

In case 3), the online complexity will not exceed O(n), either. 2

27

