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Abstract

In this paper, we introduce a novel utility accrual
scheduling algorithm for real-time cloud computing ser-
vices. The real-time tasks are scheduled non-preemptively
with the objective to maximize the total utility. The most
unique characteristic of our approach is that, different from
the traditional utility accrual approach that works under
one single time utility function (TUF), we have two different
TUFs—a profit TUF and a penalty TUF—associated with
each task at the same time, to model the real-time appli-
cations for cloud computing that need not only to reward
the early completions but also to penalize the abortions or
deadline misses of real-time tasks. Our experimental re-
sults show that our proposed algorithm can significantly
outperform the traditional scheduling algorithms such as
the Earliest Deadline First (EDF), the traditional utility
accrual scheduling algorithm and an early scheduling ap-
proach based on the similar model.

1 Introduction

Cloud computing has the potential to dramatically
change the landscape of the current IT industry [1, 5, 10].
While there exist different interpretations and views on
cloud computing [1, 5, 10], it is less disputable that be-
ing able to effectively exploit the computing resources in
the clouds to provide computing service at different qual-
ity levels is essential to the success of cloud computing. For
real-time applications and services, the timeliness is a major
criterion in judging the quality of service. Due to the nature
of the real-time applications over the Internet, the timeliness
here refers to more than the deadline guarantee as that for
the hard real-time systems. In this regard, an important per-
formance metric for cloud computing can thus be the sum
of certain value or utility that is accrued by processing all
real-time service requests.

To improve the performance of cloud computing, one

approach is to employ the traditional utility accrual (UA)
approach [3, 9]. Jensen et al. first proposed to associate
each task with a Time Utility Function (TUF), which indi-
cates the task’s importance [4]. Specifically, the TUF de-
scribes the value or utility accrued by a system at the time
when a task is completed. Based on this model, there have
been extensive research results published on the topic of UA
scheduling [7, 8, 11, 12, 13, 14, 15]. While Jensen’s defi-
nition of TUF allows the semantics of soft time constraints
to be more precisely specified, all these variations of UA-
aware scheduling algorithms imply that utility is accrued
only when a task is successfully completed, and the aborted
tasks neither increase nor decrease the accrued value or util-
ity of the system.

We believe that, to improve the performance of cloud
computing, it is important to not only measure the profit
when completing a job in time, but also account for the
penalty when a job is aborted or discarded. Note that, before
a task is aborted or discarded, it consumes system sources
including network bandwidth, storage space, and process-
ing power, and thus can directly or indirectly affect the sys-
tem performance. This is especially true for cloud comput-
ing in considering the large possibility of migration of a task
within the clouds for reasons such as the economy consid-
erations [2, 6]. If a job is deemed to miss its deadline with
no positive semantic gain, a better choice should be one that
can detect it and discard it as soon as possible.

Recently, Yu et al. [17] proposed a task model that con-
siders both the profit and penalty that a system may incur
when executing a task. According to this model, a task
is associated with two different TUFs, a profit TUF and a
penalty TUF. The system takes a profit (determined by its
profit TUF) if the task completes by its deadline, and suf-
fers a penalty (determined by its penalty TUF), if it misses
its deadline or is dropped before its deadline. It is tempting
to use negative values for the penalties, and thus combine
both TUFs into one single TUF. However, a task can be
completed or aborted and hence can produce either a profit
value or a penalty value. Mathematically, if there existed



such a single function, it would imply that a single value
in its domain was mapped to two values in its range, vio-
lating that it is a function. Therefore, one utility function
cannot accurately represent both the profit and penalty in-
formation when executing a task. There are also some other
penalty related models proposed in the literature. For ex-
ample, Bartal et al. studied the on-line scheduling problem
when penalties have to be paid for rejected jobs [16]. This
model, however, does not account for the penalty to drop
the task before its deadline.

In this paper, we present a novel utility accrual, non-
preemptive scheduling algorithm of real-time services
based on a task model similar to the profit and penalty
model introduced by Yu et al. [17]. In addition to the care-
ful choice of the ready task to run, our scheduling method
judiciously discards pending requests and aborts task exe-
cutions, and therefore can achieve better performance. Our
experimental results also show that the proposed algorithm
can significantly outperform the traditional scheduling ap-
proaches such as the Earliest Deadline First (EDF), the tra-
ditional utility accrual scheduling algorithm i.e. the Generic
Benefit Scheduling (GBS) [7], and a previous scheduling
approach based on the similar model, i.e. the Profit Penalty
aware scheduling (PP-aware scheduling) [17].

The rest of the paper is organized as follows. Section 2
describes the models we used in the paper and formulate
the problem formally. Section 3 presents our scheduling ap-
proach in details. Experiment results are discussed in Sec-
tion 4 and we present the conclusions in Section 5.

2 Preliminary

In this paper, we consider a single sequence of randomly
arrived real-time tasks Γ = {τ1, τ2, ..., τn}, with τi defined
using the following parameters:

• [Bi,Wi]: The best case execution time and the worst
case execution time of τi;

• Di: The relative deadline of τi;

• fi(T ): The probability density function for the execu-
tion time of τi;

• Gi(t): The profit TUF, which represents the profit ac-
crued when a task is completed at time t. We assume
Gi(t) is a non-increasing unimodal function before its
deadline, i.e. G(ti) ≥ G(tj) if ti ≤ tj , and Gi(t) = 0
if t ≥ Di.

• Li(t): The penalty TUF, which represents the penalty
suffered when a task is discarded at time t. We assume
Li(t) is a non-decreasing unimodal function before its
deadline, i.e. L(ti) ≤ L(tj) if ti ≤ tj , and a task is
immediately discarded once it missed its deadline.

Note that, even though the deadline of a task can be im-
plicitly defined using appropriate profit and penalty TUFs,
we opt to list the deadline explicitly as a parameter for ease
of presentation. As shown above, a task is associated with
both a profit function and a penalty function with function
value varying with time. Therefore, while executing a task
has a potential to gain profit, it also has a possibility to en-
counter a penalty at a later time. The system performance
is therefore evaluated by its total utility gain after penalty
is deducted. With the task model introduced as above, our
problem can be formally formulated as follows.

Problem 1 Given a task set Γ = {τ1, τ2, ..., τn} as de-
scribed above, develop an on-line, non-preemptive schedul-
ing method such that the accrued gain is maximized.

3 On-line non-preemptive utility accrual
scheduling

In this section, we present our on-line non-preemptive
scheduling solution to address the problem defined in the
previous section. Since the execution of a task may gain
positive profit or suffer penalty and thus degrade the overall
computing performance, judicious decisions must be made
with regard to executing a task, dropping or aborting a task,
and when to drop or abort a task. The rationale of our ap-
proach is very intuitive, i.e. a task can be accepted and ex-
ecuted only when it is statistically promising to bring pos-
itive gain, and discarded or aborted otherwise. Before we
introduce the details of our scheduling approach, we first
introduce two useful concepts, the expected accrued utility
and the critical point.

3.1 The expected accrued utility and the
critical point

Since the task execution time is not known determinis-
tically, we do not know if executing the task will lead to
positive gain or loss. To solve this problem, we can employ
a metric, i.e. the expected accrued utility, to help us make
the decision.

Given a task τi with arrival time of ri, let its predicted
starting time be T . Then the potential profit (Gi(T )) to ex-
ecute τi can be represented as

Gi(T ) =
∫ Di−(T−ri)

Bi

Gi(t+ (T − ri))fi(t)dt. (1)

Similarly, the potential loss (Li(T )) to execute τi can be
represented as

Li(T ) = Li(D)
∫ Wi

Di−(T−ri)

fi(t)dt. (2)

2



Therefore, the expected accrued utility (Ui(T )) to execute
τi can be represented as

Ui(T ) = Gi(T )− Li(T ). (3)

A task can be accepted or chosen for execution when
Ui(T ) > 0, which means that the probability of to obtain
positive gain is no smaller than that to incur a loss. We can
further limit the task acceptance by imposing a threshold (δ)
to the expected accrued utility, i.e. a task is accepted or can
be chosen for execution if

Ui(T ) ≥ δ. (4)

We call δ as the expected utility threshold.
Furthermore, since the task execution time is not known

a prior, we need to decide whether to continue or abort the
execution of a task. The longer we execute the task, the
closer we are to the completion point of the task. At the
same time, however, the longer the task executes, the higher
penalty the system has to endure if the task cannot meet its
deadline. To determine the appropriate time to abort a task,
we employ another metric, i.e. the critical point.

Let task τi starts its execution at T . Then the potential
profit at T ′ > T (i.e.G̃i(T ′)) can be represented as

G̃i(T ′) =
∫ Di−(T−ri)

T ′−T

Gi(t+ (T − ri))fi(t)dt. (5)

Similarly, the potential loss at T ′ > T (i.e.L̃i(T ′)) can be
represented as

L̃i(T ′) = Li(D)
∫ Wi−T ′

Di−(T−ri)

fi(t)dt. (6)

Therefore, the expected accrued utility at T ′ > T
(i.e.Ũi(T ′)) can be represented as

Ũi(T ′) = G̃i(T ′)− L̃i(T ′). (7)

We can make Ũi(t0) = 0 and solve for t0. Then when
executing task τi to time t0, the expected profit equals its
expected loss. We call t0 as the critical point for executing
task τi. Due to the non-increasing nature of Gi, Ũi(t) is
monotonically decreasing as t increases. Therefore, it is not
difficult to see that the continuous execution of τi beyond
the critical point will more likely bring a loss rather than a
positive gain.

3.2 The scheduling algorithm

Our scheduling algorithm works at scheduling points
that include: the arrival of a new task, the completion of
the current task, and the critical point of the current task.
The detailed algorithm is described in Algorithm 1.

Algorithm 1 ON-LINE NON-PREEMPTIVE ACCRUED-
UTILITY SCHEDULING

1: Input: Let {τ1, τ2, ..., τk} be the accepted tasks in the
ready queue ordered in non-increasing order of their ex-
pected accrued utility, and let ri, i = 1, ..., k represent
their specific arrival times. Let current time be t and
let τ0 be the task currently being executed. Let the ex-
pected utility threshold be δ.

2:
3: if t = the critical time of τ0 then
4: Abort the execution of τ0;
5: Choose τ1 from the ready queue and start its execu-

tion;
6: Re-calculate the expected accrued utility for each of

the tasks in the ready queue;
7: Remove the tasks with expected accrued utility

smaller than δ;
8: end if
9:

10: if τ0 is completed then
11: Choose τ1 from the ready queue and start its execu-

tion;
12: Re-calculate the expected accrued utility for each of

the tasks in the ready queue;
13: Remove the tasks with expected accrued utility

smaller than δ;
14: end if
15:
16: if a new job, i.e. τj arrives then
17: insert it into the ready queue;
18: Calculate the expected accrued utility of τj and also

calculate the expected accrued utilities of tasks in the
ready queue;

19: Arrange the ready queue according to their expected
accrued utility. Following this sequence, calculate
the expected accrued utility for each task in the ready
queue;

20: for Each task in the ready queue do
21: Remove the tasks with expected accrued utility

smaller than δ;
22: end for
23: end if
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We assume that tasks are inserted to the ready queue ac-
cording to their expected accrued utility as they come. As
shown in Algorithm 1, when the time reaches the critical
point of the current task, the current active task is immedi-
ately discarded and the next task with the highest expected
accrued utility is selected to be executed. Upon the finish
of the current task, the task with the highest expected ac-
crued utility is selected for execution. After the selection of
the new task, the expected accrued utility for the rest of the
tasks are re-calculated. The tasks with the expected accrued
utility smaller than the threshold value are discarded.

Algorithm 2 THE CALCULATION OF THE EXPECTED
GAIN

1: Input:Let {τ1, τ2, ..., τk} be the accepted tasks in the
ready queue ordered in non-increasing order of their ex-
pected accrued utility, and let ri, i = 1, ..., k represent
their specific arrival times. Let the current time be t and
τ0 be the task currently being executed

2: Output:The expected gain of τj , 1 ≤ j ≤ k.
3: T = t− rj ;
4: for i = 0 to j − 1 do
5: T = T + expected finishing time of τi;
6: end for
7: Calculate the expected accrued utility with T based on

equation 3.

When a new job comes, it is first inserted at the head of
the ready queue, assuming its expected starting time would
be the expected finishing time of the current active task.
Based on this starting time, we then can compare its ex-
pected utility with the rest of the jobs in the queue. If its
expected utility is less than that of the one following it, we
re-insert this job to the queue according to its new expected
utility. We then calculate the new expected utility according
to Algorithm 2, by estimating its new expected starting time
as the sum of the expected time of the leading tasks in the
ready queue. This procedure continues until the entire ready
queue becomes a listed ordered by their expected utilities.
We then recalculate the expected utilities for the tasks be-
hind, and remove the ones with expected utility lower than
the threshold.

4 Experiment

In this section, we use experiments to investigate the per-
formance of our proposed algorithm. Specifically, we first
compare our algorithm with some traditional algorithms,
including the non-preemptive EDF and a traditional util-
ity accrual scheduling i.e. the Generic Benefit Schedul-
ing (GBS) [7], as well as the Profit/penalty-aware non-
preemptive scheduling proposed in [17]. The key of GBS is
the metric called Potential Utility Density (or PUD), which

determines the priority of a task based on the accrued utility
per unit time. Profit/penalty-aware scheduling uses a heuris-
tically defined parameter, called the risk factor to identify
the importance of tasks. We also study how different utility
thresholds may affect the performance of our algorithm.

The test cases in our experiments were ran-
domly generated. Specifically, each task τ =
([B,W ], f(T ), G(t), L(t), D) was randomly generated as
below:

• B, W , and D were randomly generate such that they
are uniformly distributed within interval of [1, 10],
[30, 40], and [50, 60], respectively;

• The execution time of a task is assume to be evenly dis-
tributed between interval of [B,W], i.e. f(t) = 1

W−B

• G, L were assumed to be linear functions, i.e. G(t) =
−ag(−t + D) in the range of [0, D] and L(t) = alt.
The gradient for G(t) and L(t), i.e. ag and al were
randomly picked from the interval of [4, 10] and [1, 5],
respectively;

• Task release times follow the Poisson distribution with
λ = 5;

• The utility threshold δ is set to 0.

We compared the four algorithms with a thousand task
sets, each of which consists of ten tasks. Figure 1, Figure 2,
and Figure 3 plot the accrued utility, accrued profit, as well
as the accrued penalty for four different approaches: EDF
(denoted as edf), the GUS algorithm(denoted as pud), the
original profit/penalty-aware scheduling(denoted as pp) and
our new algorithm (denoted as ppnew).

Figure 1 clearly shows that, by taking the penalty into
consideration, both ppnew and pp can achieve much better
performance than the traditional EDF or the utility accrued
scheduling approach. Also, with an more elaborate schedul-
ing algorithm that can make more appropriate decision in
task acceptation, abortion, and discard, ppnew improves
upon pp by more than 120% in average. It is interesting
to note from Figure 2 and 3 that, while the accrued gain
by ppnew is comparable or even inferior to the other ap-
proaches, the sum of penalty when executing the tasks are
dramatically decreased. This is because the tasks that would
potentially lead to high possibility of penalty are declined or
discarded at the early stage of its execution by ppnew. This
may reduce the number of tasks that can be completed close
to their deadlines. On the other hand, however, it also sig-
nificantly reduces the total penalty and, as a result, greatly
increases the total utilities. Figure 1, 2 and 3 clearly demon-
strate the effectiveness of our proposed algorithm.

Note that, the utility threshold plays an important role
in task acceptation, abortion, and execution. The larger the
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Figure 1. The comparison of total utility by
four different approaches.
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Figure 2. The comparison of total profit by
four different approaches.
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Figure 3. The comparison of total penalty by
four different approaches.
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Figure 4. The total profit, penalty, and utility
varies with the threshold.

threshold, the smaller the number of tasks can be accepted
and executed, and smaller the penalty the system will suf-
fer. To study the impacts of the utility threshold to the ac-
crued utility, we conducted another set of experiments. We
generated test cases as before, but changed the threshold
from −100 to 300, with an interval of 20. The total profit,
penalty, and utility of each task set is shown in Figure 4. For
ease of presentation, we use the index number instead of the
true utility threshold In Figure 4, i.e. index = 1 for thresh-
old value of −100, and index = 21 for threshold value of
300.

It is interesting to see that the highest utility does not
occur at the point when the threshold equals zero. Neither
does it occurs at the point with threshold value equals 300.
This is because the lower the threshold, the more tasks can
be accepted to the system and get executed. On the con-
trary, the larger the threshold, the fewer tasks can enter the
system and be executed. This is the reason we can see that
in Figure 4 the total gain in general decreases as the thresh-
old increases. On the other hand, few tasks in the system
lead to smaller penalty. As a result, we can see from Fig-
ure 4 that the total penalty also decreases as the threshold
increases. The total utility is a tradeoff between the two.
From Figure 4 we can see the significant impact that the
different threshold value may have for the overall perfor-
mance. In addition, how to choose an appropriate threshold
value to strike the balance between the profit and penalty
and achieve the optimal accrued utility for the system is an
interesting problem and needs further study.

5 Conclusion

Considering the tremendously large scale of the comput-
ing resource for cloud computing, it is necessary that not

5



only the profit but also the cost of task executions should
be taken into consideration during the resource manage-
ment of these resource. The traditional utility accrued ap-
proaches become inadequate with the implication that util-
ity is accrued only when a task is successfully completed,
and the aborted tasks neither increase or decrease the ac-
crued value or utility of the system. In this paper, we present
a novel utility accrued approach which account for not only
the gain by completing a real-time task in time but also the
cost when discarding or aborting the task. Our scheduling
algorithm carefully chooses the high profitable tasks to ex-
ecute, and also aggressively removes the tasks that poten-
tially lead to large penalty. Experimental results show that
our proposed algorithm can significantly outperform the tra-
ditional EDF approach, the traditional utility accrued ap-
proach, and an earlier heuristic approach based on the sim-
ilar profit/penalty task model. There are a quite a few in-
teresting research problems for our future work, including
striking a balance between the profit and penalty to achieve
the optimal performance for the system, incorporating the
preemption into our scheduling method, and incorporating
more complicated time utility models.
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