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Abstract—Web applications grow tremendously in both scale
and scope, the application patterns turn to be more and more
sophisticated. It is important but challenging for service providers
to lower the operational costs without degrading user experiences,
especially in the case where a service provider’s profit is closely
related to the user experience (e.g. response time.) In this paper,
we study the problem of efficiently scheduling multi-tier time
sensitive applications on distributed computing platforms with
respect to the user’s Quality of Service (QoS) requirements.
The efficiency refers to the QoS satisfaction with low average
response times. The service provider must ensures that service
requests be served successfully before end-to-end deadlines with
certain probabilities. To solve this problem, we propose an
approach to judiciously assign a deadline for each service tier. An
application request is dropped if any one of its services misses its
deadline. Our simulation results demonstrate that our approach
can statistically guarantee the required QoS more efficiently
than the other widely applied methods (e.g. acceptance control,
first-come-first-serve, deterministic sub deadline assignment, etc.)
irrespective of whether the resources are shared or not by
multiple different applications.

Keywords-multi-tier services; time-sensitive applications; sub
deadline assignment; resource sharing; QoS statistical guarantee;

I. INTRODUCTION

Web applications are drastically changing people’s lives.
From online banking to online gaming, from online storage to
online computing, people’s lives have been greatly facilitated.
Meanwhile, here come the tough design problems for service
providers.

As web applications grow tremendously in both scale and
scope, the application patterns become more and more so-
phisticated. An application request coming from the Internet
usually needs to go through multiple service tiers hosted in
different machines at different locations. Different from single-
tier applications, multi-tier applications have more intricate
inter-tier interactions. A change of a request’s execution in
a tier may disturb its (or even other requests’) final QoS
guarantee.

In addition, there have been an increasing number of time
sensitive applications, such as on-line gaming (e.g. Uncharted
3: Drake’s Deception [1]) or other streaming multimedia (e.g.
Adobe Media Server [2]) deployed on the web (e.g. Rackspace
Cloud Media Hosting [3] and AWS [4].) Because of these time
sensitive applications, stringent timing constraints are added

to the processing infrastructure for desired user experience.
Besides the timing constraints, in order to fully satisfy a
client’s QoS requirements a service provider must ensure that
adequate requests can be served successfully in time.

In this paper, we study the problem of how to efficiently
manage a set of multi-tier, time sensitive application requests
with probabilistic guarantee of their end-to-end deadlines.
Specifically, the QoS in this paper refers to a constraint de-
scribed by the probability of dropping an application’s request
with respect to its end-to-end deadline. While satisfying the
QoS, we intend to reduce the average response time for
an application. As response time has become an important
performance metric [5], and since the non-increasing time
utility functions (TUFs) are widely employed [6] to analyze
the relationship between a request’s response time and its
processing profit, scheduling approaches that have shorter
response times are more desirable.

Different from the traditional dynamic resource provisioning
approaches [7][8], we propose a stochastic approach that
can judiciously prune the application requests on a given
distributed platform to address this challenging problem for
the situations with and without resource sharing. Previously,
many similar studies employed acceptance control or random
deletion to guarantee the end-to-end QoS satisfactions [9][10].
Instead of targeting on the potential mischievous requests,
these methods randomly selected the requests to reject or
remove. We propose a method that identifies the potential
failure requests and terminates these requests. However, how
to find the potential failure requests and when to remove
them from the system are not trivial problems, especially in
the situations where computing resources are shared among
different applications.

In our approach, a sub deadline is associated with each
service of a time sensitive application. A request is dropped
if any of its services miss the associated sub deadline. The
rationale of our approach is that when an application request
is more likely to miss its end-to-end deadline, and thus is of
no use to the system, it is better off to remove the request as
early as possible. Dropping a request helps saving the precious
computing resources and energy for requests that are more
likely to be successfully fulfilled, which would most likely be
wasted otherwise. However, requests dropping degrades the
QoS of the system. Making the appropriate tradeoff is the
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key to this problem. To this end, we transform the deadline
assignment problem to a queueing problem with reneges [11]
and develop an algorithm to determine sub deadlines for
the services analytically in the situations with and without
resource sharing. Our experimental results demonstrate that
our approach is able to statistically guarantee the QoS re-
quirements with higher efficiencies (i.e. achieving required
completion ratios with shorter average response times.)

II. RELATED WORK

Extensive research has been conducted on the web ap-
plication resource management problem. A significant part
of the research has focused on cloud. Performance goals
were achieved by dynamic resource provisioning in virtualized
environments [7][8][12]. These approaches dynamically mod-
ulated the availability of the underlying computing facilities
(e.g. increase/decrease the number of powered-on physical
servers) according to the workload predictions or in response
to the workload changes. The major difference between these
approaches and what we present in this paper is that they
assumed that computing facilities for cloud applications can be
dynamically adjusted. However, we seek to invent an approach
that is more general instead of only being limited for cloud
applications. Without considering the elasticity provided by
cloud, we intend to manage the executions of web application
requests under a pre-defined (provisioned), fixed computing
facilities.

There are also many other techniques proposed to manage
the executions of application requests on a fixed computing
infrastructure. As applications usually consist of a series of
dependent services, such applications are usually modeled
as direct acyclic graphs (DAG). Most of the work focused
on the performance optimization in terms of reducing the
average response time under constraints such as the processing
budgets or costs. For example, Kamthe et al. [13], proposed
a scheduling approach that accurately estimated the earliest
start time of each service and then the requests execution
sequence were optimized based on those earliest start times
and thus the DAG makespan. Similarly, Tang et al. [14], devel-
oped a stochastic heterogeneous earliest finish time (SHEFT)
scheduling approach to reduce the makespan of a DAG. Our
approach is different from these approaches in that we are
more focused on the statistical guarantee of the end-to-end
deadline satisfactions instead of simply reducing the overall
latency of an application.

To control the requests execution subject to their end-to-end
deadlines or other timeliness requirements, acceptance control
and queue length control via random removal are commonly
used [9][15][10][16], especially when a system is under over-
loading situations. For example, Wang et al. [15] employed
acceptance control to optimize a service provider’s revenue
with the least operational costs for multi-tier services in a
virtualized environment. Liu et al. [10] designed an adaptive
acceptance control method to optimize the performance for
web applications by adjusting the queue lengths. Acceptance
control and queue length control via random removal help

service providers alleviate the system workload and thus can
guarantee timeliness requirements for the accepted requests.
However, using acceptance control and queue length control
with random removal to achieve probabilistic guarantee can
be a challenging problem.

Besides acceptance control and queue length control via
random removal, sub deadline assignment is another popular
approach for end-to-end deadline guarantee. For example,
Hong et al. [17] introduced a technique to assign a sub dead-
line for each service in a DAG, and the end-to-end deadline
can be guaranteed if all services can meet their sub deadlines.
Yu et al. [18][19][20] proposed to assign a sub deadline to the
service at each tier by dividing the overall end-to-end deadline
proportionally to a request’s minimum processing time at that
tier. Similar idea was employed by Mao et al. in [21], with sub
deadlines calculated according to the request’s best or worst
execution time in a service. There are two major problems
with these approaches. First, the deadlines are assigned under
the assumption of a priori knowledge of deterministic timing
characteristics of the requests. Second, these approaches are
highly heuristic and ensuring a probabilistic guarantee of the
end-to-end deadlines remains a problem. In our research, we
adopt a statistical approach for sub deadline assignment and
formally prove that our approach can guarantee the end-to-end
deadline in a probabilistic manner.

III. PRELIMINARY

In this section we introduce our system model and formulate
our problem formally.

A. Service model

We assume that our application architecture consists of m
servers, i.e. E = {E1, E2, ..., Em}, each of which provides
one dedicated service. The service time of each server, i.e.
Ei, is independent from each other and follows an exponential
distribution with the average processing time of 1

µi
.

(a) A multi-tier services application.

(b) A queue-based view of an application.

Fig. 1. Application model.

There is a total of k applications S = {S1, S2, ..., Sk} in the
system. We assume that the requests arrival pattern for each
application follows the Poisson distribution, and each appli-
cation is modeled with a 4-tuple, i.e. Si = {λi, Di, Ri, Li},
where
• λi is the arrival rate of requests for Si;
• Di is the end-to-end deadline of Si;
• Ri is the end-to-end deadline satisfaction ratio (aka. the

completion ratio) for Si;
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• Li contains an ordered list of servers that Si needs to go
through, i.e. Li = {Ei1, Ei2, ..., Ein}, where Eij ∈ E .

The multi-tier services in an application and their queuing
models are illustrated in Figure 1. Note that Ri and Di together
quantify the QoS requirements of Si, and Li represents the
dependent services that Si needs to go through. An instance
of Si, triggered by a corresponding service request, is con-
sidered successfully completed only if it goes through all the
designated servers and finishes its execution before the end-to-
end deadline. Otherwise, it is deemed as a failure. For different
applications Si and Sj , Li∩Lj may or may not be ∅, indicating
that different applications may or may not share the same
servers.

B. Problem definition

We assume that, for each application Si = {λi, Di, Ri, Li},
a sub deadline (e.g. dij) is assigned to each server (e.g.
Eij ∈ Li) that Si needs to go through. A request is dropped if
any of its services miss the deadline. Removing a request from
the queue helps save system resources for other requests that
are more likely to be completed in time. On the other hand,
such an action may lead to violating the QoS requirements
as identified by the deadline miss ratios. The problem is
then how to judiciously determine the sub deadline for each
server. These deadlines are local sub deadlines and the interval
between any two adjacent sub deadlines is used to indicate how
long a request is allowed for being processed in that server.

With the system model and assumptions introduced above,
we formulate our research problem as follows:

Problem 1: Given an application platform E and an appli-
cation set S, determine the sub deadline dij on each server
(e.g. Eij ∈ Li) for application Si such that no less than Ri
percent of Si requests can successfully meet their end-to-end
deadline Di.

IV. SUB DEADLINE ASSIGNMENT

In this section, we present our approach of solving the sub
deadline assignment problem. We first discuss our approach
for a simple case in which an application has only two
services. We then extend our approach to the case for an
application with multiple services.

A. An application with two servers

We first consider the simple case of an application
with only two servers. Consider the application S =
{λ,D,R,L(E1, E2)} shown in Figure 2. Initially, an appli-
cation request arrives at E1 following a Poisson process with
a rate of λ. If a sub deadline d1 ≤ D is assigned to E1, not all
requests can pass through E1 due to the deadline violations.
We assume that the entire system reaches the stable status
and the renege probability is quite small in each server, thus,
according to Burke’s Theorem [22], the request arrivals for
E2 is assumed to be a Poisson process as well. Assuming that
the requests are deleted after the first server at a probability
of p1, then, the arrival rate for the second server E2 becomes

λ2 = (1− p1)λ1. (1)

Fig. 2. A two-tier application with sub deadline assignment.

Similarly, when a sub deadline is assigned to E2 (i.e. D in this
case,) some requests are dropped at a probability of p2 due to
deadline violations. Therefore, the probability for a request to
survive both E1 and E2 is 1− (p1 + (1− p1)p2).

Our goal is to determine d1 such that

1− (p1 + (1− p1)p2) ≥ R. (2)

The key challenge, however, is to formulate the relations
among parameters including λ1, λ2, p1, p2, D, and R. To this
end, we employ the techniques developed for M/M/1 queue
with renege [11] to solve our problem. M/M/1 queue with re-
nege is a queueing model that depicts the impatient customers
who leave the queue if not fully served within a giving time
frame on a server. Specifically, let the arrival rate of requests
on a server be λ and the processing rate be µ, and let a
customer’s maximum waiting length be τ (i.e. the interval
between two adjacent sub deadlines in our scenario.) Then
the probability that customers renege from the server can be
formulated as

p =
(1− ρ)eα(ρ−1)

1− ρeα(ρ−1)
(3)

where ρ = λ/µ and α = µ · τ . Similarly, to calculate p1 in
our case, we have

p1 =
(1− λ1

µ1
)ed1µ1(

λ1
µ1
−1)

1− λ1

µ1
ed1µ1(

λ1
µ1
−1)

(4)

Based on Equation (3), we calculate p2 by plugging λ = λ2
and τ2 into Equation (3). However, to formulate the renege
probability of E2, we have to take the execution status on E1

into consideration. Since the renege probability on each server
will stay small (because of the completion ratio constraint,) we
assume that the request arrivals of E2 still follows a Poisson
distribution. Then, another M/M/1 queue can be modeled for
E2. Therefore, let d2 = D, we formulate p2 as

p2 =
(1− λ2

µ2
)e(D−d1)µ2(

λ2
µ2
−1)

1− λ2

µ2
e(D−d1)µ2(

λ2
µ2
−1)

. (5)

The feasible solution of d1 satisfies Equations (2), (4), and
(5). To identify the solution for d1, we can use sophisticated
numerical algorithms when necessary. For ease of presentation,
Algorithm 1 employs a simple search method to find the
solution of d1. Note that Algorithm 1 does not always produce
a feasible solution of d1. When λ1 is extremely large or
when µ1 or µ2 is too small, there is no possible sub deadline
assignment that is able to statistically guarantee the QoS
requirements. On the other hand, if Algorithm 1 does produce
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Algorithm 1 Sub deadline assignment for a single application
with two servers.

1: TwoTier(λ,D,R,E1, E2)
2: Input: λ,D,R, µ1, µ2.
3: Output: The sub deadline for E1, i.e. d1.
4: d∗1 = 0;
5: while d∗1 ≤ D do
6: Calculate p1 and p2 based on Equations (4) and (5)

using d∗1;
7: if p1 + (1− p1)p2 ≤ 1−R then
8: d1 = d∗1;
9: return d1;

10: end if
11: d∗1 = d∗1 + δ, where δ is the minimum time interval;
12: end while
13: Output: (“No feasible solution for the given constraints!”);
14: exit();

a solution, we can ensure the probability to successfully fulfill
the requests without violating the end-to-end deadlines. This
conclusion is summarized in the following theorem.

Theorem 1: Given a single application with two servers E1

and E2, i.e. S = {λ,D,R,E1, E2}, let the processing rates of
the two servers be µ1 and µ2, respectively. Assume that the
relative error when modeling the servers E1 and E2 using
M/M/1 independent queues is small enough. Then the sub
deadline derived from Algorithm 1 can guarantee the deadline
meet ratio no smaller than R.

Proof: Algorithm 1 ensures that the proportion of the
total dropped requests is no more than R (line 7). Also,
since d1 is found in such a way that Equations (2), (4) and
(5) are all satisfied. According to [11], this ensures that all
remaining requests can be processed before d1 and D when
going through the first and second server, respectively.

In addition, we have made a number of interesting obser-
vations that are listed in the following theorem.

Theorem 2: For an application S and one of its servers, i.e.
Ei, with processing rate of µi, let the corresponding request
arrival rate be λi, the deadline be di, and the renege probability
at Ei be pi. Then,

• The larger the λi, the larger the pi is;
• The larger the µi, the smaller the pi is;
• The larger the di, the smaller the pi is.

Proof: From Equation (3), we have

∂p

∂ρ
= {[(1− ρ)eα(ρ−1)]′[1− ρeα(ρ−1)]−

[(1− ρ)eα(ρ−1)][1− ρeα(ρ−1)]′}/[1− ρeα(ρ−1)]2
(6)

Now let

F (ρ) = [(1− ρ)eα(ρ−1)]′[1− ρeα(ρ−1)]−
[(1− ρ)eα(ρ−1)][1− ρeα(ρ−1)]′

Simplify F (ρ) we have

F (ρ) = −eα(ρ−1) + [eα(ρ−1)]2 + (1− ρ)αeα(ρ−1)

= eα(ρ−1)[−1 + eα(ρ−1) + (1− ρ)α]

Let x = (1− ρ)α, we have

F (ρ) = e−x(−1 + e−x + x) (7)

According to [23], as long as x > −1, −1 + e−x + x > 0.
Since x = (1 − ρ)α, and ρ < 1, then x is always larger than
−1 and Equation (7) is positive. Therefore, from Equation (6)
we have

∂p

∂ρ
> 0. (8)

To prove the first two bullet points in the theorem, we only
need to note that

∂p

∂λi
=
∂p

∂ρ
× ∂ρ

∂λi
> 0. (9)

and
∂p

∂µi
=
∂p

∂ρ
× ∂ρ

∂µi
< 0. (10)

To prove the third bullet point in this theorem, we have

∂p

∂d
={[(1− ρ)eµ·d·(ρ−1)]′[1− ρeµ·d·(ρ−1)]

[(1− ρ)eµ·d·(ρ−1)][1− ρeµ·d·(ρ−1)]′}
/[1− ρeµ·d·(ρ−1)]2

={[(1− ρ)µ(ρ− 1)eµ·d·(ρ−1)][1− ρeµ·d·(ρ−1)]
− ρµ(1− ρ)2[eµ·d·(ρ−1)]}/[1− ρeµ·d·(ρ−1)]2

=− µ(1− ρ)2eµ·d·(ρ−1)/[1− ρeµ·d·(ρ−1)]2

<0

(11)

B. An application with multiple servers

We now extend our approach to the case of single appli-
cation with multiple servers. Similarly, we assume that the
system has reached the stable state and each server can be
modeled as a M/M/1 queue.

Fig. 3. Application model with more than two servers.

Take the three-tier application shown in Figure 3 as an
example. After the first server, assume that there will be
p1 percent of all requests deleted due to the sub deadline
violations. The arrival rate for the second server is thus
λ2 = (1− p1)λ1. After the second server, another p2 percent
of the requests among the λ2 are discarded. Then, only
λ3 = (1 − p1 − (1 − p1)p2)λ1 are left for the third server.
Equivalently, the arrival rate of the requests for tier n + 1
from tier n can be formulated as

λn+1 = (1− pn) · λn. (12)
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Fig. 4. Applications with shared tiers.

The total ratio of requests that have been removed through n
(n ≥ 2) servers can be formulated as

λ1 · {p1 +

n∑
ti=2

(Πti−1
tj=1(1− ptj ) · pti)} (13)

Provided that all the remaining requests in the system are
able to meet their end-to-end deadlines, in order to satisfy
the probabilistic guarantee of R, we only need to require that

λ1 · {p1 +

n∑
ti=2

(Πti−1
tj=1(1− ptj ) · pti)} ≤ (1−R) · λ1 (14)

For an application consists of n servers, based on Equation
(3) we have

pn =
(1− λn

µn
)e(dn−dn−1)µn(

λn
µn
−1)

1− λn
µn
e(dn−dn−1)µn(

λn
µn
−1)

. (15)

Note that in the equation above, pn is the request removal
probability on En, and (dn−dn−1) is the allowed processing
time of a request on server En. We can then formulate
the equations recursively for the servers E1, E2, ...., En. The
d1, d2, ...., dn that satisfy Equation (14) are the sub deadlines
for each server.

C. Multiple applications with shared servers

Due to issues such as software licenses and resource/cost
constraints, different applications usually need to go to the
same server for services. We now discuss how to assign sub
deadlines for multiple applications in a shared environment.

In this scenario, some tiers that belong to different appli-
cations have to share the same function unit (hosted on the
same server). The sub deadline calculation is more intricate
here. As shown in Figure 4, two applications share the same
second service tier. Each application has its own QoS required
pair {D1, R1}, and {D2, R2}. Algorithm 1 cannot be simply
applied to calculate the sub deadlines for the applications.
We employ statistical multiplexing to describe the sharing
situation. However, it is worth pointing out that our method is
not limited to the statistical multiplexing. Different application
requests on the same server share the same processing queue.
Since we assume that the arrival rates of both applications on
the shared server follow Poisson distribution, the combined
workload arrival is still a Poisson process. The processing
time of each request on the shared server is exponentially
distributed. Therefore, the shared server can be treated as a

M/M/1 queue as well. The response time relationship between
the two applications and the combined workload can be
formulated as following [24]:

1

U − (λ12 + λ22)
=

1

µ∗12 − λ12
=

1

µ∗22 − λ22
(16)

where U is the shared server’s processing rate. λ12 and λ22 are
the arrival rates of the two applications at the second tier. µ∗12
and µ∗22 are the corresponding simulated processing rates of
the two applications under the situation in which applications
are processed independently with no resource sharing. The
formulations of µ∗12 and µ∗22 can be derived through simple
transformations of Equation (16).

µ∗12 = U − λ22
µ∗22 = U − λ12 (17)

With the derived µ∗12 and µ∗22 in the shared environment,
we can apply Equation (3) to obtain the renege probabilities
for each of the applications. Due to the fact that they share the
same service tier, the sub deadline calculations for the two ap-
plications are interdependent. We apply an iterative approach
to derive the sub deadlines for each of the applications.

We first assume that no renege happens for application S2.
Then, application S1 can be treated as a serialized application
with a middle tier shared with application S2. With Equation
(17), we use the method introduced in the previous section
(Algorithm 1) to calculate the sub deadlines for S1. Once
S1’s sub deadlines are available (e.g. d11), replace the λ12
in Equation (17) with the derived arrival rate of application
S1 (e.g. λ∗12) in the shared tier using the calculated S1’s
sub deadlines (e.g. d11). Then, S2’s sub deadlines are cal-
culated following the same method. These two sub deadline
calculation steps for S1 and S2 compose an iteration. After
each iteration, sub deadline calculations for S1 and S2 are
conducted again based on the results derived from the previous
iteration. The whole procedure stops when the maximum
sub deadline difference between two adjacent iterations of
both applications are smaller than a pre-defined threshold T
(or reach a maximum iteration number.) The details of our
approach for multiple applications with shared service tiers is
summarized in Algorithm 2.

V. SIMULATION STUDY

In this section, we use simulations with synthetic parameters
to investigate the performance of our approach.

We compared our high efficient sub deadline approach
(“HESD”) with several widely used methods. Acceptance
control (“ac”), random deletion (“rd”) and First-Come-First-
Server (“fifo”) have no sub deadline constraints. Then, a
local sub deadline calculation method “det” (similar to [17]
and [18]) deterministically assigns sub deadlines to servers.
Finally, a global sub deadline assignment method “pdf” based
on request processing time distribution is employed for com-
parisons. The summary of the methods is listed as follows:
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Algorithm 2 Sub deadline assignment for multiple applica-
tions with shared service tiers.

1: K number of N -tier applications running on M number
of servers

2: Input: λi, Di, Ri, E1, E2, . . . , Em. ∀i ∈ K, ∀m ∈M .
3: Output: The sub deadline for applications S1, S2, . . . ,
SN .

4: for (i = 1; i ≤ K; i+ +) do
5: for (j = 1; j ≤ N ; j + +) do
6: PreSDij = 0;
7: end for
8: end for
9: Initialize Stop to 0.

10: Initialize Loop num to 0.
11: while (!Stop) do
12: for (i = 1; i ≤ K; i+ +) do
13: Loop num = Loop num+ 1;
14: Assume no renege for applications Si+1, Si+2,

. . .SN ;
15: Application S1, . . . , Si−1 have sub deadlines calcu-

lated in the previous loops;
16: Apply Algorithm 1 for application Si to get SDij ;
17: end for
18: if (max[|PreSDij − SDij |] < T , ∀i ∈ K,∀j ∈ N )

&& (Loop num <= Max loop num) then
19: Set Stop to 1;
20: end if
21: PreSDij = SDij ;
22: end while

• ac: In the acceptance control method, based on the
available computing capacity, a maximum acceptable
request arrival rate is provided in order to guarantee that
R percent of the accepted requests can be successfully
completed before their end-to-end deadlines. If a service
request is accepted, it will be processed until it is fully
fulfilled.

• rd: In the random deletion method, all the request arrivals
are accepted into the service chain. However, a bottleneck
service tier will be identified. Based on the capacity of
the bottleneck tier and the QoS required pair {D, R},
a correspondent amount of requests will be removed
randomly from the bottleneck tier.

• fifo: The first come first serve method processes each
request till completion according to their arrival order.

• det: In the deterministic local sub deadline assignment
method, each server is assigned a local deadline that is
proportional to the server’s average response time.

• pdf: This is a method that applies the request processing
time probability density function (PDF) on each server to
find out how likely that the server’s follow-up processing
can meet the request’s end-to-end deadline [25]. We
extend their method to a global sub deadline assignment
method. The extended version calculates the sub dead-
lines backward from the exiting point of the application.

Thereby, the sub deadline calculated for each server is
actually the latest time instance to statistically guarantee
that the follow-up servers can finish the request’s process-
ing before the request’s pre-defined end-to-end deadline.

In order to show the applicability of our method, we implement
FIFO and processor sharing (PS) scheduling policies in our
simulation with the sub deadline constraints derived by our
method.

A. Single application without shared resources

We tested our method based on a three-tier application.
Each tier was assumed to be hosted in an isolated processing
unit. No resource or service sharing existed among the tiers.
The parameters of the three-tier application were randomly
generated. The processing rates of the servers were set to be
120, 115, and 110 requests/second, respectively. The execution
times of the requests on the different servers were randomly
generated according to each server’s processing rate, and
the execution times followed exponential distributions. The
impacts of different arrival rates and processing rates on the
QoS satisfactions were studied. We ran 200000 requests of
each application for 5 rounds to average the randomness in
each method.

1) Arrival rate effects: We first analyzed the effects of
different request arrival rates on the QoS satisfaction.

We set the end-to-end deadline to be 0.4s with a completion
ratio requirement of 90%, and gradually changed the arrival
rate from 99 to 107 request/second with 2 request/second
intervals.

Fig. 5. Completion ratio comparison.

Fig. 6. Average response time comparison.

Figure 5 shows the completion ratios achieved by the
methods at different arrival rates. Intuitively, the higher the
arrival rate, the worse the completion ratio for most of the
methods since the queues are getting more congested with the
increasing number of requests. Every request has to experience
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longer delay in each server in order to be fully served. The
results shown in Figure 6 clearly supports our inference.

Our proposed method “HESD fifo” had the lowest average
response times while guaranteeing the required completion
ratio. Since it is able to statistically guarantee the QoS required
pair, its completion ratio kept stable around the required value
through out the entire test cases. “HESD ps” had similar
results as “HESD fifo” when the arrival rate was low. As the
arrival rate got higher, its performance degraded slightly. It is
interesting to observe that even though “pdf” satisfied the QoS
required pair in the first testing case, its derived sub deadlines
had less effect as those calculated via our proposed method.
The number of completed requests was much larger than the
one required to meet the QoS and resulted in significantly
higher average response times. Additionally, the “pdf” method
is not flexible to the parameter changes. When the arrival
rate grew higher, “pdf” struggled and failed to provide sub
deadlines for the application. The performance of “det” was
surprisingly good in this test. However, it is not able to
statistically guarantee the QoS required pair as the resources
become stringent. On the contrary, our method is capable
of indicating the potential infeasibility when Algorithm 1
could not provide corresponding sub deadlines. “ac” and “rd”
satisfied the QoS requirements while the arrival rates stayed
low. Nevertheless, as the arrival rate got higher (e.g. 107
requests/second in our case,) in order to guarantee that 90%
of the accepted requests could finish before the end-to-end
deadline, only around 85% original requests could be accepted
for “ac” and 0% for “rd”.

2) processing rate effects: We further studied the process-
ing rate effects on different methods.

The end-to-end deadline was set to be 0.5s with a com-
pletion ratio requirement of 90%. Arrival rate was 90 re-
quests/second. The processing rates were set to be 120, 115,
110 requests/second initially, and were gradually degraded
from 100% to 92% of the full capacities, with 2% degrading
intervals.

Fig. 7. Completion ratio comparison.

Figures 7 and 8 depict the completion ratios and average re-
sponse times, respectively. With the full processing capacities,
all methods were able to satisfy the QoS requirements. As the
processing rate degraded, completion ratios achieved by all the
methods except “HESD” dropped. The changes in processing
rate did not have significant impacts on the completion ratio
in our proposed method (“HESD ps” degraded slightly as
the processing capacity dropped.) However, we can easily tell

Fig. 8. Average response time comparison.

from the figure that the lower the processing rate, the larger
the average response times for all the methods. “pdf” failed
to provide sub deadlines for the last two settings.

B. Multiple applications with shared resources

We finally studied the performance of our proposed method
in a shared environment based on the architecture shown
in Figure 9. Since “ac” and “rd” are similar, “det” has no
statistical guarantee, and “fifo” is always the worst on the
average response time, we did not include them into the
comparisons.

Fig. 9. Applications with shared servers.

As shown in Figure 9, three different applications share
three services. The requests of the first application λ1 enter
the system from node E1. After going through nodes E2 and
E3, the successfully processed requests leave the system from
E3. Similar to the first application, the requests of the second
(third) application enter the system from node E2 (E3), and
leave the system from nodes E1 (E2). We set the processing
rate of the three nodes at 350, 360, 370 requests/second,
and gradually degraded the processing capacities of the three
nodes simultaneously from 96% to 88% with a degrading
interval of 2%. The three applications had the same arrival
rate at 100 requests/second. The QoS required pairs are {92%,
0.5s}, {90%, 0.4s}, and {92%, 0.5s}, respectively. 10000
number of requests of each application were tested, and the
comparisons of the completion ratios and average response
times are illustrated in Figure 10.

From 10(a) we can tell that the “pdf” method had similar
performance as in the single application situations. The sub
deadlines derived were relatively relaxed compared to those
calculated by “HESD”. Not many requests were removed in
“pdf”. When the processing capacities degraded to 88% in our
case, “pdf” failed to assign sub deadlines to the applications
subject to the desired QoS required pairs. On the contrary,
the completion ratios of “HESD fifo” kept stable around the
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(a) Completion ratio comparison.

(b) Average response time comparison.

Fig. 10. Comparison for multiple applications with shared resources.

required levels at different parameter settings and its average
response times were obviously smaller than “pdf” (Figure
10(b).) “HESD ps” had a stable completion ratio as well but
failed to reach the required amount (around 4% lower) even
though it had the lowest average response times. The average
response times reflected a raising trend as the processing
capacities degraded in all the methods.

VI. CONCLUSION

In this paper, we propose a sub deadline assignment ap-
proach for applications with and without resource sharing. We
model the multi-tier time-sensitive applications as M/M/1
queues with reneges. It is able to statistically guarantee the
QoS requirements with high efficiencies by judiciously dis-
carding mischievous failure requests in early stages. Precious
computing resources can be used more effectively and effi-
ciently by the promising requests. Our proposed method has
the potential to increase the net profit for a service provider.
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