
Profit Aware Load Balancing for Distributed Cloud Data Centers

Shuo Liu∗, Shaolei Ren†, Gang Quan∗, Ming Zhao†, and Shangping Ren‡
∗Department of Electrical and Computer Engineering, Florida International University, Miami, FL, 33174
†School of Computing and Information Sciences, Florida International University, Miami, FL, 33199

‡Department of Computer Science, Illinois Institute of Technology, Chicago, IL, 60616
Emails: {sliu005, gang.quan}@fiu.edu, {sren, ming}@cs.fiu.edu, ren@iit.edu

Abstract—The advent of cloud systems has spurred the
emergence of an impressive assortment of Internet services.
Recent pressures on enhancing the profitability by curtailing
surging dollar costs on energy have posed challenges to, as
well as placed a new emphasis on, designing energy-efficient
request dispatching and resource management algorithms.
What further adds to the design challenge is the highly diverse
nature of Internet service requests in terms of Quality-of-
Service (QoS) constraints and business values. Nonetheless,
most of the existing job scheduling and resource management
solutions are for a single type of request and are profit
oblivious. They are unable to reap the benefit of multi-service
profit-aware algorithm designs.

In this paper, we consider a cloud service provider operating
geographically distributed data centers in a multi-electricity-
market environment, and propose an energy-efficient, profit-
and cost-aware request dispatching and resource allocation
algorithm to maximize a service provider’s net profit. We
formulate the net profit maximization issue as a constrained
optimization problem, using a unified task model capturing
multiple cloud layers (e.g., SaaS, PaaS, IaaS.) The proposed ap-
proach maximizes a service provider’s net profit by judiciously
distributing service requests to data centers, powering on/off an
appropriate number of servers, and allocating server resources
to dispatched requests. We conduct extensive experiments
to validate our proposed algorithm. Results show that our
proposed approach can improve a service provider’s net profit
significantly.

I. INTRODUCTION

With the development of cloud computing, service

providers are able to provide a variety of complex ap-

plications and services to people’s daily lives, such as

Google Docs and AppEngine, Amazon EC2 and S3, etc.

These applications and services are all supported by service

provider’s data centers and delivered to a wide range of

clients over the Internet.

The large number of service requests drastically increases

not only the need for data centers, but also the scale of data

centers and their energy consumptions. The dollar cost spent

on energy consumption takes a large portion of a service

provider’s operational cost annually. As an example, Google

has more than 500K servers and it consumes more than

$38M worth of electricity each year. Similarly, Microsoft

has more than 200K servers and spends more than $36M

on electricity annually [1]. Evidently, dollar costs on energy

consumptions have been a critical part in operational cost for

service providers. It is fair to say that an efficient computing

resource management approach for distributed cloud data

centers is essential to service providers.

A well-designed resource management scheme can ef-

fectively reduce the dollar cost on energy consumptions.

This is particularly true for distributed cloud data centers

where their dollar costs on energy are sensitive to factors

such as workload distribution, data transferring, electricity

prices, etc. The problem, however, is how to take all of these

factors into consideration when designing and developing a

resource management scheme such that the QoS with respect

to different service requests can be satisfied, as well as its

cost on energy consumptions can be minimized.

Figure 1. Electricity prices at different locations in a day.

In this paper, we present a profit- and cost-aware resource

management approach for distributed cloud data centers to

optimize a service provider’s net profit (defined as the profit

minus the dollar cost on energy.) Service providers gain

profit by satisfying service requests to the level identified

based on a certain service level agreement (SLA). At the

same time, service providers need to pay the cost for

energy consumed by transferring and processing requests.

For several reasons, e.g. high availability, disaster tolerance,

and uniform response times, etc., service providers usually

spread their data centers in a wide geographical region. The

electricity prices at different data center locations vary dif-

ferently throughout a day. Therefore, opportunities present to

reduce the dollar cost on electricity by selecting proper data

centers for processing service requests. By taking advantages

of the multi-electricity-market (as shown in Figure 1 [2]),

2013 IEEE 27th International Symposium on Parallel & Distributed Processing

1530-2075/13 $26.00 © 2013 IEEE

DOI 10.1109/IPDPS.2013.60

611

our approach has a high efficiency of energy and computing

resource usage by judiciously dispatching service requests to

different data centers, powering on an appropriate number of

servers at different data centers, and adaptively allocating re-

sources to these service requests. Multiple types of services,

with no priority difference, are considered in our model.

Even though there are various layers in cloud computing,

such as SaaS, PaaS, and IaaS, we do not focus on any special

layer. Instead, we abstract the service requests of those layers

with a uniform task model. Compared with related work, our

contributions in this paper can be summarized as follows:

• We propose a system model that incorporates the

multi-electricity-market, SLA, and net profit into a

single unified resource management framework. To our

best knowledge, this is the first work that deals with

multi-electricity-markets, multiple types of requests,

and multi-level SLAs, simultaneously.

• We model the profit gained by a service provider as a

multi-level step-downward function, which is capable

of simulating various scenarios (as explained in Sec-

tion III-B1.) We formulate our problem of determining

how to dispatch service requests to different data cen-

ters, how many servers should be powered on in each

data center, and how computing resources should be

allocated to service requests as a constrained optimiza-

tion problem. We also derive a series of constraints to

simplify the implementation of our approach.

• The effectiveness of our proposed approach is validated

through simulations on both synthetic workload and

real data center traces with true electricity price history.

The remainder of the paper is organized as follows.

Section II introduces the background of our problem and

related work. Our system architecture and task model are

proposed in Section III. Section IV discusses our approach

in detail. Experimental results are presented in Sections V,

VI and VII. We conclude in Section VIII.

II. BACKGROUND AND RELATED WORK

Task scheduling and resource management are critical

to ensure the QoS (defined by SLA), and energy saving

or energy dollar cost reduction. There has been extensive

research work conducted for optimizing a data center’s

energy consumption or cutting down the electricity bills for

service providers. This work can be largely divided into two

groups. One is SLA-based resource management for a single

data center and the other is for distributed data centers in a

multi-electricity-market environment.

A. Single data center

Many types of SLA-based resource management research

were conducted to lower energy consumptions or cut down

the operational costs spent on energy consumptions. In [3],

Chase et al. presented an architecture for resource man-

agement in a hosting center operating system. They adap-

tively provisioned server resources according to the offered

workload. The efficiency of server clusters was improved

by dynamically resizing the active server set in accordance

with SLAs to respond to power supply disruptions or

thermal events. Wang et al. in [4] solved a problem of

managing power consumption in multi-tier web clusters

equipped with heterogeneous servers. Their method employs

dynamic voltage scaling (DVS). By adjusting the number

of powered-on servers and their working frequencies, they

effectively reduced the energy consumption in their web

clusters. Different from our work, these two studies are

focused on a single data center rather than distributed data

centers. In addition, they only consider a single type of

service request.

Liu et al. in [5][6] studied a method for multi-tier archi-

tecture that decides the workload distribution and computing

capacity allocation to optimize the SLA-based profit a data

center may achieve. However, this work does not account for

the energy consumed by data centers. Later, in [7], energy

consumption was considered and an energy consumption

control method was proposed to satisfy certain SLAs and

energy constraints. Contrary to the work in [5][6][7], our

approach is for distributed cloud data centers in a multi-

electricity-market environment.

Lin et al. [8] analytically formulated their optimal offline

solution and developed the corresponding online algorithm

to bound the number of powered-on servers with respect

to certain delay constraints, in order to reduce the energy

consumption for power-proportional data centers. Their ap-

proach focuses on a single service type, and implies that

once the number of powered-on servers is fixed, the optimal

dispatching rule will evenly distribute workloads across the

servers. However, this is not suitable for multiple types of

requests.

Recently, Sarood et al. [9] proposed models that take

cooling energy consumptions into consideration. By reason-

ably balancing workloads and employing dynamic voltage

and frequency scaling (DVFS), they successfully lowered

the overall energy consumed by their cooling system while

satisfying temperature constraints. Cooling factors are out

of the scope of our work. However, our model can be

extended by adding a parameter describing a data center’s

power utilization efficiency (PUE) to account for the energy

consumed by cooling systems as well as other peripheral

equipments.

B. Distributed data centers

Le et al. have studied the advantages of using green

energy (e.g. energy generated by winds or solar energy).

These studies help to replace the usage of “brown” energy

(produced via carbon-intensive means) with “green energy”

during a data center’s operation in order to cut down the

612

cost spent on energy consumptions. For instance, a study of

a framework for multi-data-center services was introduced

in [10][11]. However, no SLA-based profit was considered

in these studies. Only response time constraints were con-

sidered to reflect the QoS requirements.

Since most cloud systems geographically distribute their

data centers, requests dispatching and resource management

design for multiple data centers attracts more and more

attention. The research in [2][12] extended the work in [4] to

a distributed data center architecture in a multi-electricity-

market environment. Rao et al. modeled their problem as

a constrained mixed-integer linear programming, and pro-

posed an efficient approach to approximate the problem with

a linear programming formulation. These studies only con-

sidered a single service type. Our new proposed algorithm

works for multiple types of service requests. Moreover, our

model accounts for transferring costs as well.

In real-time services, QoS is reflected by a service’s time-

liness. After Jensen first proposed the time utility function

(TUF) [13], there were many studies conducted based on

TUFs to study the timeliness of real-time tasks in various

fields [14][15][16]. Most of them are task-level scheduling

algorithms. Scheduling activities are performed according

to each single task’s behavior. In [17], Liu et al. proposed a

task allocation and scheduling algorithm for distributed data

centers in a multi-electricity-market environment. They im-

plemented two TUFs to describe each task’s potential profit

and penalty, respectively. The scheduling algorithm accounts

for the dollar costs of data transferring and processing.

Nevertheless, the work in [17] has a high timing complexity

for online implementation in network-based system because

of the huge amount of service requests. Our new proposed

approach is a significant improvement of [17] by using the

queuing theory to build a constrained optimization formula

in order to flexibly dispatch requests and allocate computing

resources for maximizing net profits in distributed cloud data

centers. The system models, approaches and techniques are

all fundamentally different from [17]. Instead of focusing on

each single service request [17], our new approach focuses

on each type of requests. Requests of the same service type

follow the same scheduling policy.

III. SYSTEM MODELS AND PROBLEM FORMULATION

In this section, we introduce our system model, based on

which we develop our time-slotted profit-aware request dis-

patching and resource management approach for distributed

cloud data centers in a multi-electricity-market environment.

Our approach periodically runs at the beginning of each time

slot T based on the average arrival rates during a slot since

job interarrival times are much shorter compared to a slot [8].

Requests arrival pattern forecast is not studied in our work.

Existing prediction methods (e.g. the Kalman Filter [18],)

or studies (e.g. [19][20]) that have been conducted can be

employed if necessary. The length of T is a pre-defined

constant that is decided by several factors, e.g. adjusting fre-

quencies of electricity prices (electricity prices stochastically

vary over time due to the deregulation of electricity market

[21].) We consider that the electricity prices in a time-slot T
are constant. Constant prices during a time period are widely

implemented in prior work [8][21].

A. System architecture

Figure 2. System architecture.

A typical distributed cloud data center system can be

illustrated by Figure 2. In our system, service requests come

from various places and are collected by S nearby front-

end servers, where S = s1, s2, ..., sS . Then, requests are

dispatched to I capable servers in L data centers via network

according to a related metric, where I = I1, I2, ..., II and

L = l1, l2, ..., lL.

Virtualization technology, which boosts the realization

of the long-held dream of computing as a utility [22], is

employed in our architecture to enable server consolidation

and simplify computing resource sharing in physical servers.

Elasticity of virtualization helps improve the usage efficien-

cies of computer resources and energy. Different types of

services can be held in the same server within their own

virtual machines (VMs). The same CPU can be shared by

different VMs when necessary. We assume that once a server

is powered on, it always runs at its maximum speed. In our

scenario, the data centers are heterogeneous, and the servers

in a data center are homogeneous. It can be easily extended

to heterogeneous data centers with heterogeneous servers.

B. Task model

Requests in our system are soft real-time in nature and

may encounter both profit and cost. Profit comes from

successfully guaranteeing the average delay satisfaction for

each type of request [23]. Cost is the dollar cost spent on

transferring and processing requests.
1) Profit: TUFs are able to precisely specify the seman-

tics of soft real-time constraints [14]. It indicates that in

real-time systems, when tasks are completed with respect

to their time constraints, the system will be assigned values

613

Figure 3. Typical TUFs.

that vary with the finishing times of the tasks. A TUF can

be in any shape. Commonly used TUFs include a constant

value before its deadline (Figure 3(a)), a monotonic non-

increasing function (Figure 3(b)), or a multi-level step-

downward function (Figure 3(c)), etc. In our scenario, all

types of requests desire quick responses. It means that the

earlier the tasks are finished, the more utilities they assign

to their system. We employ TUFs to represent the profits

of processing requests, which are non-increasing functions.

Non-increasing TUFs match the SLAs well, since longer

delays (beyond some defined time instances) result in lower

profits. We will analyze constant value TUFs and multi-level

step-downward TUFs in the following sections. These two

types of TUFs are representative, especially the multi-level

step-downward TUFs. A monotonic non-increasing TUF can

be simulated by using a special multi-level step-downward

TUF, which has an infinite number of steps. A constant

TUF can be simulated as well by using step-downward TUF

that only has one step. Consequently, a multi-level step-

downward TUF is able to represent a wide range of scenarios

and it explains why we mainly focus our study on multi-level

step-downward TUFs.

Based on the queuing theory, i.e. M/M/1 queue (assuming

that the request arriving follows poisson distribution,) it is

not difficult to model the expected delay time for k-type

requests as [24]

Rk =
1

φkCμk − λk
(1)

where in Equation 1, C is a server’s capacity, and is

normalized to 1 in our scenario. In heterogeneous systems,

different hardware configurations may have different capac-

ities. μk is the processing rate for k-type requests with full

capacity. Note that a server’s resource may be shared by

many different VMs at the same time. Therefore, its actual

processing rate may not be μk. φk indicates the percentage

of CPU resource allocated to k-type requests in a single

server. λk is the arrival rate of k-type requests.

2) Cost: Cost consists of two parts. One is the dollar

cost for processing requests, the other is the dollar cost for

transferring requests.

Processing cost mainly comes from a server’s energy

consumption. The energy consumption in our work follows

the model studied by Google [25] instead of traditional

server’s energy model. It is based on the energy consump-

tion for processing each single service request. We believe

this model is closer to the goal of converting computing

ability into one kind of utility in people’s daily lives (e.g.

electricity.) Then, computing capacity usages are converted

into utility consumptions. We assume that energy attributions

of the requests are profiled, then the dollar cost on energy

consumption for processing requests in a time slot can be

expressed as follows:

PCostk = Pk × λk × T × p (2)

where PCostk is the dollar cost for processing k-type

requests. λk is k-type requests arriving rate. Pk is the energy

attribution of k-type requests. Google’s study shows that

each web search costs 0.0003KWh on average. T and p
are the length of a time slot (e.g. one hour, which is the

same as the electricity prices’ changing frequency) and the

electricity price at the data center location in a time slot (as

shown in Figure 1,) respectively.

Dollar cost on transferring requests from a front-end

server to a corresponding data center is calculated in a

similar method as the one in [1]. As shown in Equation 3,

it is the product of unit transferring cost (TranCostk) of

each type of request, the distance between the request’s

origination and destination (Distancek), arrival rate λk and

the length of a time slot. Since requests may have various

characteristics (e.g. sizes,) “TranCostk” is employed to

reflect the differences among requests.

TCostk = TranCostk ×Distancek × λk × T (3)

C. Problem formulation

With our system architecture and system model defined

above, formally, our problem can be formulated as follows:

Problem 1: Given service requests and data center ar-
chitectures as described above, develop an efficient on-line
profit- and cost-aware workload dispatching and resource
allocation approach to maximize net profits for service
providers.

IV. OUR APPROACH

In this section, we introduce our approach in detail. For

clarity, parameters used in this work are summarized in

Table I. We formulate the solution for Problem 1 as a

constrained optimization problem [26][27]. The results are

used to decide request dispatching, resource allocation, and

the number of servers that should be powered on.

The objective function of Problem 1 can be mathemati-

cally formulated as follows:

max
S∑

s=1

L∑
l=1

M∑
i=1

K∑
k=1

{Uk(Rk,i,l)λk,s,i,l − Costk,s,i,lλk,s,i,l}T

(4)

614

Parameters Definations
K number of service types in the system.
S number of front-end servers in the system.
L number of data centers in the system.
Ml number of homogeneous servers in data center l.
Ci,l capacity of server i in data center l.
μk service rate for k-type requests at a server of

capacity 1.
λk,s,i,l k-type requests dispatched to server i in data center

l comes from front-end server s.
φk,i,l CPU share for k-type requests at server i in data

center l.
Rk,i,l delay time for k-type requests at server i in data

center l.
Uk utility function for k-type requests. Uq

k corresponds
to the utility in qth level.

Dk,q relative sub-deadline for the qth utility level.
Dk relative deadline for k-type requests.
Pk,l energy cost for processing k-type requests in data

center l.
pl electricity price at data center l at time t.
ds,l distance between front-end server f and data center

l.
PCostk,l processing cost of k-type requests at data center l.
TranCostk unit transferring cost of k-type requests.

Table I
PARAMETER NOTATION.

After we substitute the factors in Equation 4 with Equation 1,

2 and 3, it becomes to Equation 5:

max

S∑
s=1

L∑
l=1

M∑
i=1

K∑
k=1

{Uk(Rk,i,l)λk,s,i,l − Pk,lλk,s,i,lpl

−TranCostkds,lλk,s,i,l}T
(5)

with following constraints:

1
φk,i,lCi,lμk,l − λk,s,i,l

≤ Dk, ∀k, i, s, l (6)

S∑
s=1

L∑
l=1

M∑
i=1

λk,s,i,l ≤
S∑

s=1

λk,s, ∀k (7)

K∑
k=1

φk,i,l ≤ 1, ∀i, s, l (8)

Constraint 6 shows the QoS requirement. The average delay

for each type of request cannot exceed its deadline. Con-

straint 7 assures that the number of assigned requests does

not exceed the number of total service requests coming from

the Internet. Constraint 8 bounds the CPU share by various

types of services in a single server.

In our constrained optimization formulae, φk,i,l and

λk,s,i,l are the two variables that need to be solved, rep-

resenting where to assign and how much workload should

be assigned from each front-end server. In addition, as we

know how requests are dispatched, we can determine how

many servers should be powered on. Clearly, when there is

no workload on a server, the server should be powered off.
In our model, we assume that server switching costs and

durations are negligible compared to the total energy con-

sumption and time of processing and transferring requests

during a time slot (e.g. one hour.)
The complexity of our objective function depends

heavily on the format of the utility function used to reflect a

request’s potential profit. Since multi-level step-downward

TUFs are representative and cover a large scenario diversity,

in what follows, we discuss three typical multi-level step-

downward utility functions, and corresponding solutions for

each of them. As stair TUFs need “if-else” descriptions,

which are unfortunately not well supported by some

popular non-linear mathematic programming (or some

constraint logic programming) solvers, e.g. Prolog, we

hence transform the “if-else” into a set of constraints.

1) One-level step-downward TUF: The first type of TUF

has a constant utility before deadline and can be expressed

as follows:

Uk = TUF (Rk) =

{
Uk,1 0 < Rk ≤ Dk

0 Rk > Dk

(9)

where, Uk is the utility of k-type requests. Uk,1 is a constant

value. Before delay time Rk exceeds deadline Dk, Uk equals

to Uk,1.
With one-level step-downward TUF, the objective

function (Equation 5) is simply a linear function. Even

though there is a nonlinear component in Equation 6,

it can be linearized through simple transformations, i.e.

φk,i,lCi,lμk,l − λk,s,i,l ≥ 1
Dk

. The whole problem can be

solved by using traditional linear programming solvers [28].

2) Two-level step-downward TUF: This type of TUF can

be expressed as follows:

Uk = TUF (Rk) =

⎧⎪⎨
⎪⎩

Uk,1 0 < Rk ≤ Dk,1

Uk,2 Dk,1 < Rk ≤ Dk

0 Rk > Dk

(10)

where Uk is the utility of k-type requests. Rk is the delay

time of k-type requests. Dk,q is the relative sub-deadline

for each utility level Uk,q , and q is the index of each level

(i.e. the q-th sub-deadline of k-type requests to achieve the

q-th utility level.) We assume that Dk is the final deadline

for k-type service requests. Executing a request becomes

meaningless once the delay time exceeds Dk.
Note that when the TUF employs a two-level step-

downward function, the objective function is no longer a

linear one. Furthermore, with Equation 10, it is challenging

to formulate the objective in one formula. To solve this prob-

lem, we transform Equation 10 to a set of extra constraints

as follows:

615

Uk ∈ {Uk,1, Uk,2}, (Uk,1 > Uk,2) (11)

(Rk −Dk,1) + �(Uk − Uk,1) <= 0 (12)

(Dk,1 + δ −Rk) + �(Uk,2 − Uk) <= 0 (13)

where, � is a large constant. δ is a constant time value which

is small enough. Dk,1 + δ indicates the time instance that

immediately follows time Dk,1.

To see the reason that Equation 10 can be equivalently

transformed to a set of constraints listed in Equations 11,

12 and 13, consider the following two cases:

• When 0 < Rk ≤ Dk,1

Under this condition, we readily have Rk −Dk,1 ≤ 0.

From Equation 11, Uk can be either Uk,1 or Uk,2.

Therefore, to satisfy Equation 13, we must have

Uk = Uk,1. In the meantime, Equation 13 can be

easily satisfied as long as � is large enough. To

this end, Uk = Uk,1 is the only solution when

0 < Rk ≤ Dk,1.

• When Rk > Dk,1

Under this condition, we readily have

Dk,1 + δ − Rk ≤ 0. Since Uk can be either

Uk,1 or Uk,2, to satisfy Equation 12, we must have

Uk = Uk,2. In the meantime, Equation 12 can be

easily satisfied as long as � is large enough. To this

end, Uk = Uk,2 is the only solution when Rk > Dk,1.

While we can transform Equation 10 to a set of constraints

listed in Equations 11 – 13, the problem is not over. Note

that Equation 11 is still a constraint that is not formulated

properly. To formulate the constraint in Equation (11), we

can define an integer variable x with

0 ≤ x ≤ 1 (14)

such that

U = xUk,1 + (1− x)Uk,2 (15)

With the extra constraints listed in Equations 11 - 13, it

is desirable to use traditional integer linear programming

solver to solve the problem. Unfortunately, this is not

feasible. From Equation 1, it is not difficult to see that

both Constraints 12 and 13 are non-linear formulae. To

solve this problem, we need to employ the constraint logic

programming solvers or nonlinear mathematic programming

solvers such as ILOG CPLEX [29] and AIMMS [30] to find

the near optimal solutions. With the help of the series of

constraints, people may avoid the difficulty of implementing

“if, else” statement in some solvers. Similar series can be

derived for multi-level step-downward TUFs.

3) Three or more level step-downward TUF: This type

of TUF can be formulated as follows:

Uk = TUF (Rk) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Uk,1 0 < Rk ≤ Dk,1

Uk,2 Dk,1 < Rk ≤ Dk,2

Uk,3 Dk,2 < Rk ≤ Dk,3

...

0 Rk > Dk

(16)

Similarly, Equation 16 can be transformed into a series of

new constraints as listed below:

Uk ∈ {Uk,1, Uk,2, Uk,3, ..., Uk,n}

(Rk −Dk,1) + �(Uk − Uk,1) <= 0
(Dk,1 + δ −Rk) + �(Uk,2 − Uk)(Uk − Uk,3) <= 0

(Rk −Dk,2) + �(Uk,2 − Uk)(Uk − Uk,1) <= 0
(Dk,2 + δ −Rk) + �(Uk,3 − Uk)(Uk − Uk,4) <= 0

(Rk −Dk,3) + �(Uk,3 − Uk)(Uk − Uk,2) <= 0
...

(Dk,n−1 + δ −Rk) + �(Uk,n − Uk) <= 0
(17)

where, Uk,1 . . . Uk,n, Dk,1 . . . Dk,n, �, and δ are the same

as those in a two-level step-downward function, and Uk,1 >
Uk,2 > · · · > Uk,n. Take n = 3 as an example, we have:

Uk ∈ {Uk,1, Uk,2, Uk,3}, (Uk,1 > Uk,2 > Uk,3) (18)

(Rk −Dk,1) + �(Uk − Uk,1) <= 0 (19)

(Dk,1 + δ −Rk) + �(Uk,2 − Uk)(Uk − Uk,3) <= 0 (20)

(Rk −Dk,2) + �(Uk,2 − Uk)(Uk − Uk,1) <= 0 (21)

(Dk,2 + δ −Rk) + �(Uk,3 − Uk) <= 0 (22)

Equations 19 and 22 are very similar to Equations 12 and

13. The newly added constraints are Equations 20 and 21.

Note that, similar to the analysis above, it is not difficult to

see that as long as � is large enough, we must have Uk =
Uk,1 when Rk ≤ Dk,1, and Uk = Uk,3, when Rk > Dk,2

to satisfy Constraints 19 – 22.

Now, consider the situation when Dk,1 < Rk ≤ Dk,2

(note that Uk,1 > Uk,2 > Uk,3.) Under this condition,

similarly, Equations 20 and 21 can be easily satisfied with

any Uk ∈ {Uk,1, Uk,2, Uk,3}. From Equation 19, we can

616

conclude that, to satisfy Equation 21, we must have

(Uk − Uk,1) < 0
that is, we have either

Uk = Uk,2 or Uk = Uk,3 (23)

Meanwhile, to satisfy Equation 22, we must have

(Uk,3 − Uk) < 0
that is, we have either

Uk = Uk,1 or Uk = Uk,2 (24)

Therefore, to satisfy Equations 19 - 22, we must have

Uk = Uk,2 when Dk,1 < Rk ≤ Dk,2.

We have shown that Equation 16 can be transformed

equivalently into Equation 17. The problem becomes how to

formulate Uk (Equation 18) using a general form. Similarly,

we can introduce an integer variable x, with

1 ≤ x ≤ n (25)

where, n is the number of step levels. Then Uk can be

formulated as follows:

Uk =

∑i≤n
i=1 [Πj≤n

j=0,j!=i(j − x)]Uk,i

(−1)xx!(n− x)!
(26)

As a result, Uk is successfully transformed into a series of

constraints as described in Equations 17, 25, and 26. Same

as above, together with our objective function, this constraint

series can be solved by using constraint logic programming

solvers or nonlinear programming solvers.

V. STUDY OF BASIC CHARACTERISTICS

In this section, we study the basic characteristics of our

new proposed approach using experiments with synthetic

workloads and electricity prices. Experiments with real

request traces and electricity prices will be shown in later

sections.

A. Experiment setup

Two approaches were implemented and compared. One

is called the “Optimized” approach, which is our new

proposed one. The other one, called “Balanced,” is a static

approach that evenly dispatches workloads and allocates

resources for every front-end server. During dispatching in

the balanced approach, every front-end server first seeks the

data center which has the lowest electricity price. Workloads

are assigned to the servers in that data center first until

its utilization is full. Then, workloads are forwarded to the

rest data centers in accordance with the order of electricity

prices, i.e. starting from the lowest data center to the highest

one. Transferring cost is not considered in this basic study.

In this experiment, we set four front-end servers to collect

and dispatch three types of service requests. There are three

heterogeneous data centers with their own local electricity

prices. Each data center has six homogeneous servers. For

simplicity, the TUFs used here are those with constant

values. Two groups of request arrival rates were set for sim-

ulating both light and heavy workloads (shown in Table II).

Other test parameters for each server are summarized in

Table III.

(a) Low arrival rates at every front-end server.

Front-end servers request 1 request 2 request 3
server1(#/second) 120 100 100
server2(#/second) 150 100 50
server3(#/second) 50 100 150
server4(#/second) 50 50 100

(b) High arrival rates at every front-end server.

Front-end servers request 1 request 2 request 3
server1(#/second) 1120 500 1000
server2(#/second) 1150 500 750
server3(#/second) 550 1100 1150
server4(#/second) 550 750 700

Table II
TWO REQUEST ARRIVAL SETS

Parameters Datacenter1 Datacenter2 Datacenter3
C 1 1 1

μ1, μ2, μ3

(#ofrequest/s)
150, 130, 160 130, 120, 150 130, 130, 160

cost1, cost2, cost3
(kWh)

2, 4, 6 1, 3, 5 1, 3, 6

p ($) 0.3 0.4 0.2

Table III
DATA CENTER PARAMETERS SETUP.

B. Experimental results

Figure 4(a) shows the comparison of net profits between

“Optimized” and “Balanced” in a light workload. From

the figure we can see that “Optimized” achieved a much

higher net profit than “Balanced.” Since “Optimized” takes

overall factors into consideration, by balancing the trade-

offs among various factors, e.g., profits, electricity prices,

server capacities, etc., “Optimized” significantly outperforms

“balanced” in terms of net profits. Similar for the heavy

workload situation, as shown in Figure 4(b), “Optimized”

obtains higher net profits. In addition, the result with heavy

workload shows a higher efficiency of computing resource

and energy utilization. Under the high arrival rate situation,

even though none of the approaches was able to process

all the requests, our proposed optimization-based approach

processed around 16% more requests than the static method.

Processing more requests leads to higher dollar costs on

energy consumption, however, our proposed approach was

able to cover the costs by obtaining more profits and resulted

in a high net profit.

617

(a) Net profit with a low arrival rate.

(b) Net profit with a high arrival rate.

Figure 4. Experimental results with a low arrival rate.

VI. STUDY WITH REAL TRACES USING ONE-LEVEL

STEP-DOWNWARD TUFS

A. Experiment setup

In this study, we employed a real trace of the 1998 World

Cup [31] to generate our service requests. We used a trace

that contains requests spanning four different days as the

service requests in a day collected by four front-end servers.

There are three data center locations providing services to

three types of requests dispatched from the four front-end

servers. Each data center has six homogeneous servers. We

simply shifted the request traces at a front-end server by

some time units to simulate the requests of three different

service types. The traces generated are shown in Figure 5.

Electricity prices, as shown in Figure 1, are the real data

collected from three locations, i.e. Houston, TX, Mountain

View, CA, and Atlanta, GA.

A data center’s processing capacities and distances among

front-end servers and data centers are generated randomly

and given in Tables IV and V, respectively. Processing en-

ergy costs (Table VI) are given based on the data provided by

Google’s research blog [25], which are around 0.0003kWh
for each web search request. TUFs and sub-deadlines for

each type of request are collected in Table VII. Transfer-

ring costs for the three types of requests are 0.003$/mile,

0.005$/mile, and 0.007$/mile. Even though parts of the

experiment setup were generated randomly, the experiment

does not loss the generality. “Optimized” and “Balanced”

approaches are compared.

(a) Request at front-end server 1.

(b) Request at front-end server 2.

(c) Request at front-end server3.

(d) Requests at front-end server4.

Figure 5. Request traces

capacity datacenter 1 datacenter 2 datacenter 3
request1(#/hour) 3000000 3000000 3600000
request2(#/hour) 3300000 3000000 3600000
request3(#/hour) 3000000 3600000 4200000

Table IV
PROCESSING CAPACITIES OF EACH DATA CENTER.

B. Experimental results

1) Net profit: We first checked the net profits achieved

by the two approaches. As explained in previous sections,

our new model takes overall factors into consideration

and provides a flexible request dispatching and resource

allocation strategy to obtain a high net profit. This claim

is supported by the results of running real request traces,

as shown in Figure 6. Our new proposed approach ran the

model once an hour (the length of a time slot is an hour).

618

Distance datacenter 1 datacenter 2 datacenter 3
front− end1(miles) 1000 2000 1500
front− end2(miles) 800 1500 1000
front− end3(miles) 500 1000 1000
front− end4(miles) 1000 1500 1000

Table V
DISTANCE AMONG FRONT-END SERVERS AND DATA CENTERS.

Processing cost datacenter 1 datacenter 2 datacenter 3
request1(kWh) 0.0003 0.0004 0.0006
request2(kWh) 0.0004 0.0003 0.0003
request3(kWh) 0.0006 0.0005 0.0005

Table VI
PROCESSING COST AT EACH DATA CENTER FOR DIFFERENT TYPES OF

SERVICES.

It is obvious that our approach significantly outperforms the

static approach in achieving a net profit.

Figure 6. Net profits obtained by two approaches.

2) Request dispatching: We then studied the request

dispatching of these two approaches, which are illustrated

in Figure 7. From the experiment setup, we can see that for

Request1, Datacenter1 and Datacenter2 have the same pro-

cessing capacity, and Datacenter3 has the highest processing

rate. In addition, the distances between Datacenter2 and the

four front-end servers are the longest. Taking the transferring

cost and processing capacities into consideration, Datacen-

ter1 and Datacenter3 were better choices than Datacenter2

for Request1. All things considered, Datacenter2 did pro-

cess some of the requests to improve the whole system’s

performance. However, the number of requests dispatched

to Datacenter2 was still much smaller than the numbers of

requests assigned to Datacenter1 and Datacenter3.

Request2 and Request3 assignments are omitted because

of space limit. Similar to the allocation of Request1 shown in

TUF Max value Deadline
request1 10 ($) 0.016 (hour)
request2 20 ($) 0.023 (hour)
request3 30 ($) 0.048 (hour)

Table VII
TUFS FOR EACH TYPE OF REQUEST.

(a) Request1 allocated to datacenter1.

(b) Request1 allocated to datacenter2.

(c) Request1 allocated to datacenter3.

Figure 7. Allocations for request 1.

Figure 7, in “Optimized” Datacenter1 and Datacenter3 had a

large part of the requests dispatched. Datacenter2 almost had

no request assigned. We can see that all request dispatchings

in these figures have similar results at the end of the traces

in both “Optimized” and “Balanced.” This explains why

“Optimized” and “Balanced” had similar net profits at the

end of the traces, as shown in Figure 6.

VII. STUDY WITH REAL TRACES USING TWO-LEVEL

STEP-DOWNWARD TUFS

A. Experiment setup

Finally, we conducted an experiment to analyze comput-

ing resource allocation and request dispatching effect for a

real Google workload trace that was recorded in 2010 [32].

This dataset traces over a 7-hour period. It consists of a set

of tasks, where each of them runs on a single machine. We

duplicated the trace and moved along time scale to simulate

two different types of requests. This time we implemented

two-step TUFs to represent the possible profits that may

be achieved by completing requests successfully. We im-

plemented our equation series derived in Sections IV-2 and

IV-3 in both ILOG CPLEX and AIMMS (constraint logic

programming solver and nonlinear programming solver.) In

our experiments, we assumed that two types of requests

619

come from one single front-end server, and then dispatched

to two data centers. There are six servers in each data center.

Electricity prices for the two locations follow the prices

of Houston and Mountain View, as shown in Figure 1.

We selected electricity prices in the time period between

14:00 and 19:00, because the prices in that period are

representative in terms of large price vibration. Processing

capacities of the two types of requests in each data center

were randomly generated and are shown in Table VIII.

Sub-deadlines and TUF values are shown in Table IX and

Table X, respectively. The power consumptions of the two

types of requests in each data center are summarized in

Table XI. We simply further assumed that the distances from

the front-end server to those data centers are 1000 miles
and 2000 miles. The transferring costs for the two types of

requests are 0.00003 and 0.00005 $/mile.

Capacity datacenter1 datacenter2
request1(#/hour) 80000 70000
request2(#/hour) 90000 100000

Table VIII
PROCESSING CAPACITIES OF EACH DATA CENTER.

Sub-deadline request1 request2
sub− deadline1(hour) 0.001 0.01
sub− deadline2(hour) 0.002 0.02

Table IX
SUB-DEADLINES OF THE REQUEST.

TUF values level1 level2 level3
request1($) 20 10 0
request2($) 30 10 0

Table X
TUF VALUES AT DIFFERENT STEPS OF THE REQUESTS.

Power datacenter1 datacenter2
request1(kWh) 0.0002 0.0003
request2(kWh) 0.0001 0.0003

Table XI
POWER CONSUMPTION OF THE REQUESTS IN EACH DATA CENTER.

B. Experimental results

1) Net profit: Net profit achieved from the real trace using

our optimized approach is shown in Figure 8. The optimized

approach outperforms the balanced approach significantly.

It clearly illustrates that our optimization efficiently uses

electricity price difference to establish its superiority. In

Figure 8, electricity price differences between Hour2 and

Hour4 are larger than those at other times. The advantage

of our approach is boosted at those time instances.

Figure 8. Net profits obtained by two approaches with two-step TUFs.

2) Request dispatching: The major difference between

these two approaches comes from the request dispatching.

As shown in Figure 9, it is obvious that “Optimized”

rationally dispatched requests according to electricity prices,

transferring costs, and processing capacities of each data

center. All Request1 and Request2 were completed in “Op-
timized.” On the contrary, 99.45% request1 and 90.19%

request2 were completed in “Balance.” Even though “Op-
timized” spent 7.74% more on the cost, it achieved a

higher net profit. This observation is reasonable, since our

optimization approach optimizes the trade off among several

target components instead of optimizing each of them.

3) Workload effect: We then increased data center ca-

pacities in order to simulate a relatively low workload

situation (i.e. all requests in two approaches can be com-

pleted successfully.) The result is shown in Figure 10(a). A

relatively high workload situation was tested as well (i.e. no

approach can complete all requests.) The result is shown in

Figure 10(b). These figures prove that our optimization is

superior regardless of workloads.

4) Computation time: We kept the experiment setup

except changing the number of servers in each data center to

service randomly generated number of service requests. We

ran each server set five times and their average values were

used to represent the computation times. Results are shown

in Figure 11. As can be seen in the figure, the computation

time increased exponentially.

VIII. CONCLUSIONS

Cloud computing systems are proliferating. They provide

increasingly diverse network-based services and applica-

tions. A large number of requests increases both the scale of

data centers and their energy consumptions. Efficient request

dispatching and resource allocation algorithms are in urgent

need by service providers for achieving high net profits.

In this paper, we present an optimization-based profit-

and cost-aware approach to maximize the net profits that

service providers may achieve when operating distributed

cloud data centers in multi-electricity-market environments.

We developed a system model to effectively capture the

relationship among several factors, such as SLA, cost on

620

(a) Request1 allocation using balanced approach.

(b) Request2 allocation using balanced approach.

(c) Request1 allocation using optimized approach.

(d) Request2 allocation using optimized approach.

Figure 9. Allocations of the requests.

energy consumption, service request dispatching and re-

source allocation. One key research challenge is to formulate

the problem analytically. We proposed a novel approach

to transform a step-downward type of utility function to

a series of well-defined constraints, so that the formulated

problem can be solved with existing solvers. By considering

overall factors, our approach judiciously dispatches requests

and allocates computing resources. Significant net profit

improvement can be achieved by efficiently using energy and

computing resources. The model can be easily implemented

and extended for accommodating more complex systems.

IX. ACKNOWLEDGEMENT

This work is supported in part by NSF under projects

CNS-0969013, CNS-0917021, CNS-1018108, CNS-

1018731, and CNS-0746643.

(a) Net profits comparison with a relatively low workload.

(b) Net profits comparison with a relatively high workload.

Figure 10. Low/High workload situations.

Figure 11. Computation times of different server sets.

REFERENCES

[1] Asfandyar Qureshi, Rick Weber, Hari Balakrishnan, John
Guttag, and Bruce Maggs. Cutting the electric bill for
internet-scale systems. SIGCOMM Comput. Commun. Rev.,
39(4):123–134, August 2009.

[2] Lei Rao, Xue Liu, Marija Ilic, and Jie Liu. Mec-idc: joint
load balancing and power control for distributed internet data
centers. In Proceedings of the 1st ACM/IEEE International
Conference on Cyber-Physical Systems, ICCPS ’10, pages
188–197, New York, NY, USA, 2010. ACM.

[3] Jeffrey S. Chase, Darrell C. Anderson, Prachi N. Thakar, and
Amin M. Vahdat. Managing energy and server resources
in hosting centers. In In Proceedings of the 18th ACM
Symposium on Operating System Principles SOSP, pages
103–116, 2001.

[4] Peijian Wang, Yong Qi, Xue Liu, Ying Chen, and Xiao Zhong.
Power management in heterogeneous multi-tier web clusters.
In Parallel Processing (ICPP), 2010 39th International Con-
ference on, pages 385 –394, sept. 2010.

[5] Zhen Liu, Mark S. Squillante, and Joel L. Wolf. On maximiz-
ing service-level-agreement profits. In EC ’01: Proceedings
of the 3rd ACM conference on Electronic Commerce, pages
213–223, New York, NY, USA, 2001. ACM.

[6] Danilo Ardagna, Marco Trubian, and Li Zhang. Sla based
resource allocation policies in autonomic environments. J.
Parallel Distrib. Comput., 67:259–270, March 2007.

621

[7] Li Zhang and Danilo Ardagna. Sla based profit optimization
in autonomic computing systems. In ICSOC ’04: Proceedings
of the 2nd international conference on Service oriented com-
puting, pages 173–182, New York, NY, USA, 2004. ACM.

[8] Minghong Lin, Adam Wierman, Lachlan L. H. Andrew, and
Eno Thereska. Dynamic right-sizing for power-proportional
data centers. pages 1098–1106. IEEE, 2011.

[9] Osman Sarood and Laxmikant V. Kale. A ’cool’ load balancer
for parallel applications. In Proceedings of 2011 International
Conference for High Performance Computing, Networking,
Storage and Analysis, SC ’11, pages 21:1–21:11, New York,
NY, USA, 2011. ACM.

[10] Kien Le, Ozlem Bilgir, Ricardo Bianchini, Margaret
Martonosi, and Thu D. Nguyen. Managing the cost, energy
consumption, and carbon footprint of internet services. In
Proceedings of the ACM SIGMETRICS international confer-
ence on Measurement and modeling of computer systems,
SIGMETRICS ’10, pages 357–358, New York, NY, USA,
2010. ACM.

[11] Kien Le, Ricardo Bianchini, Jingru Zhang, Yogesh Jaluria,
Jiandong Meng, and Thu D. Nguyen. Reducing electricity
cost through virtual machine placement in high performance
computing clouds. In Proceedings of 2011 International
Conference for High Performance Computing, Networking,
Storage and Analysis, SC ’11, pages 22:1–22:12, New York,
NY, USA, 2011. ACM.

[12] Lei Rao, Xue Liu, Le Xie, and Wenyu Liu. Minimizing elec-
tricity cost: Optimization of distributed internet data centers in
a multi-electricity-market environment. In INFOCOM, 2010
Proceedings IEEE, pages 1 –9, march 2010.

[13] E. D. Jensen, C. D. Locke, and H. Tokuda. A time-driven
scheduling model for real-time systems. In IEEE Real-Time
Systems Symposium, 1985.

[14] Haisang Wu, Umut Balli, Binoy Ravindran, and E.D. Jensen.
Utility accrual real-time scheduling under variable cost func-
tions. pages 213–219, Aug. 2005.

[15] Shuo Liu, Gang Quan, and Shangping Ren. On-line schedul-
ing of real-time services with profit and penalty. In Proceed-
ings of the 2011 ACM Symposium on Applied Computing,
SAC ’11, pages 1476–1481, New York, NY, USA, 2011.
ACM.

[16] J. Wang and B. Ravindran. Time-utility function-driven
switched ethernet packet scheduling algorithm, implementa-
tion, and feasibility analysis. IEEE Transactions on Parallel
and Distributed Systems, 15(1):1–15, 2004.

[17] Shuo Liu, Gang Quan, and Shangping Ren. On-line real-time
service allocation and scheduling for distributed data centers.
In Services Computing (SCC), 2011 IEEE International Con-
ference on, pages 528 –535, july 2011.

[18] Greg Welch and Gary Bishop. An introduction to the kalman
filter. Technical report, Chapel Hill, NC, USA, 1995.

[19] D. Gmach, J. Rolia, L. Cherkasova, and A. Kemper. Capacity
management and demand prediction for next generation data
centers. In Web Services, 2007. ICWS 2007. IEEE Interna-
tional Conference on, pages 43 –50, july 2007.

[20] Daniel Gmach, Jerry Rolia, Ludmila Cherkasova, and Al-
fons Kemper. Workload analysis and demand prediction
of enterprise data center applications. In Proceedings of
the 2007 IEEE 10th International Symposium on Workload
Characterization, IISWC ’07, pages 171–180, Washington,
DC, USA, 2007. IEEE Computer Society.

[21] Shaolei Ren, Yuxiong He, and Fei Xu. Provably-efficient
job scheduling for energy and fairness in geographically
distributed data centers. In Distributed Computing Systems
(ICDCS), 2012 IEEE 32nd International Conference on,
pages 22 –31, june 2012.

[22] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D.
Joseph, Randy Katz, Andy Konwinski, Gunho Lee, David
Patterson, Ariel Rabkin, Ion Stoica, and Matei Zaharia. Above
the clouds: A berkeley view of cloud computing. UC
Berkeley, 2009.

[23] Adam Nair, Jayakrishnan Wierman and Bert Zwart. Pro-
visioning of large scale systems: The interplay between
network effects and strategic behavior in the user base. under
submission.

[24] Leonard Kleinrock. Queueing Systems, volume I: Theory.
Wiley Interscience, 1975. (Published in Russian, 1979.
Published in Japanese, 1979. Published in Hungarian, 1979.
Published in Italian 1992.).

[25] Powering a google search@ONLINE, January 2009.

[26] Joxan Jaffar and Michael J. Maher. Constraint logic program-
ming: A survey. Journal of Logic Programming, 19/20:503–
581, 1994.

[27] J. Jaffar and J.-L. Lassez. Constraint logic programming. In
Proceedings of the 14th ACM SIGACT-SIGPLAN symposium
on Principles of programming languages, POPL ’87, pages
111–119, New York, NY, USA, 1987. ACM.

[28] Glpk. http://www.gnu.org/software/glpk/.

[29] Ilog. http://www-01.ibm.com/software/websphere/ilog/.

[30] Aimms. http://www.aimms.com/.

[31] M. Arlitt and T. Jin. 1998 world cup web site access logs”,
1998.

[32] Joseph L. Hellerstein. Google cluster data, Jan 2010.
Posted at http://googleresearch.blogspot.com/2010/01/google-
cluster-data.html.

622

