
On-line Scheduling of Real-Time Services with Profit and
Penalty

Shuo Liu Gang Quan
Electrical and Computer Engineering Department

Florida International University
Miami, FL, 33174

{sliu005, gang.quan}@fiu.edu

Shangping Ren
Computer Science Department
Illinois Institute of Technology

Chicago, IL, 60616
ren@iit.edu

ABSTRACT
In this paper, we study a new family of real-time service oriented
scheduling problems. The real time tasks are scheduled non pre-
emptively with the objective of maximizing the total utility. Differ-
ent from the traditional utility accrual scheduling problem that each
task is associated with only a single time utility function (TUF),
two different TUFs—a profit TUF and a penalty TUF— are asso-
ciated with each task, to model the real-time services that not only
need to reward the early completions but also need to penalize the
abortions or deadline misses. We present two scheduling heuristics
to judiciously accept, schedule, and abort real-time services when
necessary to maximize the accrued utility. Our extensive experi-
mental results show that our proposed algorithms can significantly
outperform the traditional scheduling algorithms such as the Earli-
est Deadline First (EDF), the traditional utility accrual scheduling
algorithms and an earlier scheduling approach based on a similar
model.

1. INTRODUCTION
With the proliferation of the Internet has come the opportunity

to provide real-time services over the cloud infrastructure [1, 8,
14]. From media on-demand service by Netflix to on-line gaming
by Nintendo, from Amazon’s e-commerce to Google’s free turn-
by-turn direction service over the phone, it is fair to say that we are
entering a new era of real-time computing. These real-time services
are usually built on Internet-based infrastructure, not only because
they need to be highly available, but also because they generally
rely on large data sets that are most conveniently hosted in large
data centers. According to Tim O’Reilly [13], the entire Internet
is becoming not only a platform, but also an operating system it-
self, and “the future belongs to services that respond in real time
to information provided either by their users or by nonhuman sen-
sors.” [1]

To improve the performance of real-time services, which are
mostly soft real-time in nature, one approach is to employ the tra-
ditional utility accrual (UA) approach [5, 12]. However, traditional
utility accrual (UA) approach [7] uses only one Time Utility Func-
tion (TUF) to indicate the task’s importance, and most UA schedul-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’11 March 21-25, 2011, TaiChung, Taiwan.
Copyright 2011 ACM 978-1-4503-0113-8/11/03 ...$10.00.

ing methods (e.g. [10, 11, 15, 16, 17]) imply that the aborted tasks
neither increase nor decrease the accrued value or utility of the sys-
tem.

We believe that, to improve the performance of real-time services
over the Internet, it is important to not only measure the profit when
completing a task in time, but also account for the penalty when a
task is aborted or discarded. In addition, the time at which a real-
time service is aborted is also important. First, the more service
requests are discarded, or the longer a client waits fruitlessly, the
lower the quality of service the client receives. As a result, the ser-
vice provider has to pay higher cost, either in the forms of monetary
compensation or losing future service requests from the unsatisfied
client. Second, before a task is aborted or discarded, it needs to con-
sume system sources, including network bandwidth, storage space,
and processing power, and thus can directly or indirectly affect the
system performance. This is especially true if we assume real-time
applications may be dissected and migrated across the entire com-
puting and network infrastructure [4, 9]. Therefore, if a real-time
task is deemed to miss its deadline with no positive semantic gain, a
better choice should be one that can detect it and discard it as soon
as possible.

In this paper, we study the real-time service oriented scheduling
problem based on the task model similar to the one proposed by Yu
et al. [18]. According to this model, a task is associated with two
different TUFs, a profit TUF (G(t)) and a penalty TUF (L(t)) such
that the system takes a profit (determined by its profit TUF) if the
task completes by its deadline, and suffers a penalty (determined
by its penalty TUF) if the task misses its deadline or is dropped
before its deadline. Two non-preemptive scheduling heuristics are
presented to optimize the accrual utility when scheduling a set of
real-time service requests. The first approach borrows the concept
of “opportunity cost” [3] from economics to evaluate the fulfill-
ment of a real-time service request. The second approach employs
a more sophisticated but robust method to formulate the potential
gain by developing a speculated execution order for the ready tasks.
In addition to carefully choosing the ready task to run, our schedul-
ing methods judiciously discard pending requests and abort task ex-
ecutions, and therefore can achieve better performance. Our exper-
imental results show that the proposed algorithms can significantly
outperform the traditional scheduling approaches such as the Earli-
est Deadline First (EDF), the traditional utility accrual scheduling
algorithms such as the Generic Utility Scheduling(GUS) [10], the
Risk/Reward [6], and a previous scheduling approach based on a
similar model, i.e. the Profit Penalty aware scheduling (PP-aware
scheduling) [18].

In what follows, section 2 describes the models we used in the
paper and presents a motivating example. Section 3 introduces our
scheduling approaches in details. Experiment results are discussed

1476



in Section 4, and section 5 concludes the paper.

2. PRELIMINARY
The real-time tasks considered in this paper is similar to that pro-

posed by Yu et al. [18]. Specifically, we consider a single sequence
of randomly arrived real-time tasks Γ = {τ1, τ2, ..., τn}, with τi
defined using the following parameters:

• [Bi,Wi]: The best case execution timeBi and the worst case
execution time Wi of τi;

• Di: The relative deadline of τi;

• fi(T ): The probability density function for the execution
time of τi;

• Gi(t): The profit TUF, which represents the profit accrued
when a task is completed at time t (relative to its arrival
time). We assume Gi(t) is a non-increasing unimodal func-
tion before its deadline, i.e. G(ti) ≥ G(tj) if ti ≤ tj , and
Gi(t) = 0 if t > Di.

• Li(t): The penalty TUF, which represents the penalty suf-
fered when a task is discarded at time t (relative to its arrival
time). We assume Li(t) is a non-decreasing unimodal func-
tion before its deadline, i.e. L(ti) ≤ L(tj) if ti ≤ tj , and a
task is immediately discarded once it missed its deadline.

Note that, even though the deadline of a task can be implicitly
defined using appropriate profit and penalty TUFs, we opt to list
the deadline explicitly as a parameter for ease of presentation. As
shown above, a task is associated with both a profit function and
a penalty function with function values varying with time. There-
fore, while executing a task has a potential to gain profit, it also has
a potential to encounter a penalty at a later time. The system per-
formance is therefore evaluated by its total utility gain after penalty
is deducted. Formally, our problem can be formulated as follows.

PROBLEM 1. Given a task set Γ = {τ1, τ2, ..., τn} as described
above, develop on-line, non-preemptive scheduling methods such
that the total accrued utility is maximized.

Problem 1 is NP-hard since a simpler version of this problem,
i.e. the total weighted completion time scheduling problem [2], is
shown to be NP-hard. To show that the commonly used scheduling
policy such as the EDF or the traditional utility accrual approach
such as the GUS [10] become ineffective to address this problem,
consider the example shown in Figure 1.

Assume that two real-time service requests arrive at the same
time (t = 0) with their characteristics shown in Figure 1. We as-
sume that the actual processor time of each request is evenly dis-
tributed between the interval of its best case and worst case exe-
cution time. To make the example more concrete, we assume that
the actual processing times for these two requests are 50 and 60,
respectively.

When EDF is applied, τ1 has a higher priority than τ2 and is
executed first. It completes at t = 50 with profit of G1(50) =
180 − 2 × 50 = 80. Then τ2 starts its execution. At t = 100,
it misses its deadline and will incur more penalty if its execution
continues. Therefore, the execution of τ2 is aborted at t = 100
with penalty of L2(100) = 2 × 100 = 200. The total utility to
process these two requests is therefore 80− 200 = −120.

The GUS algorithm chooses the task with the largest potential
gain density to execute first. Under our task model, the potential

Figure 1: Three different schedules for two real-time tasks τ1
and τ2 arriving at the same time t = 0.

gain of τ1 and τ2, i.e. G(τ1) and G(τ2), can be calculated as:

G(τ1) =

∫ 80

20

(180− 2t)× 1

80− 20
dt = 80

G(τ2) =

∫ 120

20

(400− 3t)× 1

120− 20
dt = 190

At t = 0, we have no knowledge of the actual execution time
of τ1 and τ2, a reasonable estimate would be the one using their
expected values, i.e. 50 and 70, respectively. As a result, τ2 is
chosen to execute first since its potential gain density 190/70 is
higher than that of τ1, i.e. 80/50. It completes at t = 60 with profit
of G2(60) = 400− 3× 60 = 220. Then τ1 starts its execution. At
t = 80, it misses its deadline and is aborted to prevent even higher
loss. The total utility to process these two requests is therefore
220− 80 = 140.

An astute reader may immediately point out that, after τ2 com-
pletes at t = 60, it is less likely that τ1 can complete by its dead-
line, given that its best case execution time is 20. Therefore, τ1
should be immediately aborted at t = 60 with a total utility gain
of 220 − 60 = 160. Note that, after τ2 is selected to execute first,
its expected execution time would be 70. Given the expected ex-
ecution time of τ1 being 50, it is more likely that τ1 will miss its
deadline. Therefore, a wise scheduling decision would discard it
at t = 0 with total gain of 220 in this case, as the third schedule
shown in Figure 1.

In our example, we can see that the EDF has the worst perfor-
mance since it makes scheduling decisions solely based on tasks’
deadlines. The traditional utility accrual scheduling method takes
the individual value function into consideration and therefore can
achieve better performance. The problem, however, is that the tra-
ditional utility accrual scheduling approaches (such as GUS) fail
to take the abortion penalty and the timing for the abortion penalty
into consideration. Clearly, how to select the appropriate task to
run so as to maximize the profit and how to discard real-time tasks
as soon as possible in overloaded situations in order to control the
penalty are vital for our research problem.

3. OUR APPROACH
In this section, we present our on-line non-preemptive schedul-

ing solutions to address the problem defined in the previous sec-
tion. Since the execution of a task may gain positive profit or suffer

1477



penalty and thus degrade the overall computing performance, ju-
dicious decisions must be made with regard to executing a task,
dropping or aborting a task, and when to drop or abort a task. In
what follows, we present two metrics to measure the potential gain
when executing a real-time task, and based on which, we develop
two scheduling algorithms.

3.1 The opportunity cost based utility metric
Our first utility metric is built upon the concept of opportunity

cost [3] in economics. In economics, the opportunity cost refers
to the value associated with the next best available choice that one
has to give up after making a choice. When scheduling a set of
real-time tasks at t = T , let expected gain of running τi alone
be Ui(T ) and its opportunity cost be OCi(T ). We can define the
system utility Ũ(τi, T ), i.e. the utility to pick τi to run at t = T , as

Ũ(τi, T ) = Ui(T )−OCi(T ). (1)

The problem becomes how to calculate Ui(T ) and OCi(T ).
Given a task τi with its arrival time of ri, let its predicted starting

time be T . Then the expected profit (Gi(T )) to execute τi can be
represented as

Gi(T ) =

∫ ∞
0

Gi(t+ (T − ri))fi(t|t+ T < D)dt (2)

=

∫ Di

Bi

Gi(t+ (T − ri))fi(t)dt (3)

Similarly, the expected loss (Li(T )) to execute τi can be repre-
sented as

Li(T ) = Li(D)P (t+ T > D) (4)

= Li(D)

∫ Wi

Di−(T−ri)

fi(t)dt. (5)

Therefore, the expected utility Ui(T ) can be represented as

Ui(T ) = Gi(T )− Li(T ). (6)

When Ui(T ) > 0, it means that the probability to obtain positive
gain is no smaller than that to incur a loss if we choose to execute
τi at t = T . Since Gi(T ) is a monotonic decreasing function of T ,
Li(T ) is a monotonic increasing function of T , Ui(T ) must be a
monotonic decreasing function of T . Hence there exists a t0 such
that

Ui(t0) = 0. (7)

The time t = t0 is called the critical point. Apparently, when
t > t0, it is more likely that it will incur a loss rather than a gain
if we choose to execute τi. We can further relax equation (7) by
imposing a threshold (δ), i.e.

Ui(t0) > δ. (8)

We call δ as the utility threshold.
We next introduce how to formulate the opportunity cost when

choosing to run task τi at t = T . The original concept of “oppor-
tunity cost” is the value for the next best available choice. It is hard
to identify the “next best choice” since the exact reason we need
the opportunity cost is to set up the preference order when choos-
ing tasks to run. In our metric, the opportunity cost is calculated as
the decay of expected utilities by other tasks. Specifically, let the
expected utility of τj at t = T be Uj(T ). Then if we choose τi to
execute at t = T and after its completion, the expected utility of τj
is reduced to Uj(T +Ci), where Ci is the expected execution time
of τi. Provided we can remove the task timely when its expected

utility is less than zero, we thus define the opportunity cost to run
τi at t = T , i.e. OCi(T ), as

OCi(T ) =
1

n− 1

n∑
j=1,j 6=i

max (Uj(T )− Uj(T + Ci), 0). (9)

With both Ui(T ) and OCi(T ) formulated, we are now ready to in-
troduce our scheduling algorithm. Our scheduling algorithm works
at scheduling points that include: the arrival of a new task, the com-
pletion of the current task, and the critical point of the current task.
The detailed algorithm is described in Algorithm 1.

Algorithm 1 THE SCHEDULING ALGORITHM BASED ON OPPOR-
TUNITY COST

1: Input: Let {τ1, τ2, ..., τk} be the accepted tasks in the ready
queue, and let Ci be the expected execution time of τi. Let
current time be t and let τ0 be the task currently being executed.
Let the expected utility threshold be δ.

2:
3: if A new task, i.e. τp arrives then
4: Accept τp if Up(C0) > δ;
5: Reject τp if Up(C0) ≤ δ;
6: Remove τj in the ready queue if Uj(C0) ≤ δ;
7: end if
8:
9: if τ0 is completed then

10: Choose τi with the highest system utility, i.e. Ũ(τi, t) =

maxk Ũ(τk, t).
11: Remove τj in the ready queue if Uj(C0) ≤ δ;
12: end if
13:
14: if t = the critical time of τ0 then
15: Abort τ0 immediately;
16: Choose τi with the highest system utility, i.e. Ũ(τi, t) =

maxk Ũ(τk, t).
17: Remove τj in the ready queue if Uj(C0) ≤ δ;
18: end if

When a new job arrives, its expected utility is calculated based on
equation (6). If its expected utility is larger than the pre-set utility
threshold, it is accepted, or rejected otherwise. At the same time,
the expected utility of the tasks in the ready queue are checked
and the task with expected utility less than the threshold is dis-
carded. When the current running task completes, the task in the
ready queue with the highest system utility is chosen to be exe-
cuted. The choice of the new running task will change the expected
utility for each task in the ready queue, and the task with expected
utility lower than the threshold is discarded. When the time reaches
the critical point of the current running task, it implies that it will
most likely incur utility less than the utility threshold and is thus
worthless of continued execution. In that case, the task is imme-
diately discarded, and a new task will be chosen to be executed.
The complexity of Algorithm 1 comes from the calculation of the
system utility values for the task set, with the complexity of O(n2)
where n is the number of tasks in the ready queue.

3.2 The speculation based utility metric
From equation (2), (4) and (6), we can clearly see that the po-

tential utility of running a task depends heavily on variable T , i.e.
the time when the task can start. If we know the execution order
and thus the expected starting time for tasks in the ready queue, we
will be able to quantify the expected utility of each task more accu-

1478



rately. In this section, we develop our second utility metric based
on a speculated execution order of the tasks in the ready queue.

Algorithm 2 GENERATING THE SPECULATED EXECUTION OR-
DER AND THE EXPECTED UTILITY FOR TASK IN THE READY
QUEUE

1: Input:Let Γ = {τ1, τ2, ..., τk} be the accepted tasks in the
ready queue, and let ri, Ci represent the arrival time and ex-
pected execution time of τi. Let the current time be t

2: Output: The new list Γ′ = {τ ′1, τ ′2, ..., τ ′k}with the speculated
execution order and their corresponding expected utility Û(τ ′j)
for τ ′j , 1 ≤ j ≤ k.

3: if A task τ0 is being executed then
4: T = r0 + C0;
5: else
6: T = t;
7: end if
8: while Γ is not empty do
9: for Each task C in Γ do

10: Calculate Ui(T ) based on equation (2), (4) and (6);
11: end for
12: Select τj with the highest Uj(T );
13: Add τj to the end of Γ′;
14: Û(τj) = Uj(T );
15: T = T + Cj ;
16: Remove τj from Γ;
17: end while

The general idea to generate the speculated execution order is
as follows. We first calculate the expected utility for each task in
the ready queue based on the expected finishing time of the current
running task. Then the task with the largest one is assumed to be
the first task that will be executed after the current task is finished.
Based on this assumption, we then calculate the expected utilities
for the rest of the tasks in the ready queue and select the next task.
This process continues until all tasks in the ready queue are put in
order. When completed, we essentially generate a speculated exe-
cution order for the tasks in the ready queue and, at the same time,
calculate the corresponding expected utility for each task. The de-
tailed algorithm is described in Algorithm 2. The scheduling al-
gorithm based on our speculated utility metric is very similar to
Algorithm 1 and is thus omitted. The complexity of the scheduling
algorithm mainly comes from Algorithm 2, i.e. O(n2) with n the
number of tasks in the ready queue. In the next section, we inves-
tigate and compare the performance of these two algorithms using
simulation under a variety of different conditions.

4. EXPERIMENTS
In this section, we use experiments to investigate the perfor-

mance of our proposed algorithms. The following six represen-
tative scheduling approaches were implemented and compared:

• EDF: The execution order of the tasks are determined based
on the EDF non-preemptive scheduling policy;

• GUS: The execution order of the tasks is determined by the
potential utility density, or the accrued utility per unit time [10];

• PP: This is a previous approach developed based on a metric
called Risk Factor [18]. It adopts essentially the same system
models used in this paper;

• RR: The Risk/reward approach described in [6]. This is
a utility accrual approach that allows the utility value to be
negative;

• PPOC: This is the scheduling approach (i.e. Algorithm 1)
built upon the utility metric developed based on the opportu-
nity cost;

• PPS: This is the scheduling approach built upon the specu-
lated utility based metric as discussed in section 3.2.

4.1 Experiment set up
The test cases in our experiments were randomly generated. Specif-

ically, B, W , and D were randomly generated such that they are
uniformly distributed within interval of [1, 10], [30, 50], and [40, 60],
respectively. The execution time of a task is assumed to be evenly
distributed between interval of [B,W], i.e. f(t) = 1

W−B
. G, L

were assumed to be linear functions, i.e. G(t) = −ag(t − D) in
the range of [0, D] and L(t) = alt. The gradient for G(t) and
L(t), i.e. ag and al were randomly picked from the interval of
[4, 10] and [1, 5], respectively. Task release times’ intervals follow
the exponential distribution with µ = 5. The utility threshold δ
is set to 0. We conducted four different groups of experiments to
study and compare the performance of differen approaches under
different conditions. The results are reported as follows.

4.2 Experimental results
We first constructed 1000 task sets, each of which consists of

ten tasks. The six different scheduling algorithms were applied to
these same task sets. The overall utility, the total profit, and the total
penalty by each scheduling approach were collected and plotted in
Figure 2(a), Figure 2(b), and Figure 2(c), respectively. For ease of
presentation, we only show 50 sets of results in the figures.

Figure 2(a) clearly shows that both PPOC and PPS can signif-
icantly outperform the other scheduling approaches. It is not sur-
prising that, from Figure 2(c), we can see that the penalty-conscious
approaches, i.e. PP, PPOC, and PPS, are more effective in control-
ling the penalty than the other three, i.e. EDF, GUS and RR. PPOC
and PPS are particularly effective in penalty control. It is interest-
ing to note from Figure 2(b) and 2(c) that, while the profit by PPOC
and PPS are comparable or even inferior to the other approaches,
the penalty are dramatically decreased. This is because tasks that
would potentially lead to high penalty are declined or discarded at
early stages of its execution. As a result, the overall utility are sig-
nificantly higher than other approaches. As shown in Figure 2(a),
with more sophisticated scheduling algorithms to formulate the po-
tential utility more accurately, and thus to make more appropriate
decisions in task acceptation, abortion, and discard, PPOC and PPS
improve upon PP by more than 120% on average. When compar-
ing PPOC and PPS, we can see from Figure 2(a) that PPS is slightly
better than PPOC, but PPS almost dominates PPOC in penalty con-
trol.

Next, we study the performance of different scheduling approaches
under different workload. In this group of experiments, we varied
the number of tasks for each test set from 10 to 50 with an interval
of 10, while other parameters remained the same. For each task
number, 1000 task sets were generated, and the total utility by each
approach were collected and plotted in Figure 3.

As the number of tasks increases, the ready queue becomes crowded.
Figure 3 clearly shows that the performance of EDF, GUS and RR
deteriorate quickly due to their poor performance in controlling the
penalty. At the same time, we can see clearly from Figure 3 that
both PPOC and PPS outperform the other four algorithms. Figure 3

1479



(a) Total utility

(b) Total profit

(c) Total penalty

Figure 2: The comparison of total utility, profit, and penalty by
different scheduling approaches.

Figure 3: The total utility with different workload.

Figure 4: The total utility with different µ.

shows the effects on the 1000 task sets’ total utility of different val-
ues of task load.

We continued to study the scheduling performance under differ-
ent burstiness conditions. In this experiment, we restored the num-
ber of tasks to 10 and varied the task arrival intervals’ exponential
distribution parameter, µ, from 1 to 10. By changing µ, we essen-
tially changed the intervals between task arrivals. Figure 4 shows
the effects on the 1000 task sets’ total utility of different values of
µ.

When µ increases from 1 to 10, the number of tasks that comes
within the same length of interval decreases and overall workload
reduces. From Figure 4, we can see that all the methods have a
better performance as µ increases, and PPOC and PPS significantly
outperform other approaches.

We further studied the impacts of threshold to the scheduling
performance. As indicated in section 3, the threshold plays an im-
portant role in task admission, abortion, and execution. The larger
the threshold, the smaller the number of tasks can be accepted and
executed, and the smaller the penalty the system will suffer. To
study this impact, we conducted another set of experiments. We
generated test cases as before, but changed the threshold from−30
to 30, with an interval of 5. The total utility were collected and
shown in Figure 5. Figure 5 shows the effects on the 1000 task
sets’ total utility of different values of threshold.

It is interesting to see that the highest utility does not always oc-
cur at the point when the threshold equals zero. With the help from
the figure, we can tell that the highest utility will seldomly occur at
the point with the lowest nor the highest threshold value. The lower
the threshold, the more tasks can be accepted to the system and get
executed. This helps to improve the value of total profit. However,

1480



(a) Threshold effect with µ = 5

(b) Threshold effect with µ = 1

Figure 5: The total utility varies with the threshold.

having more tasks accepted into ready queue may potentially in-
crease the penalty cost. On the contrary, using a higher threshold
helps to control the potential penalty but may limit the total profit
that can be obtained. As a result, the total utility is a tradeoff be-
tween the two as shown in Figure 5. From Figure 5 we can see
the significant impact that the different threshold values may have
for the overall performance. In addition, Figure 5 shows that the
threshold effect on tasks are different with different tasks’ param-
eters. How to choose an appropriate threshold value for a specific
task set to strike the balance between the profit and penalty and
hence achieve the optimal accrued utility is an interesting problem
and needs further study.

5. CONCLUSIONS
The popularity of the Internet has grown enormously, which has

presented a great opportunity for providing real-time services over
the Internet. Considering the tremendously large scale of the inter-
net infrastructure, it is necessary that not only the profit but also the
cost when executing real-time tasks should be taken into consider-
ation during the resource management process. Our experimental
results clearly show that the traditional utility accrued approaches
become ineffective in this regard.

In this paper, we present two novel utility accrued scheduling
approaches which account for not only the gain by completing a
real-time task in time but also the cost when discarding or abort-
ing the task. Our first approach is built upon a metric developed
according to the opportunity cost concept. The second approach is
developed around a speculation-based metric for expected utility.
Our scheduling algorithms carefully choose highly profitable tasks
to execute, and also aggressively remove tasks that potentially lead
to large penalty. Our extensive experimental results clearly show
that our proposed algorithms can significantly outperform the tra-
ditional EDF approach, the traditional utility accrued approaches,
and an earlier heuristic approach based on a similar profit/penalty
task model.

6. ACKNOWLEDGEMENT
This work is supported in part by NSF under projects CNS-

0969013, CNS-0917021, CNS-1018108, CNS-1018731, and CNS-
0746643.

7. REFERENCES
[1] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz,

A. Konwinski, G. Lee, D. Patterson, A. Rabkin, I. Stoica,
and M. Zaharia. Above the clouds: A berkeley view of cloud
computing. UC Berkeley, 2009.

[2] I. D. Baev, W. M. Meleis, and A. E. Eichenberger.
Algorithms for total weighted completion time scheduling.
In SODA ’99: Proceedings of the tenth annual ACM-SIAM
symposium on Discrete algorithms, pages 852–853, 1999.

[3] Z. Bodie, R. Merton, and D. Cleeton. Financial Economics.
Prentice Hall, New York, 2008.

[4] F. Casati and M. Shan. Definition, execution, analysis and
optimization of composite e-service. IEEE Data
Engineering, 2001.

[5] R. K. Clark. Scheduling dependent real-time activities. PhD
thesis, Carnegie Mellon University, 1990.

[6] D. E. Irwin, L. E. Grit, and J. S. Chase. Balancing risk and
reward in a market-based task service. In Proceedings of the
13th IEEE International Symposium on High Performance
Distributed Computing, pages 160–169, 2004.

[7] E. D. Jensen, C. D. Locke, and H. Tokuda. A time-driven
scheduling model for real-time systems. In IEEE Real-Time
Systems Symposium, 1985.

[8] E. Knorr and G. Gruman. State of the internet operating
system. http://radar.oreilly.com, 2010.

[9] H. Kuno. Surveying the e-services technical landscape. In
2nd International Workshop on Advanced Issues of
E-Commerce and Web-based Information Systems, 2000.

[10] P. Li. Utility Accrual Real-Time Scheduling: Models and
Algorithms. PhD thesis, Virginia Polytechnic Institute and
State University, 2004.

[11] P. Li, H. Wu, B. Ravindran, and E. Jensen. A utility accrual
scheduling algorithm for real-time activities with mutual
exclusion resource constraints. Computers, IEEE
Transactions on, 55(4):454–469, April 2006.

[12] C. D. Locke. Best-effort decision making for real-time
scheduling. PhD thesis, Carnegie Mellon University, 1986.

[13] T. O’Reilly. What cloud computing really means. O’Reilly
Radar, http://www.infoworld.com, 2010.

[14] A. Weiss. Computing in the clouds. NetWorker, 11(4):16–25,
2007.

[15] H. Wu. Energy-Efficient utility Accrual Real-Time
Scheduling. PhD thesis, Virginia Polytechnic Institute and
State University, 2005.

[16] H. Wu, U. Balli, B. Ravindran, and E. Jensen. Utility accrual
real-time scheduling under variable cost functions. pages
213–219, Aug. 2005.

[17] H. Wu, B. Ravindran, and E. D. Jensen. Energy-efficient,
utility accrual real-time scheduling under the unimodal
arbitrary arrival model. In ACM Design, Automation, and
Test in Europe (DATE), 2005.

[18] Y. Yu, S. Ren, N. Chen, and X. Wang. Profit and penalty
aware (pp-aware) scheduling for tasks with variable task
execution time. In SAC2010 - Track on Real-Time System
(RTS’2010).

1481


