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Abstract—In this paper, we study the problem of reducing
both the dynamic and leakage energy consumption for real-time
systems with (m,k)-constraints, which require that at least m
out of any k consecutive jobs of a task meet their deadlines.
Two energy efficient scheduling approaches incorporating both
dynamic voltage scheduling (DVS) and dynamic power down
(DPD) are proposed in this paper. The first one statically
determines the mandatory jobs that need to meet their deadlines
in order to satisfy the (m,k)-constraints, and the second one does
so dynamically. The simulation results demonstrate that, with
more accurate workload estimation, our proposed techniques
outperformed previous research in both overall and idle energy
reduction while providing the (m,k)-guarantee.

I. INTRODUCTION

As transistor density continues to grow, the power/energy
conservation problem becomes more and more critical in the
design of pervasive real-time embedded systems. For CMOS
circuits, the power consumption comes from the dynamic
power consumption (mainly due to switching activities) and
the static power consumption (mainly due to leakage current).
As VLSI technology continues its evolution toward the sub-
micron and nanoscale era, the rapidly elevating leakage power
dissipation is becoming too prominent to be ignored [1].

The dynamic voltage scaling (DVS) strategy (e.g., [2], [3],
[4]), i.e., by dynamically changing the supply voltage as
well as the working frequency, has long be recognized as an
effective method to reduce the dynamic energy. However, as
the leakage power continues to increase, the energy saving
achievable via DVS alone is becoming severely limited. This
is because DVS prolongs the active period of the processor and
thus can increase the total leakage energy consumption [5].
The dynamic power down (DPD) strategy, on the other hand,
dynamically turns the system on and off and is thus an
effective way at the system level to control the leakage energy
consumption. Therefore, to obtain the maximal reduction in
the overall energy consumption, some researchers [5], [6], [7],
[8] have proposed to combine DVS and DPD to reduce both
the dynamic power and leakage power simultaneously. Most
of the approaches have targeted the hard real-time systems,
i.e., the systems requiring that all the task instances meet their
deadlines.

While the hard real-time model is the most basic model
for real-time systems, many practical real-time applications
exhibit more complicated characteristics that can only be
captured with more complex requirements, generally called

the Quality of Service (QoS) requirements. For example,
Hamdaoui et al. [9] proposed a model, called the (m,k)-
model [9], to provide certain QoS guarantee for real-time
applications. According to this model, a repetitive task of
the system is associated with an (m,k)(0 < m ≤ k) constraint
requiring that m out of any k consecutive job instances of the
task meet their deadlines. A dynamic failure occurs, which
implies that the temporal QoS constraint is violated and the
scheduler is thus considered failed, if within any k consecutive
jobs more than (k−m) job instances miss their deadlines. The
previous DVS scheduling techniques based on traditional hard
real-time systems become inefficient or inadequate when QoS
requirements such as the (m,k)−constraints are imposed on
real-time systems.

Some previous works have been reported to reduce the en-
ergy for real time systems with (m,k)-constraints. In [10], Niu
et al. introduced a hybrid approach which can reduce the en-
ergy consumption for real time systems with (m,k)−guarantee.
With QoS requirements formulated as a tolerable statistical
deadline miss rate, Hua et al. [11] introduced several tech-
niques to reduce energy by exploiting processor slack time
due to the missed deadlines. In [12], Alenawy et. al. proposed
an approach to minimize the number of dynamic failures for
(m,k)-firm systems with fixed energy budget constraint. In
[13], a dynamic approach is proposed to minimize the energy
consumption for dual-voltage-mode weakly hard real-time sys-
tems. In [14], Niu et al. proposed an approach to reduce energy
for weakly hard real-time systems with peripheral devices. All
of the techniques targeted dynamic power reduction and none
of them considered reducing the dynamic and leakage energy
consumption simultaneously.

In this paper, we study the problem of reducing the over-
all energy consumption for real-time systems with (m,k)-
guarantee. A key aspect of this problem is to judiciously
partition the jobs into mandatory jobs and optional jobs
such that as far as all the mandatory jobs can meet their
deadlines, the (m,k)-constraints can be ensured. We proposed
two approaches to address this problem. In the first approach,
the mandatory/optional partition is conducted statically. The
mandatory jobs are carefully procrastinated with purpose of
merging the idle intervals so that the processor can be shut
down effectively. In the second approach, we dynamically
adjust the mandatory/optional job partitioning to accommo-
date the dynamic nature of real-time embedded systems. A
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look-ahead strategy is proposed that can more accurately
estimate the workload and therefore make better decision in
the mandatory/optional partitioning. Moreover, our approaches
will execute the jobs with speed below the critical speed when
necessary and we will show that such strategy can be more
energy efficient than the previous ones using the critical speed
as the threshold for scaling. With a practical processor model
and technology parameters [15], our experiment results show
that our approach outperformed the existing research in energy
saving performance while providing the (m,k)-guarantee.

The rest of the paper is organized as follows. Section II
introduces the system models and some preliminaries. Sec-
tion III introduces our static approach. Section IV introduces
our dynamic approach. The effectiveness and energy efficiency
of our approaches are evaluated in section V. In section VI,
we offer the conclusions and future work.

II. PRELIMINARY

In this section, we first give the system model and power
model. Then we introduce some concepts and observations
important to our research in this paper.

A. System model

The real-time system considered in this paper contains n
independent periodic tasks, T = {τ0,τ1, · · · ,τn−1}, scheduled
according to the earliest deadline first (EDF) policy [16].
Each task contains an infinite sequence of periodically arriving
instances called jobs. Task τi is characterized using five param-
eters, i.e., (Ti, Di, Ci, mi, ki). Ti, Di(Di ≤ Ti), and Ci represent
the period, the deadline and the worst case execution time for
τi, respectively. The QoS requirement for τi is represented by a
pair of integers, i.e., (mi,ki) (0 < mi ≤ ki), which require that,
among any consecutive ki jobs of τi, at least mi jobs must
meet their deadlines. The jth job of task τi is represented with
Ji j and its arrival time, actual execution time and absolute
deadline are represented by ri j, ci j and di j.

B. The power model and critical speed

The power consumption on a DVS processor can be divided
into two parts: the speed-dependent part Pdep(s) and the speed-
independent part Pind . Considering a job with workload w and
total power function as Pact(s) = Pdep(s)+Pind , the total energy
(Eact(s)) consumed to finish this job with speed s can be
represented as

Eact(s) = Pact(s)× w
s
. (1)

Hence, to minimize the energy consumption, we have

Pact(s) = P′
act(s)s. (2)

By solving equation (2), we can get the optimal speed to
minimize the total energy when executing a job. We call this
speed the critical speed, and denote it as scrit . We can see from
equation (2) that using a processor speed higher or lower than
the critical speed will consume more energy than the one using
the critical speed to complete the same workload.

We assume that the processor can be in one of the three
states: active, idle and sleeping states. When the processor
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Fig. 1. (a) The schedule of a task set (τ1 = (4,4,2,2,4); τ2 = (8,8,3,1,2))
partitioned with R-Pattern; (b) The schedule of the same task set partitioned
with E-Pattern.

is idle, the major portion of the power consumption comes
from the leakage which increases rapidly with the dramatic
increasing of the leakage power consumption. Shutting-down
strategy, i.e., put the processor into its sleeping state, can
greatly reduce the leakage energy. However, it has to pay
extra energy and timing overhead to shut down and later wake
up the processor. Assume that the power consumptions of a
processor in its idle state and sleeping state are Pidle and Psleep,
respectively, and the energy overhead and the timing overhead
of shutdown/wakeup is Eo and to. Then the processor can be
shut down with positive energy gains only when the length
of the idle interval is larger than Tth = max( Eo

Pidle−Psleep
, to). We

call Tth as the shut down threshold interval.

C. Meeting the (m,k)-constraints

A key problem for meeting the (m,k)-constraints is to
judiciously partition the jobs into mandatory jobs and optional
jobs [17]. The partition can be done statically or dynami-
cally. Two well-known partition strategies proposed are the
deeply-red pattern (or R-pattern) and evenly distributed pat-
tern (or E-pattern) [10]. One example of mandatory/optional
job partitioning with R-pattern and E-pattern for a given
task set is shown in Figure 1. As shown, the R-pattern
assigns the first m jobs as mandatory. It has been proved
that as long as all mandatory jobs selected from R-pattern
can meet their deadlines, the mandatory jobs selected from
any other (m,k)−pattern can also meet their deadlines [10].
The mandatory/optional partitioning according to E-pattern
has the property that it helps to spread out the mandatory
jobs evenly in each task along the time. Interested readers can
refer to [10] for more technical details about the R-pattern
and E-pattern. Based on the mandatory/optional job partition,
in next sections, we will introduce our static and dynamic
approaches to reduce the energy consumption while ensuring
the (m,k)−guarantee.

III. THE STATIC APPROACH

One intuitive static approach is to partition the manda-
tory/optional jobs based on the E-pattern and then scale down
the processor speed based on the mandatory job set. Since
E-pattern in general helps to spread the workload evenly, it
helps to better reduce the processor speed. Note that, using
speed higher or lower than the critical speed will incur higher
energy consumption when completing the same workload, we
need to try to set the processor speed to the critical speed to
achieve better energy saving performance.
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The problem for this approach is that, by spreading the
workload and also potentially using higher than necessary
speed assignment for mandatory jobs can possibly lead to large
number of idle intervals. Some of them will be too short for
the processor to shut down. Even if some idle intervals are
longer than the shut down threshold Tth, too many idle intervals
will also increase the energy consumption significantly due to
the overheads of frequently shutting down and waking up the
processor.

One effective way to address this problem is to delay some
of the mandatory jobs to extend or merge the idle intervals,
such as the ones in [5], [18]. However, delaying the execution
of the mandatory jobs might potentially cause some other
mandatory jobs with lower priorities to miss their deadlines.
On the other hand, delaying the mandatory jobs not sufficiently
might generate new scatter idle intervals that can not be
shut down. The problem then becomes how to determine the
maximal delay to merge the idle intervals without causing any
mandatory jobs to miss their deadlines. In the following, we
introduce two sufficient conditions to help identify the delays
for mandatory jobs. Before doing that, we first introduce the
following theorem.

Theorem 1: Given task set T = {τ0,τ1, ...,τn−1} with tasks
ordered by increasing value of Di, let E be the mandatory
jobs selected from T based on their E-patterns, and let L be
the ending point of the first busy period when executing the
mandatory jobs. Assuming the largest blocking factor for task
τi be Bi, E is schedulable if

∑
Di≤t

(�mi

ki
� t +Ti −Di

Ti
��)Ci +Bl(t) ≤ t (3)

for all t ≤ L, t = �p ki
mi
�Ti +Di, p ∈ Z, i = 0, ...,n−1 and l(t) =

max{l|Dl ≤ t}.
(The proofs for theorems in this paper are provided in [19]).
Given a mandatory job set determined with E-pattern, with

Theorem 1, it is possible to compute the maximal tolerable
blocking factor Bi for each task τi by checking the accumu-
lated work demand that must be finished before the absolute
deadline di for each mandatory job Ji that arrives before L.
Similar theorem can be established based on the R-patten as
well and the blocking factor under R-pattern can be found in
the same way. With Bi available, we can formulate the first
sufficient condition as follows.

Theorem 2: Let M be the mandatory job set based on E-
pattern or R-pattern, and let Bi be the corresponding largest
blocking factor for each task τi. Let the current time t = t0,
and let the coming mandatory job set (i.e. with arrive time ri

later than t0) be J ′ . If the execution of J ′ is started at

TLS(J ′) = min
Ji∈J ′(ri +Bi), i = 0,1, ...,n−1, (4)

no mandatory job in M will miss its deadline.
Theorem 2 provides one method to calculating the latest

time that the upcoming mandatory jobs can be delayed without
incurring any deadline misses for any mandatory jobs. Note
that, given that Bi is available, we can also develop another

method (similar to the one in [6]) to identify the maximal
delay for a mandatory job set, as stated in Theorem 3.

Theorem 3: Let M be the mandatory job set based on the
R-pattern or E-pattern, and let Bi be the corresponding largest
blocking factor for each task τi. Let the processor speed for
each task τk be sk. Assuming the current time is t = t0, and let
the coming mandatory job set (i.e. with arrive time ri later than
t0) be J ′. Let the earliest deadline for the mandatory jobs in J ′
be TB. Then no mandatory job in J ′ will miss its deadline if
the execution of all mandatory jobs in J ′ is delayed to TLS(J ′),
where

TLS(J ′) = min
Ji∈Js

(d∗
i − ∑

Jk∈hp(Ji)

ck

sk
), (5)

where Js consists of mandatory jobs from J ′ with arrival times
earlier than TB but later than t0, hp(Ji) are the jobs with equal
or higher priorities than Ji and

d∗
i = min

p
(di,rp +Bp),∀Jp ∈ J ′,Jp /∈ Js and dp > di. (6)

The fundamental difference between our technique and the
one in [6] is the way that the effective deadline d∗

i is defined.
From equation (6), the effective deadline for a mandatory job
is prolonged with the blocking factor Bp of the next mandatory
jobs. This in turn will allow the mandatory jobs to be delayed
further. While it might not be always energy efficient to delay
the mandatory jobs to the maximal extent, having larger delay
interval will provide us more flexibility in determining the
most energy efficient speeds for jobs online. Note that since
both Theorem 2 and Theorem 3 are sufficient conditions, the
larger one from equation (4) and (5) can be used as the
latest starting time td for the upcoming mandatory jobs with
deadlines guarantee for them. Finally, our sufficient conditions
in Theorem 2 and Theorem 3 can be used to compute the
maximal delay for the upcoming mandatory job set not only
when the processor is idle, but also when the processor is busy
at time t0, which will be very useful for our dynamic approach
in Section IV.

With Theorem 2 and Theorem 3, our static approach can
be implemented easily. Specifically, at current time tcur, if the
processor begins to idle, we compute the latest starting time td
for the coming mandatory jobs and shut down the processor
if (td − tcur) > Tth. Note that the difference between our static
approach and the approach in [5] is that the approach in [5]
can only procrastinate each job of the task individually upon
its arrival time, while our approach is based on computing
the latest starting time for the whole coming mandatory job
set (interested readers can refer to [19] for more details).
Generally our approach can predict the idle interval length and
shut down the processor more precisely and thus save the idle
energy more efficiently. Moreover, when mandatory jobs finish
earlier than worst case, dynamic reclaiming techniques [19]
can be exploited to reduce the energy further.

IV. THE DYNAMIC APPROACH

The advantages introduced above are that the mandatory
job set is the minimal, and the mandatory jobs are evenly dis-
tributed with respected to each task. However, even though the
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mandatory jobs for each task are evenly distributed, the overall
mandatory workload are not necessarily evenly distributed.
Moreover, since E-pattern tends to separate mandatory jobs
away from each other, it may generate a large number of idle
intervals. It is thus desirable that the mandatory jobs be deter-
mined dynamically to improve the energy-saving efficiency.

A. The general algorithm

The algorithm of our dynamic approach is shown in Algo-
rithm 1. In general, our dynamic approach consists of two
phases: an off-line phase followed by an online phase. To
ensure the (m,k)-constraints, the feasibility of the task set
under R-pattern is tested according to Theorem 1 in [13]. For
schedulable task sets, the speed for a mandatory task is scaled
down but no lower than scrit . The blocking factor Bi for each
task under the R-pattern is computed using the method similar
to that in Theorem 1.

During the on-line phase, two job ready queues are main-
tained, i.e., the mandatory job queue (MQ) and the optional
job queue (OQ), with jobs in MQ always having higher
priority than those in OQ. Upon arrival, a job, i.e., Jip ∈ τi

is determined as mandatory job or optional job based on the
execution results of the ki −1 jobs in the most recent history.
It is determined as mandatory only if one more deadline miss
will incur dynamic failure. The mandatory jobs in MQ will
generally be executed with their speeds predetermined during
the off-line phases. However, whenever there is zero or only
one mandatory job in MQ, opportunities exist to update the
execution speed for the upcoming mandatory jobs and save
energy consumption more aggressively. More details of this
method can be found in Section IV-B.

In our dynamic approach, not only the mandatory jobs
but also the optional jobs can be executed. The execution of
optional job has great potential in help reducing the overall
energy consumption. Some optional job with actual execution
time much shorter than its worst case can also meet its deadline
with speed lower than its predetermined speed. And that will
help to reduce the possibility of having to run mandatory jobs
at higher processor speeds in the future. However, executing
the optional job might incur extra energy cost, which needs
to be addressed carefully. Otherwise, the energy reduction
achieved from executing the optional job might not be able to
compensate the energy cost. Therefore, it is not only important
to choose an appropriate optional job to execute, but also
to determine the appropriate speed to execute the job. We
introduce our method in choosing the optional job and its
speed in section IV-C.

If no optional job is qualified to execute and the predicted
idle interval is longer than the shut down threshold Tth, we shut
down the processor and set the timer to be the idle interval
length.

B. Update the predetermined speeds for mandatory jobs

When there exists only one mandatory job, i.e. Ji, in MQ,
from Theorem 2 and Theorem 3, we can see that the speed of
Ji can be scaled safely so long as Ji finishes no later than td .

Algorithm 1 The online phase. (Algorithm LKDN)
1: Upon job completion:
2: if MQ is empty then
3: tcur = the current time;
4: td = the latest starting time for the upcoming mandatory

jobs according to Theorem 2 and Theorem 3;
5: if OQ is not empty then
6: Select and run Ji ∈ OQ with energy efficient speed s′i

determined in Section IV-B non-preemptively;
7: else if (td − tcur) > Tth then
8: Shut down the processor and set up the wake up timer

to be (td − tcur);
9: end if

10: end if
11:

12: Upon job arrival or expiration of timer:
13: if MQ is not empty then
14: if Ji is the only job in MQ then
15: Run Ji with energy efficient speed s′i determined in

Section IV-B non-preemptively;
16: else
17: Run jobs in MQ with their current scaled speeds

according to preemptive EDF;
18: end if
19: end if

One intuitive strategy is to scale the speed of Ji as low as scrit .
If there is still available time, then the upcoming mandatory
jobs are procrastinated and the processor is shut down if the
length of idle time before td is larger than Tth. However, this
strategy is not necessarily always the best strategy in saving
energy.

Consider a task set consisting of two tasks (τ1 =
(20,20,5,2,4); τ2 = (40,40,15,1,2)). Assume the task set
will be executed on the Intel XScale processor model [15].
According to [7], the power consumption function for Intel
XScale [15] can be modeled approximately as Pact(s) = 0.08+
1.52s3 Watt by treating 1GHz as the reference speed 1. And
the normalized critical speed in such a model is about 0.3 (at
297 MHz) with power consumption 0.12W. We assume the
shut down overhead to be Eo = 800µJ as did in [7]. If the
minimal processor speed is 0, the idle power consumption of
the processor is 0.08 Watt and the corresponding shut down
threshold will be Tth = 10ms.

The scaled speed for the task set under E-pattern is 0.5 and
the schedule of the static approach is shown in Figure 2(a).
The energy consumption under the static approach is (1.52×
0.53 +0.08)×40+(1.52×0.33 +0.08)×16.67+0.8 = 13.61.
The scaled speed for the task set under R-pattern is 0.625. As
shown in Figure 2(b), according to our optional job selection
strategy in Section IV-C (for brevity here we set the job selec-
tion control coefficient κ to be 1), our dynamic approach will
choose to schedule the optional job for τ2 first in the interval
[0,40] and scale its speed to be 0.375 (after completion, its
dynamic pattern is updated from 0 to be 1). Then at time
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t = 40, the dynamic approach will schedule the job J13 for τ1.
Since J13 is the only mandatory job in the ready queue and
the latest starting time td for the future mandatory job(s) is 72,
there is enough space to scale the speed for J13 to scrit and
shut down the processor upon completion of J13 at t = 56.7.
Then at time t = 72, the processor will be waken up and
continue to execute J14 at its predetermined speed 0.625. The
energy consumption within the hyper period for the schedule
in Figure 2(b) will be (1.52× 0.3753 + 0.08)× 40 +(1.52×
0.33 +0.08)×16.67+0.8+(1.52×0.6453 +0.08)×8 = 12.81.

However, a different schedule in Figure 2(c) which, instead
of shutting down, uses the available space to help scale the
speed of J14 to scrit = 0.3 and keeps the processor idle for the
rest of the time, has energy consumption of (1.52×0.3753 +
0.08) × 40 + 0.12 × 33.33 + 0.08 × 6.67 = 10.92, which is
15.6% lower than that in Figure 2(b). Moreover, another
schedule in Figure 2(d) uses the idle time to further reduce
the speeds for job J13 and J14 to 0.25, which is below
the critical speed, can achieve an additional 3.3% energy
reduction compared with the schedule in Figure 2(c) (the
energy consumption in Figure 2(d) is (1.52×0.3753 +0.08)×
40+(1.52×0.253 +0.08)×40 = 10.56).

In this example, we can see that the approach in Figure 2(b)
considers only reducing the speed for the current job Ji.
When looking ahead, it might be more urgent for the the
future mandatory jobs to compete for the available idle time
to scale their speeds instead of shutting down the processor.
With this in mind, we proposed a look-ahead approach which
incorporates the speed information of the future mandatory
jobs in scaling the speed of the current job Ji and shutting
down the processor when necessary.

Specifically, when the current job Ji is ready, we temporarily
scale its speed as low as scrit first, i.e, set its current speed
s′i = max{ cisi

(min{td ,di}−tcur)
,scrit}. Then by considering the speed

information for the future mandatory jobs (for simplicity, in
the following approach, we only look into the earliest arriving
future mandatory job which is called look − ahead job and
denoted as Jla. And it can be easily extended to incorporate
all incoming mandatory jobs arriving before td), this temporary
speed s′i might need to be updated depending on the expected
finishing time fi(= tcur + cisi

s′i
) of Ji under speed s′i. Specifically,

we need to consider three cases:

• 1) (td − fi) < Tth. In this case, it is not energy beneficial
to shut down the processor at all. Instead, we should use
the idle time to scale the speed of Ji and Jla as low as
possible.

• 2) (td − fi)≥ Tth and sla = scrit . In this case, Jla’s speed is
not higher than scrit and the new idle interval generated
between [ fi, td ] can be shut down if we procrastinate
the upcoming mandatory jobs to td . So keeping the
current value of s′i and shutting down the processor while
delaying the future mandatory jobs to td is a good choice.

• 3) (td − fi) ≥ Tth and sla > scrit . In this case, the idle
interval generated between [ fi, td ] can be shut down if we
procrastinate the upcoming mandatory jobs to td . How-
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Fig. 2. (a) The schedule of task set (τ1=(20,20,5,2,4); τ2=(40,40,15,1,2))
under the static approach; (b) The schedule under dynamic pattern with the
Scale−to−Critical Speed and Shut−down Strategy; (c) The schedule under
dynamic pattern with look-ahead approach; (d) The schedule under dynamic
pattern and with speed reduced below the critical speed.

ever, we need to compare the beneficial between shutting
down the processor and using the available time space to
scale the speeds of Ji and Jla. In order to do so, we need to
check whether both the speeds of Ji and Jla can be scaled
to scrit while the remaining idle time space within [tcur, td ]
is still long enough to shut down the processor. (This can
be done by assuming the worst case execution time of Jla

to be Cla and setting s′la = max{ Clasla
(td−max{rla, fi})+Cla) ,scrit}).

If the remaining time space trem = (td − fi − (C′
la −Cla))

is longer than Tth, then we shut down the processor at fi

and set the wake up timer to be trem (here C′
la is the worst

case execution time of Jla under s′la). Otherwise there is
not enough space to shut down the processor if Jla is
scaled and we should reduce the speed of Ji and Jla as
low as possible within [tcur, td ], as we did in Figure 2(d).

Note that in case 1) and 3), the speeds of Ji and Jla can be
scaled below the critical speed scrit (e.g., job J13 and job J14

in Figure 2(d)). However, the energy efficiency can be better
than the ones without looking-ahead. The overhead of this
approach mainly comes from computing td which has been
shown to have very low online overhead in [6].

C. Executing optional jobs

To choose the appropriate optional job to execute, we first
introduce the following two definitions.

Definition 1: The Task Energy Density of each task τi

(denoted as T EDi) is defined as

T EDi =
miE(si)

kiTi
(7)

where E(si) is the energy consumption to execute a mandatory
job of τi under its predetermined speed si.

Definition 2: The Job Energy Density of a job Ji (denoted
as JEDi) is defined as

JEDi =
E(s′i)

Ti
(8)
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Fig. 3. (a) The total energy comparison by the different approaches. (b) The idle energy comparison by the different approaches.

where E(s′i) is the energy consumption to execute job Ji under
its current energy efficient speed s′i.

Note that if the optional job cannot meet its deadline, it
doesn’t help in energy reduction or pattern adjustment. To
guarantee the optional job can meet its deadline, the selected
optional job should be executed non-preemptively. So the
potential energy efficient speed s′i for each optional job Ji can
be computed at the online phase by treating it as the only ready
job in the interval [tcur, td ], similar to the speed determination
approach in Section IV-B (in this case the speed for the future
mandatory jobs should also be updated correspondingly in
the same way. Moreover, when Ji is under consideration, the
next upcoming mandatory job from the same task can be
demoted to optional temporarily with the expectation that Ji

will be selected for execution. If Ji is not selected, it should
be restored.)

Whenever a job completes and the MQ is empty, we first
check each optional job Ji in OQ by inspecting its job energy
density JEDi under its potential energy efficient speed s′i
within the interval [tcur, td ]. Only those optional jobs with
JEDi < κT EDi will be chosen as candidate jobs, where κ(> 0)
is a user defined parameter to control the selection of optional
jobs. Generally κ can be set to be 1 for energy saving purpose.
But the user can also vary the value of κ to control the chances
that optional jobs will be scheduled and thus provide the
micro-tunable performance (QoS versus energy) levels that can
be achieved without affecting the schedulability of the whole
task set.

After that the candidate jobs are sorted according to
their energy-gain/criticality ratio ΔE(Ji)/Cri, where ΔE(Ji) =
E(si)−E(s′i) and the criticality Cri is the number of deadline
misses allowed before a dynamic failure occurs to Ji. Since the
energy-gain ΔE(Ji) reflects the potential energy saving that can
be achieved by executing the optional job and the criticality
Cri reflects the relative urgency to schedule the optional job
in order to meet the (m,k)-constraint, the candidate job with
the maximal ΔE(Ji)/Cri will be chosen to be executed.

Compared with the static approach, the dynamic approach
can lead to more aggressive energy reduction due to its
adaptive pattern adjustment and speed determination with the

run-time conditions. Moreover, when there are more than one
jobs in the MQ, dynamic reclaiming techniques [19] can also
be exploited to further reduce the energy. To ensure the (m,k)-
constraints can be guaranteed, we have the following theorem:

Theorem 4: Let T = {τ0,τ1, ...,τn−1} be executed in a
variable voltage processor , where τi = {Ti, Di, Ci, mi, ki}. The
dynamic approach, with complexity of O(n), can ensure the
(m,k)-requirements for T if T is schedulable with R-pattern.

V. EXPERIMENTAL RESULTS

Six different approaches are studied using experiments in
this section. In the first approach, the task sets are statically
partitioned with E-pattern, and the mandatory jobs are exe-
cuted with the highest processor speed. We refer this approach
as NoDV S and use its results as the reference results. In the
second approach, the task sets are statically partitioned with
E-pattern, but the speed of the tasks are scaled down at the
task level as low as possible, We refer this approach as DV S.
In the third approach, the task sets are statically partitioned
with E-pattern, and the speed of the tasks are scaled as low
as scrit at the task level, then the approach in [5] based on
individual task procrastination is applied, we call this approach
CSDV S−P. The fourth approach, namely LKST , is our static
approach introduced in Section III. The task sets are statically
partitioned with E − pattern, and the speeds of the tasks are
scaled as low as scrit . When the system is idle, we tried to delay
the mandatory jobs with the approaches introduced in Section
III and shut down the processor whenever possible. Since the
parameter controlled procrastination approach in [7] can also
be applied to our static approach, in the fifth approach, we will
also incorporate this strategy into our static approach with the
parameter set correspondingly (according to [7], the best value
should be 0.6 for our processor model), we refer this approach
as LKST P. The sixth approach LKDN is our dynamic approach
as explained in Section IV. In this approach, we dynamically
vary the job patterns according to the run time conditions and
reduce the job speed (below the critical speed when necessary)
as well as shut down the processor whenever possible. Since
the value of κ, i.e., the job selection coefficient in our dynamic
approach, can affect the selection of optional jobs and thus
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the performance of the algorithm, we also vary the value of κ
within the range of (0.4, 0.6, 0.8, 1.0, 1.2) to compared their
performance. For the processor model we will adopt the same
processor model as used in [7], i.e. the Intel XScale processor.
The parameters are the same as used in Section IV-B.

We first studied the energy consumption of these approaches
based on the synthesized task sets. The periodic task sets
tested in our experiments were randomly generated with the
periods and the worst case execution times (WCET) of the
tasks randomly chosen in the range of [10ms,100ms] and
[1ms,30ms], respectively. The deadlines of the tasks were set
to be less than or equal to their periods. The actual execution
time of a job was randomly picked from [0.1WCET, WCET].
The mi and ki for the (m,k)-constraints were also randomly
generated such that ki is uniformly distributed between 2 to 10,
and mi < ki. The total utilization, i.e., ∑i

miCi
kiTi

, is divided into
intervals of length 0.1 and we randomly generate 50 feasible
task sets for each interval. The energy consumption for each
approach was normalized to that by NoDV S, and the results
are shown in Figure 3(a) and (b).

From Figure 3(a), DV S will cause dramatic increase in
the total energy consumption for low utilization intervals.
For example, when the utilization is between [0.0, 0.1], the
energy consumption by DV S is more than 60% of that by
NoDV S. On the contrary, voltage scaling approaches with
static energy and procrastination in mind can reduce the
total energy consumption significantly. Moreover, with ef-
fective procrastination for the mandatory jobs and dynamic
pattern adjustment, our static approach and dynamic approach
can reduce the energy consumption further effectively. For
example, compared with CSDV S − P, LKST can lead to a
total energy reduction by around 8%. The LKST P has a
marginal improvement over LKST and its energy consumption
in some intervals can be slightly higher than that by LKST .
Our dynamic approach LKDN can reduce the total energy
more significantly. Compared with CSDV S−P, the maximal
reduction can be around 23%. It is also noticed that during
some low utilization interval the total energy consumption by
LKDN is close to LKST and LKST P for small κ values. This
is because, when the the system utilization is low and the
value of κ is small, there is little chance to select candidate
optional jobs and scale the speeds further. In this case, the
procrastination and shut-down strategy will dominate. In some
intervals, the energy performance of LKDN with very large
value of κ is not the best either because in those cases LKDN
optionally executed some redundant jobs. Although those jobs
can help enhance the user perceivable QoS levels, they might
also cost extra energy that cannot be completely compensated
by the energy reduction from varying the job patterns. And
it seems the overall energy is the lowest when κ is between
[0.8, 1] and generally setting κ = 1 is reasonably good.

Due to the energy overhead of shut-down and the dramatic
increase of the static power, the energy consumption during
the processor idle time will also account for a significant part
of the total energy consumption. We are therefore interested
in investigating how our approach can help reduce this part of

energy. Figure 3(b) shows the average idle energy consump-
tions by the different approaches. Note that, our approaches,
i.e., LKST , LKST P and LKDN can always lead to much better
idle energy savings than the previous approaches. LKST and
LKST P both consume much lower idle energy than CSDV S−P
due to effective idle extension and merging. The performance
of LKDN is even better because it utilizes the idle intervals
more efficiently to help reduce the job speed (below the critical
speed when necessary) and to facilitate shut-down. Compared
with CSDV S−P, LKST and LKST P can reduce the idle energy
by 38% and LKDN can reduce the idle energy by up to 76%.

Next, we tested our techniques in a more practical environ-
ment. The test cases contained two real world applications:
webphone [20], and INS (Inertial Navigation System) [21].
The timing parameters such as the deadlines, periods, and ex-
ecution times were adopted from these practical applications.
The actual execution times and the (m,k)-constraints were
generated as we did for the synthesized task sets. Since the
value of κ between [0.8, 1.0] tends to have better performance
for our dynamic approach, this time we fixed the value of κ
to be 0.9. The normalized total energy consumptions and idle
energy consumptions are shown in Figure 4.

The experimental results based on the practical applications
further demonstrate the effectiveness of our approaches in
saving energy. As shown in Figure 4(a) and (b), for the
webphone application, the static approach LKST and LKST P

can reduce the total energy consumption by around 7% and
idle energy consumption by about 30%. And the energy saving
by the dynamic approach (LKDN) can be up to 12% for
total energy consumption and up to 71% for idle energy
consumption. For INS application, as shown in Figure 4(c)
and (d), the static approach LKST and LKST P can reduce
the total energy consumption by about 11% and idle energy
consumption by about 36%. And the energy saving by LKDN
can be up to 18% for total energy consumption and 78% for
idle energy consumption.

VI. CONCLUSIONS AND FUTURE WORK

Low power/energy consumption and QoS guarantee are
two of the most critical factors for the successful design of
pervasive real-time computing platforms. While the dynamic
voltage scaling (DVS) techniques are efficient in reducing the
dynamic power consumption for the processor, varying voltage
alone becomes less effective for the overall energy reduction as
the static power is growing rapidly. In this paper, we propose
two approaches, a static one and a dynamic one, to reduce
the overall energy consumption for real-time systems while
guaranteeing the given QoS requirement in terms of (m,k)-
constraints. The static approach determines the mandatory jobs
statically and try to delay the mandatory jobs and shut down
the processor whenever possible. The dynamic approach vary
the job pattern dynamically during the runtime and determine
the job speed in a more adaptive way. Through extensive
simulations, our approaches outperformed previous research
in both overall and idle energy reduction while providing the
(m,k)-guarantee.
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Fig. 4. (a) The total energy comparison for webphone. (b) The idle energy comparison for webphone. (c) The total energy comparison for INS. (d) The idle
energy comparison for INS.

Future work As shown in [22], [23], there is a dependency
relationship between leakage and temperature and it plays a
critical role in both the power and thermal aware design. In
this paper, the problem can be considered from two aspects:

• 1) Under (m,k) model, different from hard real-time case,
soft task sets with relatively high (m,k)-utilization are
often hard to be schedulable due to the (m,k)-constraint.
That means, the schedulable processor utilization will
be typically under-loaded for the general case. That
will generate a lot of “internal” system idle intervals
which, together with the static procrastination to facilitate
processor shut down, provides us great opportunities to
cool down the processor and thus reduce the effect of
leakage/temperature dependency effectively;

• 2) With our dynamic pattern variation strategy, we are
trying to reduce the job speed below the critical speed
dynamically as well as shut down the processor whenever
possible, which is also helpful in keeping the processor
running in relatively low temperatures. Moreover, when
executing the mandatory jobs, we can always incorporate
the enhanced dual priority scheduling strategy in [13] by
executing each mandatory job with a dual-speed mode,
i.e., the lowest speed before promotion and normal speed
after promotion, which is also very helpful in preventing
the processor temperature from increasing too fast.

However, in terms of reducing the temperature, what is
proposed in this paper is still a best-effort approach. How
to minimize the overall energy consumption under a given
maximal temperature constraint while still ensuring the (m,k)-
guarantee can be our future work.
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