
On-Line Real-Time Service Allocation and Scheduling for Distributed Data Centers

Shuo Liu Gang Quan
Electrical and Computer Engineering Department

Florida International University
Miami, FL, 33174

{sliu005, gang.quan}@fiu.edu

Shangping Ren
Computer Science Department
Illinois Institute of Technology

Chicago, IL, 60616
ren@iit.edu

Abstract—With the prosperity of Cluster Computing, Cloud
Computing, Grid Computing, and other distributed high per-
formance computing systems, Internet service requests become
more and more diverse. The large variety of services plus
different Quality of Service (QoS) considerations make it
challenging to design effective allocate and scheduling algo-
rithms to satisfy the overall service requirements, especially
for distributed systems. In addition, energy consumption issue
attracts more and more concerns. In this paper, we study
a new energy efficient, profit and penalty aware allocation
and scheduling approach for distributed data centers in a
multi-electricity-market environment. Our approach efficiently
manages computing resources to minimize the processing and
transferring energy dollar cost in an electricity price varying
environment. Our extensive experimental results show the new
approach can significantly cut down the energy consumption
dollar cost and achieve higher system’s retained profit.

Keywords-real-time scheduling; service-oriented; distributed
data center; TUF; retained profit;

I. INTRODUCTION

Internet services become more pluralism with the continu-
ous developments of distributed systems. The large variety of
services’ subcomponents, as well as different combinations
of computing resources distributed widely on the Internet,
make requests hard to be satisfied, especially in a real-
time manner. The dramatically increased service requests
and their complexity demand high computation time and
energy consumption. Besides achieving the desired Quality
of Services, today’s service providers also need to take
care of their processing efficiency and energy consumption
issue. The drastically increased service requests these years
directly results in the electricity power consumption sky-
rocketing. The energy consumption has become a severe
issue across the entire information and communications tech-
nology sector [1]. The electricity consumption consumed by
data centers was accounted for approximately 1.2% of total
consumed by United States in 2005 [2], [3], [4]. 0.4% of
total electricity consumption in broadband-enabled countries
was consumed by transmission and switching networks [1],
[5]. The increased demand on data center does increase the
service providers’ revenue, but on the other hand, service

providers must also make sure to have their energy con-
sumption expense in control.

In North America market, the electricity prices vary a
lot based on the different power generating technology,
delivery method and coverage. Even though in the same
region, the prices may vary significantly during a day. In
order to save the construction and electricity investment,
many service provider companies, which provides storage,
processing, or other services, build their data centers in
different locations where there is less population and near
to the power plant. Take Google as an example, it has data
centers in Portland, Houston, and Atlanta, etc. This helps to
ensure the power supply and at the same time bring down
their energy consumption dollar cost.

Several researches have been conducted for guaranteeing
QoS with energy consumption minimization on data centers.
In [6], the authors modeled the service system based on
the Queueing Theory. By optimizing the task allocation and
the number of powered on servers in each data center, their
method successfully reduces the electricity cost in a multi-
electricity-market. The authors in [7] presented a Dynamic
Voltage Scaling (DVS) based power control mechanism for
heterogeneous distributed systems. Their approach properly
sets the number of servers that should be powered on and
the frequency level at which the working servers should run.
Both works model the delay constraint described based on
the classic queueing model. While delay constraint can be
used to model QoS requirement, it is not as effective for
services requests that are sensitive to “timeliness”. To this
end, the Time Utility Function (TUF) can be used to more
accurately describe the timing related QoS requirements.

Time Utility Function is suitable for on-line real-time
services, which are mostly soft real-time in nature. TUF,
first proposed by Jensen [8], is a function that defines
the different values when completing a task at different
time (e.g. [9], [10], [11], [12], [13], [14], [15], [16]). The
limitation of employing one single TUF, however, is that it
can only model the benefit or gain to successfully complete
a task before its deadline. It is difficult to model the penalty
when a time sensitive task misses its deadline, or sometimes,
when such a task has to be aborted. To this end, Yu et

2011 IEEE International Conference on Services Computing

978-0-7695-4462-5/11 $26.00 © 2011 IEEE

DOI 10.1109/SCC.2011.105

528

Figure 1. A Simple System Architecture

al. propose to use two TUFs, one to define the gain a
system may get when it successfully completes processing
a task and another one to reflect the penalty the server may
suffer from when a task misses its deadline or is aborted.
Several work based on this model have been conducted
and the results show the good management of the real-time
tasks [18].

In this paper, we propose a new on-line real-time service
allocation and scheduling algorithm for distributed data
centers in a multi-electricity-market environment. We use
a model similar to that in [17] to model the processing
cost at data centers and data transferring cost in Internet
service provider’s networks. Based on this model, we de-
veloped a scheduling and allocation method to balance the
trade off between the system’s retained profit and system
performance. The experimental results show that our method
can effectively reduce the power consumption and, at the
same time, increase the system’s retained profit. It is worth
mentioning that our work is suitable for both homogeneous
and heterogeneous data centers and can be easily extended
to accommodate more complex service requests.

The remainder of the paper is organized as follows.
Section II introduces the preliminaries. Section III gives
our proposed global-local task allocation and scheduling.
Experimental results are shown in section IV. Conclusion
will be given at the end in section V.

II. SYSTEM MODEL

Our system architecture consists of a front end server,
a task allocator, and several data centers at different lo-
cations. Figure. 1 shows the overall system architecture.
The front end server receives the service requests from
the Internet. The task allocator assigns the tasks according
to some metrics to different data center locations. The
services are processed and hosted in the data centers. The
energy consumption includes the energy consumption for the

computation in data centers and that for data transferring
during the allocation process.

The real-time tasks, similar to the one in [17], consists of
a single sequence of randomly arrived real-time tasks Γ =
{τ1, τ2, ..., τn}, with parameters of τi defined as follows.
• Si: The size of the data that supports the task to be

processed;
• [Bi,Wi]: The best case execution time Bi and the worst

case execution time Wi of τi;
• Di: The relative deadline of τi;
• fi(T): The probability density function for the execu-

tion time of τi;
• Gi(t): The profit TUF, which represents the profit

accrued when a task is completed at time t (rela-
tive to its arrival time). We assume Gi(t) is a non-
increasing unimodal function before its deadline, i.e.
G(ti) ≥ G(tj) if ti ≤ tj , and Gi(t) = 0 if t > Di.

• Li(t): The penalty TUF, which represents the penalty
suffered when a task is discarded at time t (relative to its
arrival time). We assume Li(t) is a non-decreasing uni-
modal function before its deadline, i.e. L(ti) ≤ L(tj)
if ti ≤ tj , and a task is immediately discarded once it
missed its deadline.

• PCi(t): The processing energy consumption.
• TCi(t): The data transferring energy consumption.
• Pr(t): The electricity price in a multi-electricity-

market, which varies with locations and times.
For the power consumption in processing and data trans-

ferring step, we used the model provided in [1], the process-
ing power consumption is given in Equation 1:

ES = 1.5× TS × PS . (1)

where TS is the time for the server to finish the task
processing, PS is the power of the server. The factor of
1.5 is used to account for the cooling energy consumption.

The energy consumed by the data transferring in Internet
service provider’s network is give in Equation. 2

EI = 6×(
3Pes

Ces
+
Pbg

Cbg
+
Pg

Cg
+

2Ppe

Cpe
+

2× 9Pc

Cc
+

8Pw

2Cw
). (2)

where Pes is the Ethernet switches’ power, Pbg is broadband
gateway routers routers’ power, Pg is the power of data
center gateway routers, Ppe is the power of provider edge
routers, Pc and Pw are the power of core routers and Wave-
length Division Multiplexed (WDM) fiber links transport
equipment, respectively. Ces, Cbg , Cg , Cpe, Cc, and Cw

are the capacities of the corresponding equipment in bits
per second. The details of this power model can be found
in [1]. They per-bit energy consumption of transmission and
switching for a public distributed system was estimated to
be around 2.7µJ/b.

The tasks in the system are associated with a profit
function, a penalty function, a processing energy cost func-
tion, and an Internet data transferring energy cost function

529

with function values varying with time. Therefore, whenever
a task is allocated to the data centers, it incurs a data
transferring cost. While the tasks are being executed they
have a potential to gain profit, it also has a potential to
encounter a penalty at a later time. Once a task starts its
execution, a processing energy cost is incurred. The system
performance is therefore evaluated by its retained profit,
which is the total profit subtracts the penalty and energy
costs.

Our problem can be formally defined as: Given a task
set Γ = {τ1, τ2, ..., τn} as described above, develop an on-
line real-time allocation and scheduling method in order to
maximize the retained profit for distributed data centers.

Since the task mode has variable execution times, execu-
tion time for a specific task is not known deterministically.
We do not know if executing the task will lead to positive
profit or loss. In order to make a proper task allocation and
schedule policy, we need to generate a metric which is called
the expected retained profit to help us make decisions.

Given a task τi with arrival time of ri, let its predicted
starting time be T , expected execution time is Ci. Then the
potential profit (Gi(T)) to execute τi can be represented as

Gi(T) =
∫ Di−(T−ri)

Bi

Gi(t+ (T − ri))fi(t)dt. (3)

Similarly, the potential loss (Li(T)) to execute τi can be
represented as

Li(T) = Li(D)
∫ Wi

Di−(T−ri)

fi(t)dt. (4)

Therefore, the expected accrued utility (Ui(T)) to execute
τi can be represented as

Ui(T) = Gi(T)− Li(T). (5)

To account for the power consumed in the process and
transfer procedures, we subtract power consumption dollar
costs from the expected accrued utility. The expected re-
tained profit is thus given as below

ERi(T) = Ui(T)− PCi(Ci)− TCi(ri). (6)

where PCi is the dollar cost for processing. TCi is the
transferring dollar cost. Ci is task τi’s execution time, and
ri is task τi’s arrival time.

A task can be accepted or chosen for execution when
ERi(T) > 0, which means that the probability of to obtain
positive retained profit is no smaller than that to incur a
loss. We can further limit the task acceptance by imposing
a threshold (δ) to the expected accrued utility, i.e. a task is
accepted or can be chosen for execution if

ERi(T) ≥ δ. (7)

We call δ as the expected retained profit threshold.

Furthermore, since the task execution time is not known a
prior, the data centers need to decide whether to continue or
abort the execution of a task. The longer the task is executed,
the closer the data centers are to the completion point of the
task. At the same time, however, the longer the task executes,
the higher penalty the system has to endure if the task cannot
meet its deadline. To determine the appropriate time to abort
a task, we employ another metric, i.e. the critical point.

Assume task τi starts its execution at T . Then the potential
profit at T ′ > T (i.e.G̃i(T ′)) can be represented as

G̃i(T ′) =
∫ Di−(T−ri)−(T ′−T)

1

Gi(t+(T−ri))fi(t)dt. (8)

Similarly, the potential loss at T ′ > T (i.e.L̃i(T ′)) can be
represented as

L̃i(T ′) = Li(D)
∫ Wi−T ′

Di−(T−ri)

fi(t)dt. (9)

Therefore, the expected accrued utility at T ′ > T (i.e.
Ũi(T ′)) can be represented as

Ũi(T ′) = G̃i(T ′)− L̃i(T ′). (10)

And the expected retained profit is

ẼRi(T ′) = Ũi(T ′)− PCi(Ci)− TCi(ri). (11)

We can make ẼRi(t0) = δ and solve for t0. Then when
executing task τi to time t0, the expected profit equals its
expected loss plus expected power consumption dollar cost.
We call t0 as the critical point for executing task τi. Due to
the non-increasing nature of G̃i(t), the non-negative nature
of P̃i(t), and the constant expected process cost PCi(t) and
transfer cost TCi(t), ẼRi(t) is monotonically decreasing
as t increases. Therefore, it is not difficult to see that the
continuous execution of τi beyond the critical point will
more likely bring a loss rather than a positive profit.

III. OUR APPROACH

In Section. II, we introduced our system model. Our pro-
posed approach is given in details in this section. We employ
a global−local policy for task allocation and scheduling.
When a new task arrives, the front end server receives it first.
Then, it is sent to the task allocator. The allocator decides
which data center is the best one for the new arrival task,
and assigns the task accordingly. In each data center, the
scheduling will be carried out locally for the tasks assigned
to the data centers.

A. Global Task Allocation

Task allocation part works when a new task arrives. It
either assigns the task to one of the data centers, or rejects
the task which is estimated that they can not meet the QoS
requirement. The details of the task allocation algorithm

530

Algorithm 1 TASK ALLOCATION

1: Input: Let τi be the new arrival task, and let taij ,
Cij , tsij be the arrive time, expected execution time
and estimated starting time of τi in data center DCj ,
respectively. Let current time be t. ERij is the estimated
retained profit of the task at data center j. Let the
expected utility density threshold be δ.

2:
3: if A new task, i.e. τi arrives then
4: for Location j = 1 to n do
5: Generate the speculated execution order for τi in

DCj , and get its tsij ;
6: Calculate its ERij based on its tsij for each data

center;
7: end for
8: Find the maximum ERij .
9: if MaxERij > δ then

10: Assign the task to the location j;
11: end if
12: if MaxERij ≤ δ then
13: Reject τi;
14: end if
15: end if

are shown in Algorithm 1. Suppose we have n data center
locations.

When a new task arrives, a speculated execution order
of the tasks allocated to a specific processor is generated.
Based on this order, the new task has an estimated starting
time at this data center. Using this time and the task’s
arrival time, we can calculate out its potential profit and
penalty, its processing energy consumption dollar cost, and
the data transferring energy consumption dollar cost during
the allocation procedure. The combination of these values
gives the expected retained profit of the task. The highest
expected retained profit is selected and the task is assigned to
the corresponding location. If the highest ER is smaller than
the threshold, the task is rejected immediately. Otherwise, it
has a high possibility to make the system suffer from a loss.
The speculated order is generated by using Algorithm. 2.

When generating the speculated execution order we first
calculate the expected retained profit for each task in the
ready queue based on the expected finishing time of the
current running task. Then the task with the largest one
is assumed to be the first task that will be executed after
the current task is finished. Based on this assumption, we
then calculate the expected retained profit for the rest of
the tasks in the ready queue and select the next task. This
process continues until all tasks in the ready queue are put in
order. When completed, we essentially generate a speculated
execution order for the tasks in the ready queue.

Algorithm 2 SPECULATED EXECUTION ORDER

1: Input:Let Γ = {τ1, τ2, ..., τk} be the accepted tasks in
the ready queue, and let ri, Ci represent the arrival time
and expected execution time of τi. Let the current time
be t

2: Output: The new list Γ′ = {τ ′1, τ ′2, ..., τ ′k} with the spec-
ulated execution order and their corresponding expected
retained profit ÊR(τ ′j) for τ ′j , 1 ≤ j ≤ k.

3:
4: if A task τ0 is being executed then
5: T = r0 + C0;
6: else
7: T = t;
8: end if
9: while Γ is not empty do

10: for Each task C in Γ do
11: Calculate ERi(T) based on equation (3), (4), (5),

and (6);
12: end for
13: Select τj with the highest ERj(T);
14: Add τj to the end of Γ′;
15: ÊR(τ ′j) = ERj(T);
16: T = T + Cj ;
17: Remove τj from Γ;
18: end while

B. Local Task Scheduling

When tasks arrive at the data centers, the scheduling
follows the UA criteria, which try to maximize the accrued
utility of the system by successfully completing the tasks in
time, to schedule the tasks.

The details of our scheduling is described in Algorithm3.
The scheduling algorithm works at every scheduling point,
which includes new tasks arrival, tasks completion, tasks
critical time, and task’s deadline missing point. When there
is a new job arrives, the scheduler fist checks its expected re-
tain profit at the time when current running task is expected
to be finished. If the expected retained profit is larger than
the threshold, it is accepted. if not, it is rejected directly.
After adding the new task into the ready queue of the data
center, the scheduler generates a speculated execution order
by using Algorithm 2, and based on this order removes the
tasks that can not satisfy the system’s requirement. This
step is similar to the one in task allocation procedure. The
difference is that in local scheduling, the scheduler has
to take care of the other waiting tasks to see if some of
them need to be removed or not. When a task finishes its
execution, it contributes to the system with a positive profit.
The finished task also causes processing and transferring
cost. At this time instance, the scheduler selects a new task
which has the highest expected retained profit to run. The
scheduler works the same when the task reaches to a task’s

531

Algorithm 3 LOCAL TASK SCHEDULING

1: Input: Let {τ1, τ2, ..., τk} be the accepted tasks in the
ready queue, and let Ci be the expected execution time
of τi, and ERi be the expected retained profit. Let
current time be t and let τ0 be the task currently being
executed. Let the expected utility threshold be δ.

2:
3: if A new task, i.e. τn arrives then
4: Accept τn if ERn(C0) > δ;
5: Reject τn if ERn(C0) ≤ δ;
6: end if
7: if τn is added into the ready queue, generate the spec-

ulated order for the data center; then
8: Remove the tasks whose ER ≤ δ;
9: end if

10:
11: if τ0 is completed then
12: Choose the highest expected retain profit task τi to

run.
13: Remove τj in the ready queue if ERj(Ci) ≤ δ;
14: end if
15:
16: if t = the critical time of τ0, or τ0 misses its deadline

then
17: Abort τ0 immediately;
18: Choose the highest expected retain profit task τi to

run.
19: Remove τj in the ready queue if ERj(Ci) ≤ δ;
20: end if

critical time or at deadline missing point. New task selection
followed by a scheduling point check. In this step, scheduler
further removes the tasks that can not satisfy the system’s
requirement at the selected task’s estimated finishing time.

Our new approach’s performance is investigated using
simulation. The results are given in next section.

IV. EXPERIMENT

We use simulation experiments to investigate the per-
formance of our proposed approach. Two representative
approaches were implemented and compared. One is called
the “Optimized” approach, which is our proposed one. The
second is the naive approach, called “Averaged”. In the naive
approach, at the task allocation step, the tasks are allocated
according to the total expected execution times summation
of different data centers. The new coming task is assigned
to the data center which has the shortest expected execution
time summation. At each data center, the tasks are executed
in a first-come-fist-serve order.

A. Experiment Set Up

We evaluate our proposed method’s performance based on
several known Google’s IDC locations with real-life elec-

0 5 10 15 20 25
0

20

40

60

80

Time of a day

$
/M

W
h

Houston, texas

Mountain View, California

Atlanta, GA

Figure 2. Multi-electricity-market prices for three Google’s data center
locations.

tricity prices (Houston, Texas, Mountain View, California,
and Atlanta, Georgia). The test cases in our experiments
were randomly generated. Specifically, S, B, W , and D
were randomly generated such that they are uniformly
distributed within interval of [1MegaByte, 2MegaByte],
[1, 10], [30, 50], and [40, 50], respectively. The execution
time of a task is assumed to be evenly distributed between
interval of [B,W], i.e. f(t) = 1

W−B . G, L were assumed
to be linear functions, i.e. G(t) = −ag(t−D) in the range
of [0, D] and L(t) = al(t − ta), where ta is task’s arrival
time. The gradient for G(t) and L(t), i.e. ag and al were
randomly picked from the interval of [0.5, 1] and [0.1, 0.3],
respectively. The power P of the homogeneous servers is set
to be 1KW for the computing ease. The per-bit transferring
energy cost is 2.7 µJ/bit. PC(te) = 1.5× te×P ×Pr(ts),
where te is the execution time, ts is the time when the
task starts processing. TC(ta) = 6 × (3Pes

Ces
+ Pbg

Cbg
+ Pg

Cg
+

2Ppe

Cpe
+ 2×9Pc

Cc
+ 8Pw

2Cw
)×S×Pr(ta), which can be simplified

as TC(ta) = 2.7µJ/bit × S × Pr. We use arrival time
here because once the task arrives, it will be immediately
allocated or rejected. Task release times’ intervals follow the
exponential distribution with µ = 2. Pr we used is shown in
Figure. 2 comes from [6], they simulate their approach with
the real multi-electricity-market price. It tracks the prices
of three Google’s data center locations. The retained profit
threshold δ is set to 0. We conducted several different groups
of experiments to study and compare the performances of
different approaches. The results are reported as follows.

B. Experiment Results

We first conducted an experiment using a thousand task
sets, each with a hundred tasks. We ran our proposed
optimized approach and the naive approach on the same
task sets. Our new optimized approach aims at increasing the
system’s accrued retained profit by successfully completing
tasks and reducing the tasks’ power consumption dollar costs
at the same time.

532

0 10 20 30 40 50
−1000

−500

0

500

1000

Task sets

T
o

ta
l
u

ti
lit

y
 (

$
)

Optimized
Average

Figure 3. Comparison of accrued retained profit.

To show the details clearer, Figure 3 displays only the
results of the first fifty sets. We can tell that when compared
with the naive approach, our optimized approach has a
much better performance at attaining higher accrued retained
profit.

Figure 4 compares the profits gotten by two approaches.
Our optimized approach achieves higher profit since the op-
timized scheduling finishes more tasks in time successfully
than naive scheduling does. Figure 5 indicates the penalty
comparison. From Figure 5, we can see that our approach
also outperforms the naive approach in the penalty control
by discarding less running tasks and missing less deadlines.
In our approach, the scheduler carefully accepts potential
tasks and judiciously discards running task if it has high
possibility to cause loss to the system. Moreover, in the task
allocation process, there is an early screening step at the
allocation step. The tasks which can not find a proper data
center location will be rejected (even the largest expected
retained profit for the task is smaller the the threshold δ). The
two approaches transfer different number of tasks. This is the
reason that why data centers in our optimized approach host
less tasks and results in less processing and transferring cost,
which is proven by Figure. 6(a) and Figure. 6(b). Figure 6(a)
reflects the higher processing efficiency (less hosting tasks
and higher profit) of optimized approach. Because of the
scheduler’s predictability, the tasks that have potential to
bring loss are discarded during execution or removed while
waiting in the queue. On the contrary, the naive approach
always try to finish every executing tasks or keep waiting
tasks until they meet their deadline. The lack of forecast
induces low processing efficiency. In Figure. 7 we can see
our optimized approach completes more tasks than the naive
approach does.

In Figure. 8, the histogram shows the number of assigned
tasks of three different data centers. DC3 has the highest

0 10 20 30 40 50
0

200

400

600

800

1000

Task sets

T
o

ta
l
p
ro

fi
t
($

)

Optimized
Average

Figure 4. Comparison of profit

0 10 20 30 40 50
0

200

400

600

800

1000

Task sets

T
o
ta

l
p
e
n

a
lt
y
 (

$
)

Optimized
Average

Figure 5. Comparison of penalty

average electricity price. The figure shows the average
number of tasks assigned to DC3 in optimized approach
is significantly smaller than that in naive approach, and also
smaller than the number of tasks assigned into DC1 or DC2
in the optimized approach. As shown in the figure, the total
number of tasks allocated in optimized approach is less than
the number assigned by naive method. As we have explained
previously that in the task allocation step, some tasks, which
can not find a proper host data center, are rejected instead
of being sent to the destinations. Some certain amount of
energy is saved here because less task allocations take place
in optimized approach. This has already been shown in
Figure. 6(b).

V. CONCLUSION

In this paper, we proposed a novel approach to allocate
and schedule tasks for distributed system with the goal to
improve the system’s profit and optimize the system cost,

533

0 10 20 30 40 50
25

30

35

40

45

50

Task sets

T
o

ta
l
p

ro
c
e

s
s
in

g
 c

o
s
t

($
)

Optimized
Average

(a) Processing power consumption

0 10 20 30 40 50
100

110

120

130

140

150

160

Task sets

T
o
ta

l
tr

a
n

s
fe

rr
in

g
 c

o
s
t

($
)

Optimized
Average

(b) Transferring power consumption

Figure 6. Power consumption comparison

Optimized Average
0

5

10

15

20

25

30

Different approaches

A
v
e
ra

g
e
 n

u
m

b
e
r

o
f
c
o
m

p
le

te
d
 t
a
s
k
s

Figure 7. Comparison of number of completed tasks

Location 1 Location 2 Location 3
0

10

20

30

40

Datacenter locations

N
u
m

b
e
r

o
f
ta

s
k
s
 a

llo
c
a
te

d

Optimized

Average

Figure 8. Number of task allocation in different data centers.

including the electricity cost in a multi-electricity-market
environment. Different from traditional UA scheduling al-
gorithms, we adopt two Time Utility Functions to model
the cost and benefit associating with processing the service
request, one for the task’s potential profit and the other
for its potential penalty. In addition, besides the processing
power consumption, we add one more consumption caused
by data transferring in internet service provider’s network.
With the combination of these factors, the approach can
carefully accept and allocate tasks, judiciously discard exe-
cuting tasks and remove pending tasks. Hence our approach
can effectively reduce the waste of energy dollar cost and
increase the system’s retained profit. Moreover, our new
proposed approach is suitable for both homogeneous and
heterogeneous systems. The formulas in this work are easy
to be extended to support more constraints that a distributed
system may encounter.

VI. ACKNOWLEDGEMENT

This work is supported in part by NSF under projects
CNS-0969013, CNS-0917021, CNS-1018108, CNS-
1018731, and CNS-0746643.

REFERENCES

[1] J. Baliga, R. Ayre, K. Hinton, and R. Tucker, “Green cloud
computing: Balancing energy in processing, storage, and
transport,” Proceedings of the IEEE, vol. 99, no. 1, pp. 149
–167, jan. 2011.

[2] J. Koomey, “Estimating total power consumption by servers in
the u.s. and the world,” 2007, Oakland, CA, Analytics Press.

[3] M. Gupta and S. Singh, “Greening of the internet,” in Pro-
ceedings of the 2003 conference on Applications, technolo-
gies, architectures, and protocols for computer communica-
tions, ser. SIGCOMM ’03, 2003, pp. 19–26.

[4] GeSI, “Smart 2020: Enabling the low carbon economy in the
information age,” The Climate Group London, 2008.

[5] J. Baliga, R. Ayre, K. Hinton, W. V. Sorin, and R. S. Tucker,
“Energy consumption in optical ip networks,” Journal of
Lightwave Technology, vol. 27, pp. 2391–2403, july 2009.

534

[6] L. Rao, X. Liu, M. Ilic, and J. Liu, “Mec-idc: joint load
balancing and power control for distributed internet data
centers,” in Proceedings of the 1st ACM/IEEE International
Conference on Cyber-Physical Systems, ser. ICCPS ’10.
New York, NY, USA: ACM, 2010, pp. 188–197. [Online].
Available: http://doi.acm.org/10.1145/1795194.1795220

[7] P. Wang, Y. Qi, X. Liu, Y. Chen, and X. Zhong, “Power man-
agement in heterogeneous multi-tier web clusters,” in Parallel
Processing (ICPP), 2010 39th International Conference on,
sept. 2010, pp. 385 –394.

[8] E. D. Jensen, C. D. Locke, and H. Tokuda, “A time-driven
scheduling model for real-time systems,” in IEEE Real-Time
Systems Symposium, 1985.

[9] R. K. Clark, “Scheduling dependent real-time activities,”
Ph.D. dissertation, Carnegie Mellon University, 1990.

[10] C. D. Locke, “Best-effort decision making for real-time
scheduling,” Ph.D. dissertation, Carnegie Mellon University,
1986.

[11] P. Li, “Utility accrual real-time scheduling: Models and
algorithms,” Ph.D. dissertation, Virginia Polytechnic Institute
and State University, 2004.

[12] P. Li, H. Wu, B. Ravindran, and E. Jensen, “A utility accrual
scheduling algorithm for real-time activities with mutual ex-
clusion resource constraints,” Computers, IEEE Transactions
on, vol. 55, no. 4, pp. 454–469, April 2006.

[13] H. Wu, “Energy-efficient utility accrual real-time scheduling,”
Ph.D. dissertation, Virginia Polytechnic Institute and State
University, 2005.

[14] H. Wu, U. Balli, B. Ravindran, and E. Jensen, “Utility accrual
real-time scheduling under variable cost functions,” Aug.
2005, pp. 213–219.

[15] H. Wu, B. Ravindran, and E. D. Jensen, “Energy-efficient,
utility accrual real-time scheduling under the unimodal arbi-
trary arrival model,” in ACM Design, Automation, and Test in
Europe (DATE), 2005.

[16] D. E. Irwin, L. E. Grit, and J. S. Chase, “Balancing risk and
reward in a market-based task service,” in Proceedings of the
13th IEEE International Symposium on High Performance
Distributed Computing, 2004, pp. 160–169.

[17] Y. Yu, S. Ren, N. Chen, and X. Wang, “Profit and
penalty aware (pp-aware) scheduling for tasks with variable
task execution time,” in Proceedings of the 2010 ACM
Symposium on Applied Computing, ser. SAC ’10. New York,
NY, USA: ACM, 2010, pp. 334–339. [Online]. Available:
http://doi.acm.org/10.1145/1774088.1774159

[18] S. Liu, G. Quan, and S. Ren, “On-line scheduling of real-time
services for cloud computing,” Services, IEEE Congress on,
vol. 0, pp. 459–464, 2010.

535

