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This paper addresses the energy minimization issue when executing real-time applications that have
stringent reliability and deadline requirements. To guarantee the satisfaction of the application’s reliabil-
ity and deadline requirements, checkpointing, Dynamic Voltage Frequency Scaling (DVFS) and backward
fault recovery techniques are used. We formally prove that if using backward fault recovery, executing an
application with a uniform frequency or neighboring frequencies if the desired frequency is not available,
not only consumes the minimal energy but also results in the highest system reliability. Based on this
theoretical conclusion, we develop a strategy that utilizes DVFS and checkpointing techniques to execute
real-time applications so that not only the applications reliability and deadline requirements are guaran-
teed, but also the energy consumption for executing the applications is minimized. The developed strat-
egy needs at most one execution frequency change during the execution of an application, hence, the
execution overhead caused by frequency switching is small, which makes the strategy particularly useful
for processors with a large frequency switching overhead. We empirically compare the developed real-
time application execution strategy with recently published work. The experimental results show that,
without sacrificing reliability and deadline satisfaction guarantees, the proposed approach can save up
to 12% more energy when compared with other approaches.

� 2015 Elsevier B.V. All rights reserved.
1. Introduction

Power/energy consumption and system reliability have become
increasingly critical in real-time system designs. As IC technology
continues to scale, more and more transistors are integrated into
a single chip causing power consumption to increase dramatically.
In the meantime, as the aggressive scaling of CMOS technology
continues, transistors become more vulnerable to radiation related
external impacts [22], which often leads to rapid system reliability
degradation. As reliability issues become more prominent, many
design techniques dealing with the interplay of energy consump-
tion and reliability are proposed [15,11].

However, power/energy conservation and reliability enhance-
ment are often at odds. Taking the Dynamic Voltage and Frequency
Scaling (DVFS) as an example, DVFS is a widely used technique for
power management [31]. Recent work [25,28] has shown that
transient fault rate increases dramatically when supply voltage
for an IC chip is scaled down. Hence, more system resources are
needed to recover from transient faults. Furthermore, real-time
applications often have deadline constraints, reducing a task’s
working frequency increases its execution time and hence poten-
tially causes tasks to miss their deadlines. As a result, it becomes
a challenge to design a system that consumes the least amount
of energy, but at the same time guarantees that both reliability
and deadline constraints are satisfied.

To recover from transient faults, a commonly used technique is
to utilize the slack time, i.e. the time differences between an appli-
cation’s completion time and its deadline, to do backward fault
recovery [2]. Task re-execution and checkpointing are two com-
mon techniques used for backward fault recovery. With these tech-
niques, when a fault occurs, the computation is repeated from the
most recent checkpoint, rather than from its beginning. However,
taking a checkpoint also takes time and consumes energy. Hence,
where and when to take checkpoints during the application’s exe-
cution needs to be well planned.

In this paper, we study a strategy that utilizes DVFS, check-
pointing and fault recovery techniques to minimize energy con-
sumption and at the same time guarantee the satisfaction of
reliability and deadline constraints required by the application.
The main contribution of the paper is threefold. First, it formally
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Fig. 1. DAG-based application.
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proves that using backward fault recovery, if a processor actively
executes an application for the same time duration, then executing
the application with the same frequency, or neighboring frequen-
cies if the desired frequency is not available, not only consumes
the minimal energy but also results in the highest system reliabil-
ity. Second, it presents algorithms for quickly determining an
application’s execution strategy, checkpointing strategy and fault
recovery strategy, respectively. The proposed strategies not only
guarantees both reliability and deadline requirements, but also
minimizes the energy consumption. Third, it empirically evaluates
algorithms by comparing them with those found in recent
literature.

The rest of the paper is organized as follows. Related work is
discussed in Section 2. Section 3 first introduces models and defi-
nitions used in the paper and then formally defines the problem
to be addressed. The theoretical foundations are established in Sec-
tion 4. Task set execution strategy and checkpointing strategy
determinations are provided in Section 5 and Section 6, respec-
tively. Section 7 presents the empirical evaluations. Finally, the
conclusion is given in Section 8.

2. Related work

There has been increased research focusing on using DVFS and
fault recovery strategy to minimize energy consumption and guar-
antee the reliability and deadline constraints.

Research found that lowering task execution frequency reduces
processor’s energy consumption [29,14]. In addition, Rizvandi
showed that there is an optimal processor operation frequency
that minimizes processor energy consumption [29]. However, the
downside of using DVFS to lower processor execution frequency
is that the lower the execution frequency, the higher the transient
fault rate [14], and the lower the reliability if no actions are taken
to deal with the increased transient fault rate. When fault recovery
is not considered, Aupy et al. [30] proved that executing the whole
task under the same frequency not only achieves the minimal
energy but also the highest reliability.

Fault recovery technique usually uses a portion of slack time,
i.e. the time difference between task’s deadline and its execution
time, to re-execute the failed tasks to improve system’s reliability.
To maintain system’s required reliability, while at the same time,
minimize the energy consumption, some heuristics as to how to
decide the portion of slack time for fault recovery and task execu-
tion frequencies are proposed. Zhu et al. [25] developed the longest
task first (LIF) and the slack usage efficiency factor (SUEF) based
approaches [17]. Zhao et al. improved these approaches and pro-
posed the shared recovery technique, which allows all tasks to
share the reserved slack time, but only allows a single fault recov-
ery during the entire application’s execution. Recently, Zhao et al.
[27] further extended the work and developed the generalized
shared recovery approach which allows multiple fault recoveries.
In addition, they also developed a uniform frequency (UF)
approach and a heuristic incremental reliability configuration
search (IRCS) algorithm to determine tasks’ execution frequency.
UF selects the lowest uniform frequency that satisfies the reliabil-
ity and deadline requirements to execute the whole application.
IRCS essentially adopts a dynamic programming approach and
searches for a suitable frequency for each task to maximize energy
savings.

However, task re-execution recovery strategy requires the
entire task to be re-executed if a fault occurs. This strategy results
in a large recovery cost if the tasks have long execution times and
hence compromises energy saving performance. An alternative
approach is to use a checkpointing strategy.

The optimal checkpointing strategy for single task execution is
studied by Zhu et al. [28]. However, real-time applications often
consist of multiple tasks with precedence relationship among
tasks. Hence, the approach developed for single task execution
may not be directly applied to task set execution where the reli-
ability requirement is enforced on the task set, rather than on a sin-
gle task. Punnekkat et al. [5] have studied the checkpointing
strategy and developed a heuristic approach to decide where to
take checkpoints for a task set. However, their approach is based
on the assumption that the number of fault occurrences during
the application’s execution is given. Such an assumption is not
appropriate for DVFS enabled systems as tasks may be executed
under different frequencies which may result in different fault arri-
val rate.

Different from the work mentioned above, we study check-
pointing strategy and task execution strategy for a set of depen-
dent tasks on a DVFS enabled platform. Our goal is to minimize
system’s energy consumption without compromising reliability
and deadline guarantees. In our work, we do not assume the num-
ber of fault occurrence is known at a prior.
3. System models and definitions

In this section, we introduce the models and definitions the rest
of the paper is based upon.
3.1. Models

3.1.1. Processor model
The processor is DVFS enabled with q different working fre-

quencies, i.e. F ¼ ff 1; . . . ; f qg with f i < f j if i < j, and
f 1 ¼ f min; f q ¼ f max.

In the following discussion, we assume the frequency values are
normalized with respect to f max, i.e. f max ¼ 1.
3.1.2. Application model
An application considered in this paper contains a set of tasks

and is modeled as a directed acyclic graph [9], i.e., A ¼ GðV ; EÞ. Each
task in the application is represented by a vertex v i 2 V in the
graph, the dependency between two connected tasks is repre-
sented by a directed edge ei ¼ ðv i;v jÞ 2 E. The application repeats
periodically with a period p and the end-to-end deadline require-
ment for one iteration is D 6 p.

An example of an application task graph is given in Fig. 1. Task
v i’s worst case execution time (WCET) under the maximum fre-
quency f max is denoted as ci. We further assume the data transmis-
sion time cost on the edges is negligible.
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3.1.3. Energy model
The energy model used in this paper is the same as in

[26,19,28]. In particular, the power consumption of a system under
operating frequency f is:

Pðf Þ ¼ Ps þ hPa ¼ Ps þ hðPind þ Cef f
hÞ ð1Þ

where Ps is the static power used to maintain the system in a
standby state. The static power cannot be saved unless the system
is turned off. Pa is the active power used when the system is in
the working state. Pa has two components, frequency independent
power (Pind), such as the power used for memory and I/O opera-
tions, and frequency dependent power (Cef f

h). Parameters Cef and
h are system dependent constants and h P 2 [19,4]. Boolean param-
eter h ¼ 1 indicates the system is in the working state, and h ¼ 0
indicates the system is in the standby state.

We assume the system is always on and hence focus only on
active power saving. As the energy consumption due to voltage
and frequency scaling is independent of Ps, without loss of gener-
ality, we set Ps ¼ 0.

We made the same assumption as in [26] that task execution
time is linearly related to working frequency. Therefore, when task
v i is executed under frequency f ðv iÞ, its execution time is ci

f ðv iÞ
and

the energy consumption can be represented as:

Eðf ðv iÞ; ciÞ ¼ ðPind þ Cef f ðv iÞhÞ ci
f ðv iÞ

¼ Pind
ci

f ðv iÞ
þ Cef cif ðv iÞh�1

ð2Þ

From (2) it is clear that scaling down the processing frequency
reduces frequency dependent energy (Cef cif ðv iÞh�1). However, it also
increases frequency independent energy (Pind

ci
f ðv iÞ

) due to longer
execution time caused by the lower execution frequency. As a
result, there is a balanced point, i.e. the energy-efficient frequency
(f ee) and further scaling down the processing frequency below f ee

will increase the total energy consumption. Early studies [26,28]
concluded that

f ee ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pind

Cefðh� 1Þ
h

s
ð3Þ
3.1.4. Transient fault model
Although both permanent and transient faults may occur dur-

ing task execution, transient faults are found more frequent than
permanent faults [1,3]. Hence, in this paper, we focus on transient
faults. Transient faults, also called soft errors, are usually triggered
by radiations in semiconductor circuits. Various factors such as
cosmic ray, transistor size and chip’s supply voltage and frequency,
could impact system’s transient fault rate. Though several
approaches have come out to estimate the accurate transient fault
rate of a hardware platform [12,18,21], taking all the impact factors
into consideration to derive a precise model is still a very challeng-
ing issue [10,28,16]. Hence, the research community generally
assumes that transient fault rate follows Poisson distribution with
an average fault rate k [28,27,33]. When a system is running under
frequency f, the average transient fault rate is usually expressed as:

kðf Þ ¼ k̂010�d̂f ð4Þ

where k̂0 ¼ k010
d

1�f min ; d̂ ¼ d
1�f min

. k0 is the average fault arrival rate
when system running under the maximum frequency f max. Value
d ð> 0Þ is a system-dependent constant, which indicates the sensi-
tivity of the system’s fault arrival rate to system voltage and fre-
quency scaling, the larger the d value, the more sensitive the fault
arrival rate to voltage and frequency scaling.

Under the fault rate model given by (4), if a task is executed
under frequency f for t time units, the probability of exactly
k ðP 0Þ transient faults occurring during a task’s execution period
can be expressed as [20]:

pðk; f ; tÞ ¼ ðkðf ÞtÞ
ke�kðf Þt

k!
ð5Þ
3.2. Definitions and notations

Checkpointing overhead (e): the time overhead of taking a
checkpoint. Different tasks may have different checkpointing
overheads.

Task segments (~v i): when checkpoints are inserted into a task,
the task is partitioned into sections which are called task segments.
For task v i, we use ~v i ¼ ½v i1; . . . ;v il� to denote all its segments. Exe-
cution time of v ij includes the checkpointing overhead e under exe-
cution frequency f max. Notation c0i ¼

Pl
k¼1v ik is to used denote the

total execution time of all the task segments of v i.
Task segment length (lenðiÞ): the length of the ith longest task

segment in ~V when they are executed under f max.
Application checkpointing strategy (Scp): the strategy that

decides where to insert checkpoints in a given application, i.e.,
how each task in the application shall be segmented. It is repre-
sented by Scp ¼ ½~v1; . . . ; ~vn�.

Application processing strategy (Sps): the strategy that decides
the frequencies and the duration of each frequency that the appli-
cation shall be executed with. It is represented by
Sps ¼ ½ðf 1; t1Þ; . . . ; ðf m; tmÞ�, which indicates the application will be
executed under frequencies f 1; . . . ; f m for t1; . . . ; tm time units,

respectively. We abbreviate it as Sps ¼ ððf i; tiÞ
���!

; mÞ, where m is the
number of selected frequency and m 6 q.

Expected number of faults under a given processing strategy

(uðSpsÞ): for a given processing strategy Sps ¼ ððf i; tiÞ
���!

; mÞ;
uðSpsÞ ¼

Pm
i¼1kðf iÞti defines the expected number of faults when a

task set is executed under the processing strategy Sps.
Application recovery strategy (Src): the strategy that decides

the number of faults (k) to be tolerated and the operating fre-
quency (f) that failed task segments need to be re-executed
with. It is denoted as Src ¼ ðf ; kÞ. In this paper, f max is assumed
for task re-execution, i.e. Src ¼ ðf max; kÞ and the application
recovery strategy refers to the number of faults to be tolerated,
i.e. k.

Application reliability (RðScp; Sps; SrcÞ): the probability of suc-
cessfully executing an application A under the given Scp; Sps, and
Src strategies.

Based on the models and definitions introduced above, we are
to formulate the problem the paper is to address.
3.3. Problem formulation

With the above definition, our checkpointing, processing and
recovery (CPR) strategy decision problem can be formulated as
follows:

Problem 1. (The CPR Strategy Decision Problem). Given a DVFS
enabled processor with q different processing frequencies, i.e.
F ¼ ff 1; . . . ; f qg, where f 1 ¼ f min, f q ¼ f max and f i < f j if i < j, and a
DAG-based application A ¼ GðV ; EÞ. Assume the worst case execu-
tion time of each task si 2 V under f max is ci, and the application’s
reliability and deadline constraints are Rg and D, respectively,

decide a checkpointing strategy Scp ¼ ~V , a processing strategy

Sps ¼ ððf i; tiÞ
���!

; mÞ, and a recovery strategy Src ¼ ðf max; kÞ that satisfy
the following:
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Objective:

min EðScp; Sps; SrcÞ

Subject to:

RðScp; Sps; SrcÞP Rg ð6Þ

Xm

i¼1

ti þ
Xk

j¼1

lenðjÞ 6 D ð7Þ

Xm

i¼1

f iti ¼
X
v i2V

c0i ð8Þ

where EðScp; Sps; SrcÞ is the energy consumption of executing the
application under given strategies. Formula (6) denotes the reliabil-
ity constraint, i.e. system’s reliability meet the requirement. For-
mula (8) indicates the work load constraint, i.e. all the tasks
within the application should be finished under the processing
strategy Sps ¼ ððf i; tiÞ

!
; mÞ. The deadline constraint is represented

by formula (7), where
Pm

i¼1ti denotes the total task execution time
and

Pk
j¼1lenðjÞ indicates the time reservation for task recoveries. It

is worth pointing out that tasks’ recovery is under f max. As transient
fault rate under f max is rather low, we do not reserve time for task
recovery under f max.

Frequency switching also has the extra time and energy cost,
we first assume the cost is negligible and later in Section 6 we will
give the justification for this assumption. In the formulated prob-
lem, the checkpointing strategy, processing strategy, and recovery
strategy are tightly coupled with each other. If the processing strat-
egy chooses a lower frequency for execution, in order to meet reli-
ability and deadline constraints, the recovery strategy may need to
tolerate more faults and more checkpoints may be required by the
checkpointing strategy to reduce the duration of recovery. Our
approach is to uncouple them and solve the problem in two steps:
first, decide the application processing strategy and recovery strat-
egy for a given checkpointing strategy, and second, determine the
checkpointing strategy. It is worth pointing out that the reliability
aware energy minimization problem is NP-hard [17] and our
approach falls into the heuristic category. Hence, it is possible
the found solution may not be globally optimal.

Before presenting the application’s processing, recovery and
checkpointing strategies, we first lay the theoretical foundations
extended from our earlier work [33] upon which the strategies
are established.
4. Theoretical foundations

Lemma 1. For a given application A, under the worst case scenario,
i.e. tolerating k faults requires re-executing the longest k task
segments, the application reliability under the checkpointing strategy

Scp ¼ ½~v1; . . . ; ~vn�, processing strategy Sps ¼ ðððf i; tiÞ
!

; mÞ, and recovery
strategy ðf max; kÞÞ can be represented as:
RwðScp; Sps; SrcÞ ¼
Xk

i¼0

Xi

l¼0

Pn
j¼1kðf jÞtj

� �l
e
�
Pn

j¼1
kðf jÞtj

� �
l!

� ðkðf nþ1Þtnþ1Þði�lÞe�

ði� lÞ!

2
6664
RwðScp; Sps; SrcÞ ¼
Xk

i¼0

Pm
j¼1kðf jÞtj

� �i
e�
Pm

j¼1
kðf jÞtj

i!
� e
�kðf maxÞ

Pi

j¼1
lenðjÞ

� �2
64

3
75
ð9Þ
Proof. We prove the lemma by induction on the number of fre-
quencies (m) used in the processing strategy.

Step 1: When m ¼ 1, i.e. Sps ¼ ½ðf 1; t1Þ�, frequency f 1 is used for
the entire execution of the application. According to formula (5),
the probability of exactly i faults occurring under the processing
strategy Sps ¼ ½ðf 1; t1Þ� is:

ðkðf 1Þt1Þie�kðf 1Þt1

i!

In the worst case scenario, to recover these i faults, the longest i task
segments are re-executed. The probability of successfully recover-
ing these faults is:

e
�kðf maxÞ

Pi

j¼1
lenðjÞ

� �
Then the probability of successfully executing the application by
tolerating exactly i faults can be written as:

ðkðf 1Þt1Þie�kðf 1Þt1

i!
e
�kðf maxÞ

Pi

j¼1
lenðjÞ

� �

Since Src ¼ ðf max; kÞ means up to k faults can be tolerated, then
RwðScp; Sps; SrcÞ, i.e. the probability of successfully completing the
application by tolerating at most k faults is:

RwðScp; Sps; SrcÞ ¼
Xk

i¼0

ðkðf 1Þt1Þie�kðf 1Þt1

i!
� e
�kðf maxÞ

Pi

j¼1
lenðjÞ

� �" #
ð10Þ

Hence, the Lemma holds for the case m ¼ 1.
Step 2: Suppose m ¼ n ð> 1Þ, we have

RwðScp; Sps; SrcÞ ¼
Xk

i¼0

Pn
j¼1kðf jÞtj

� �i
e�
Pn

j¼1
kðf jÞtj

i!
� e
�kðf maxÞ

Pi

j¼1
lenðjÞ

� �2
64

3
75
ð11Þ

Step 3: When m ¼ nþ 1, i.e. Sps ¼ ½ðf 1; t1Þ; ðf 2; t2Þ; . . . ;

ðf nþ1; tnþ1Þ�. If exactly i faults happen during the application’s
execution, there must be l ð0 6 l 6 iÞ of them occurring when
the processing frequency is f 2 ff 1; . . . ; f ng and the remaining
i� l faults occurring under f ¼ f nþ1. Then the probability of
executing the application successfully by recovering exactly i faults
is:

Xi

l¼0

Pn
j¼1kðf jÞtj

� �l
e
�
Pn

j¼1
kðf jÞtj

� �
l!

� ðkðf nþ1Þtnþ1Þði�lÞe�kðf nþ1 Þtnþ1

ði� lÞ! � e
�kðf max Þ

Pi

j¼1
lenðjÞ

� �2
6664

3
7775

Since up to k faults can be tolerated, RwðScp; Sps; SrcÞ can be written
as:
kðf nþ1Þtnþ1

� e
�kðf maxÞ

Pi

j¼1
lenðjÞ

� �37775
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According to the binomial formula, i.e.

Xi

l¼0

xlyði�lÞ

l!ði� lÞ! ¼
ðxþ yÞi

i!

we have

RwðScp; Sps; SrcÞ ¼
Xk

i¼0

Pm
j¼1kðf jÞtj

� �i
e�
Pm

j¼1
kðf jÞtj

i!
� e
�kðf maxÞ

Pi

j¼1
lenðjÞ

� �2
64

3
75

These conclude the proof for Lemma 1. h

It is worth pointing out that formula (9) gives the application’s
reliability under the worst case scenario, i.e. the k faults occur in
the longest k task segments. However, in reality, faults can occur
in short task segments or multiple faults may occur in the same
task segment. In other words, it may not necessarily need k longest
recoveries to tolerate k faults. However, it is very hard to derive a
closed formula for RðScp; Sps; SrcÞ where all possibilities of fault
occurrences are taken into consideration. Nevertheless, we argue
RwðScp; Sps; SrcÞ can be used to approximate RðScp; Sps; SrcÞ with neg-
ligible approximation error.

Although different positions where faults occur result in differ-
ent fault recovery durations, the positions only impact the reliabil-
ity of fault recoveries, i.e. they may result in a higher value of

e
�kðf maxÞ

Pi

j¼1
lenðjÞ

� �
in formula (9). Therefore, RwðScp; Sps; SrcÞ is the

lower bound of RðScp; Sps; SrcÞ, i.e., RwðScp; Sps; SrcÞ 6 RðScp; Sps; SrcÞ.
Hence, if we can guarantee RwðScp; Sps; SrcÞP Rg , then the reliability
requirement RðScp; Sps; SrcÞP Rg is also satisfied.

In addition, all recoveries are executed under f max and the fault
arrival rate under f max is very low (may as low as 10�9 [23]), i.e.
kðf maxÞ approaches to zero, hence, the reliability of fault recoveries

e
�kðf maxÞ

Pi

j¼1
lenðjÞ

� �
approaches 1. Therefore, the value of

RðScp; Sps; SrcÞ and RwðScp; Sps; SrcÞ are very close and we can use
RwðScp; Sps; SrcÞ to approximate RðScp; Sps; SrcÞ, i.e.

RðScp; Sps; SrcÞ ¼
Xk

i¼0

Pm
j¼1kðf jÞtj

� �i
e�
Pm

j¼1
kðf jÞtj

i!
� e
�kðf maxÞ

Pi

j¼1
lenðjÞ

� �2
64

3
75

ð12Þ

Based on the above analysis, we are ready to develop the theory
about how to assign processing frequencies to tasks so that the sys-
tem achieves highest reliability.

Lemma 2. Given two different processing strategies S1
ps and S2

ps, if

uðS1
psÞ 6 uðS2

psÞ, then RðScp; S
1
ps; SrcÞP RðScp; S

2
ps; SrcÞ, where uðSpsÞ ¼Pm

i¼1kðf iÞti denotes the expected number of faults under processing
strategy Sps. h
1 If gðxÞ is a convex function, nðP 2Þ 2 Iþ; xi; ti 2 Rþ and xi < xk if i < k, then we
have:

Xn

i¼1
gðxiÞti P gðxjÞtj þ gðxjþ1Þtjþ1 P g

Pn
i¼1xitiPn

i¼1ti

� � Xn

i¼1

ti

 !
ð13Þ

where xjtj þ xjþ1tjþ1 ¼
Pn

i¼1xiti; xj <

Pn

i¼1
xitiPr

i¼1
ti
< xjþ1, and tj þ tjþ1 ¼Pn

i¼1ti.
Proof. To simplify the notation, let bðiÞ ¼ e�kðf maxÞ
Pi

j¼1
lenðjÞ. Formula

(12) can be written as:

RðScp; Sps; SrcÞ ¼
Xk

i¼0

ðuðSpsÞÞie�uðSpsÞ

i!
� bðiÞ

The first derivative of RðScp; Sps; SrcÞ with respect to uðSpsÞ is

@ðRðScp; Sps; SrcÞÞ
@ðuðSpsÞÞ

¼ e�uðSpsÞ �
Xk�1

i¼0

ðuðSpsÞÞiðbðiþ 1Þ � bðiÞÞ
i!

� bðkÞðuðSpsÞÞk

k!

 !

It is not difficult to see that when i P 0; bðiþ 1Þ < bðiÞ and

0 < bðiÞ 6 1. Hence, we have @ðRðScp ;Sps ;SrcÞÞ
@ðuðSpsÞÞ < 0, which implies
RðScp; Sps; SrcÞ is a decreasing function of uðSpsÞ. Since

uðS1
psÞ 6 uðS2

psÞ, we have RðScp; S
1
ps; SrcÞP RðScp; S

2
ps; SrcÞ. h
Lemma 3. For a given checkpointing strategy and a fixed execution
time T, i.e. assuming different execution strategies take the same
amount of execution time T to complete the application, the expected
number of faults is minimized when the application is executed under

a uniform frequency f u ¼
P

vi2V
c0

i

T if f u 2 F, or neighboring frequencies f j

and f jþ1 with f j < f u < f jþ1 if f u R F, i.e.

1. if f u 2 F, then
uð½ðf u; TÞ�Þ ¼ min uððf i; tiÞ
���!

; mÞjf i 2 F ^
Xm

i¼1

ti ¼ T

 !(

^ðf uT ¼
Xm

i¼1

f iti ¼
X
v i2V

c0iÞ
)

2. if f u R F ^ f j; f jþ1 2 F ^ f j < f u < f jþ1, then
uð½ðf j; tÞ; ðf jþ1; T � tÞ�Þ ¼ min uððf i; tiÞ
���!

; mÞjf i 2 F ^
Xm

i¼1

ti ¼ T

 !(

^
Xm

i¼1

f iti ¼ f jt þ f jþ1ðT � tÞ ¼
X
v i2V

c0i

 !)
: �
Proof. We prove the lemma based on the property of convex func-

tions.1Since Sps ¼ ððf i; tiÞ
���!

; mÞ represents a processing strategy satisfy-
ing

Pm
i¼1f iti ¼

P
v i2V c0i and

Pm
i¼1ti ¼ T , then:

uððf i; tiÞ
���!

; mÞ ¼
Xm

i¼1

kðf iÞti

If f u 2 F, then

uð½ðf u; TÞ�Þ ¼ kðf uÞT ¼ k

Pm
i¼1f itiPm

i¼1ti

� � Xm

i¼1

ti

 !

As kðxÞ is a convex function of x, based on the properties of the con-
vex function (formula (13)), we have

uððf i; tiÞ
���!

; mÞP uð½ðf u; TÞ�Þ

A similar proof can be derived for the case when f u R F. h

Integrating Lemma 2 and Lemma 3, we have the following
theorem:

Theorem 1. For a fixed execution time T and a given checkpointing
strategy Scp, executing an application with a uniform frequency

f u ¼
P

vi2V
c0i

T if f u 2 F, or neighboring frequencies f j and f jþ1 if
f u R F; f i; f jþ1 2 F, and f i < f u < f jþ1, results in the highest system
reliability.

With Scp; Sps, and Src, we can calculate the expected energy con-
sumption for executing an application. As the probability of fault
occurrence is relatively small, the expected energy consumption
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for fault recovery is negligible [13] compared to the expected
energy consumption for task set execution. Hence, the expected
energy consumption EðScp; Sps; SrcÞ for executing an application
with checkpointing strategy Scp, processing strategy Sps ¼

ððf i; tiÞ
���!

; mÞ, and fault recovery strategy Src can be represented as:

EðScp; Sps; SrcÞ ¼
Xm

i¼1

ðPind þ Cefðf iÞ
hÞti

Previous research [7,31] has studied the relationship between exe-
cution frequency and energy consumption and concluded that
when the energy model is a convex function of frequency, using a
uniform frequency, or neighboring frequencies if the desired fre-
quency is not available, is the optimal strategy for energy saving
purposes. We summarize this in Lemma 4.

Lemma 4. For a fixed execution time T and a given checkpointing
strategy Scp, the minimal energy consumption can be achieved if the

application is executed under a uniform frequency f u ¼
P

vi2V
c0i

T if
f u 2 F, or neighboring frequencies f j and f jþ1 with f j < f u < f jþ1 if
f u R F. h

With the objective to minimize the energy consumption while
at the same time, maximize the system’s reliability, by integrating
the Lemma 1 and Lemma 4, we can obtain the following
conclusion:

Lemma 5. For fixed execution time T, and the given checkpointing
strategy Scp, the highest reliability and the minimal energy consump-
tion can be achieved when the application is executed under a uniform

frequency f u ¼
P

vi2V
c0i

T if f u 2 F, or neighboring frequencies f j and f jþ1

with f j < f u < f jþ1 if f u R F. h
Example 1. As shown in Fig. 2(a), consider an application, which
has two tasks A and B with execution time 10 ms and 15 ms,
respectively. The deadline of the application is D ¼ 45 ms and the
checkpointing overhead e ¼ 1 ms. We assume the system parame-
ters related to the energy model are set as: Pind ¼ 0:05, Cef ¼ 1, and
h ¼ 3 [27]. The available discrete frequencies F ¼ f0:4;0:5; . . . ;1g.
If the checkpointing strategy takes one checkpoint in task B and
the recovery strategy allows one fault recovery, then the recov-
ery block with duration of 10 ms is reserved, which means the
total time duration T ¼ 35 ms can be used for the whole appli-
cation execution. Based on Lemma 5, we obtain the uniform fre-
quency f u ¼ ð10þ 15þ 1Þ=35 ¼ 0:74, then the processing
strategy is shown as Fig. 2(b). As the frequency 0:74 is unavail-
able, based on Lemma 5, the neighboring frequencies of 0:7 and
0:8 are used instead. Fixed execution time means all the pro-
cessing strategies execute exactly the same duration, i.e. 35 ms
in this example. Suppose the processing strategy is
Sps ¼ ðð0:7; xÞ; ð0;8; yÞÞ, then we have x� 0:7þ y� 0:8 ¼
10þ 15þ 1 and xþ y ¼ 35. Solving the above equations, we
have x ¼ 20 and y ¼ 15 and the corresponding processing strat-
egy can be depicted as Fig. 2(c).

For the problem formulated in Section 3.3, system’s energy con-
sumption needs to be minimized under the condition that both
reliability and deadline constraints are satisfied. Hence, Lemma 5
can not be directly applied to solve the problem we are to address.
However, we can utilize Lemma 5 to derive the application’s work-
ing frequency that meets objective with these constraints.

According to formula (12), if Scp and Src are given, then the value
of uðSpsÞ i.e. u0, which guarantees the reliability requirement Rg

can be obtained by solving RðScp; Sps; SrcÞ ¼ Rg .
Lemma 6. If executing an application under a uniform frequency f
can guarantee the satisfaction of reliability constraint Rg, then we
have f P f r where

kðf rÞ
P

v i2V c0i
f r

� �
¼ u0 ð14Þ

h

Proof. To simplify the notation, let gðf Þ ¼ kðf Þ
P

vi2V
c0

i

f ¼
k̂0ð
P

vi2V
c0

i
Þ

10d̂f f
. It

is not difficult to see that gðf Þ is a monotonically decreasing func-
tion of variable f. Since gðf rÞ ¼ u0, based on Lemma 2, in order to
satisfy the reliability requirement, gðf ÞP u0 should be satisfied,
which implies f P f r . h
Lemma 7. If executing an application under a uniform frequency f
can guarantee the satisfaction of deadline constraint D, then f P f d,
where

f d ¼
P

v i2V c0i
D�

Pk
i¼1lenðiÞ

ð15Þ

h

Proof. We consider the worst case scenario when the longest k
task segments are re-executed to tolerate k faults. To guarantee
that the application successfully completes the execution before
its deadline D, all tasks in the application must be executed in

the time duration of D�
Pk

i¼1lenðiÞ. Hence, the lowest uniform fre-

quency is f d ¼
P

vi2V
c0

i

D�
Pk

i¼1
lenðiÞ

, and if f P f d, the application deadline can

be guaranteed.

Based on the definition of energy-efficient frequency f ee (for-
mula (3)), Lemma 3, and Lemma 7, the minimal frequency that
guarantees the energy-efficient frequency constraint f ee, reliability
constraint Rg , and deadline constraint D can be determined as:

f rde ¼ maxff ee; f r ; f dg ð16Þ

where f ee; f r , and f d are given by (3), (14) and (15), respectively.
With formula (16), for given checkpointing strategy Scp and

recovery strategy Src, the application’s processing frequency f rde

can be directly calculated. However, if f rde R F, i.e., f rde is not
an available discrete frequency, according to the Lemma 5, the
neighboring frequencies f l and f lþ1 should be used instead, where
f l < f rde < f lþ1 and f l; f lþ1 2 F. Based on these analysis, next,
we give our application execution strategy determination
algorithm.

5. Determine application execution strategy

Application execution strategy determines how application
tasks are processed, i.e. with what execution frequencies and for
how long under each execution frequency, and how application
tasks are recovered if faults occur. In other words, an application’s
execution strategy is the composition of application processing
strategy and recovery strategy.

The processing strategy Sps varies based on the recovery strat-
egy Src, i.e. the number of faults to be tolerated. In order to derive
the processing strategy with the minimal energy consumption, we
start from zero fault recovery, i.e. k ¼ 0, to search for the minimum
number of faults to be recovered without violating the reliability
constraint. If f r > f d, there is some slack time remaining due to a
higher frequency being used to meet reliability constraints. In this
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case, the remaining slack time is utilized to increase k, therefore
increasing the reliability and at the same time to scale down the
frequency to reduce energy consumption. On the other hand,
f d > f r implies that all the slack time is used out and the frequency
cannot be lowered any further, hence f rde ¼maxff d; f eeg. If f rde R F,
based on Lemma 5, the neighboring frequencies f l and f lþ1 with
f l < f rde < f lþ1 are used instead.

From the energy saving perspective, the longer the execution
time under f l, the less energy consumption there is. Therefore,
the frequency switching instant, i.e. the time instant when
the working frequency is switched from f l to f lþ1, is delayed
until the reliability and deadline requirements cannot be
satisfied.

Algorithm 1 gives the detailed procedure of our proposed strat-
egy for application execution strategy determination (ExD).

Algorithm 1. ExD(Scp;V ;Rg ;D; f ee; F)
1: kopt ¼ 0; f opt
rde ¼ f max; f 0ee ¼minff ijf i P f ee; f i 2 Fg

2: T ¼
PjV j

i¼1jc0ij; Sopt
ps ¼ ðf max;

T
f rde
Þ; Sopt

rc ¼ ðf max;0Þ
3: slack ¼ D� T; k ¼ 0
4: while slack P 0 do
5: calculate f rde based on formula (16) with f ee ¼ f 0ee

6: Sps ¼ ðf rde;
T

f rde
Þ; Src ¼ ðf max; kÞ

7: if f rde R F then
8: find f l and f lþ1 with f l < f rde < f lþ1

9: Sps = FIND_PS(Scp; Sps;V ;Rg ;D; f l; f lþ1 )
10: end if
11: calculate Eo ¼ EðScp; Sps; SrcÞ
12: if Eopt > Eothen
13: Eopt ¼ Eo; Sopt

ps ¼ Sps; Sopt
rc ¼ Src

14: end if
15: k ¼ kþ 1; slack ¼ slack� lenðkÞ
16: end while
17: return Sopt

ps ; S
opt
rc

Lines 1–3 initialize variables used in the algorithm. The while

loop (Lines 4–16) searches for the optimal processing strategy Sps

and recovery strategy Src for the given checkpointing strategy Scp.
For each possible number of fault recovery k, we find the corre-
sponding processing strategy Sps, if f rde 2 F, set Sps ¼ ðf rde;

T
f rde
Þ

(Line 6), otherwise, calculate it using algorithm FIND_PS (Line
9). The processing strategy Sps that consumes the least amount
of energy and the corresponding recovery strategy Src are
recorded as the final solutions (Line 13). Line 8 finds the frequen-
cies f l and f lþ1, which are used to execute the entire task set. Line
9 i.e., Algorithm FIND_PS is to determine the frequency each task
shall use for execution. Since the tasks in the application have
dependencies, task execution order must satisfy the precedence
constraint. Hence, we first sort all the tasks in the application
by topological sorting to guarantee the precedence constraint is
satisfied.

In Algorithm 2, we assume that task set V is the one after topo-
logical sorting. In addition, Lines 3–10 find the maximum p such
that executing the first p� 1 tasks in V under f l can satisfy the
deadline and reliability constraints. In order to further delay the
frequency switching point, Lines 11–18 split the pth task into mul-
tiple partitions and execute as many partitions under f l as possible
if only both deadline and reliability constraints are not violated. b,
which is a pre-defined integer constant, is the number of
partitions.
Algorithm 2. FIND_PS(Scp; Sps;V ;Rg ;D; f l, f lþ1)
1: T ¼
PjV j

i¼1c0i
2: tl ¼ T

f l
; tlþ1 ¼ 0; p ¼ 0

3: for i ¼ 1 to jV j do

4: tl ¼ tl �
c0i
f l

; tlþ1 ¼ tlþ1 þ
c0i

f lþ1

5: Sps ¼ ððf l; tlÞ; ðf lþ1; tlþ1ÞÞ
6: if RðScp; Sps; SrcÞP Rg ^ tl þ tlþ1 6 D�

Pk
i¼1lenðiÞ

then
7: p ¼ i
8: break
9: end if
10: end for
11: for i ¼ 1 to b do

12: r ¼ c0p
b ; tl ¼ tl þ r

f l
; tlþ1 ¼ tlþ1 � r

f lþ1

13: Sps ¼ ððf l; tlÞ; ðf lþ1; tlþ1ÞÞ
14: if RðScp; Sps; SrcÞ < Rg _ tl þ tlþ1 > D�

Pk
i¼1lenðiÞ

then
15: Sps ¼ ððf l; tl � r

f l
Þ; ðf lþ1; tlþ1 þ r

f l
ÞÞ

16: break
17: end if
18: end for
19: return Sps

Approximate the calculation of fr: In Algorithm 1, in order to
calculate f rde (Line 5), we need the value of f r which can be
obtained by solving Eq. (14). However solving Eq. (14) is time con-
suming. To reduce the time cost, we search for an approximate
value from f min to f max with step d, where d is set as x%f max. The
first frequency found after i steps, i.e. f ¼ f min þ i� d, that satisfies

RðScp; ðf ;
P

s2V
c0

i
f Þ; SrcÞP Rg is assigned to f r . Hence, the time cost to

get f r is a constant.

Time Complexity: The time complexity of Algorithm 1 is dom-
inated by the while loop (lines 3–15). Since the total number of
task segments is j~V j, the number of iterations of the while loop
should be Oðj~V jÞ. As the time complexity of FIND_PS is OðjV jÞ (Line
8), where jV j is the number of tasks in the application, hence the
total time complexity is Oðj~V jjV jÞ.

6. Determine application checkpointing strategy

A checkpointing strategy is often designed under the assump-
tion that the number of transient faults in a specific period is
known or can be calculated from the statistical fault arrival
model [8]. However, in the situation stated in this paper, the
number of faults that can occur is neither set by the reliability
requirement nor can be derived directly from the statistical fault
model since the processing strategy is unknown and different
processing strategies can result in different fault arrival rates.
Even if given the number of transient faults that needs to be tol-
erated during the execution, finding the optimal checkpointing
strategy is still difficult [5]. If the task set only contains one task,
the optimal checkpointing strategy is to split the task into equal
segments by inserting checkpoints. However, when the task set
has multiple tasks and task execution times are different, faults
occurring in different tasks require different time durations for
fault recovery. Without taking checkpoints, in the worst case sce-
nario, k faults could happen in the execution of the longest k
tasks. As deadlines must be guaranteed for hard real-time sys-
tems, the slack time with the duration equals to the longest k
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tasks must be reserved for fault recoveries. By taking checkpoints
in the task set, tasks are divided into task segments and the k
longest task segments are reserved. Hence, where to take check-
points significantly impacts the time reservation for fault
recovery.

Based on the theoretical analysis in Section 5, though we have
no knowledge about what the final execution strategy is, for a
given checkpointing strategy, the execution strategy can be
derived using Algorithm 1. Hence, one of the approaches is, for
each possible checkpointing strategy, we use Algorithm 1 to derive
its execution strategy. Then the checkpointing strategy whose exe-
cution strategy results in the least amount of energy consumption
is chosen as the one. However, exploring all the possible check-
pointing strategies is computationally inefficient, so a heuristic
approach is developed instead. If k fault recoveries are required,
the reserved slack time is determined by the longest k task seg-
ments. Therefore, we always add new checkpoints into the task
having the longest task segment, and distribute all the added
checkpoints equally to partition the long task into shorter task seg-
ments. Starting with no checkpoints, one checkpoint is added to
the current checkpointing strategy for each iteration until the max-
imum number of checkpoints is reached or until the slack time
runs out.

The objective of taking checkpoints is to split the task (or task
segments) into shorter task segments and hence reduce the dura-
tion of fault recovery. However, taking checkpoints itself has time
overhead. For a task v i with the WCET ci and checkpointing over-
head e, taking more than max cpðv iÞ checkpoints will inversely
increase the duration of fault recovery. Hence, for task v i, its max-
imum number of checkpoints, i.e. max cpðv iÞ, can be calculated as
follows [5]:

max cpðv iÞ ¼
ffiffiffiffi
ci

e

r� 	
ð17Þ

The details of checkpointing strategy determination algorithm
(CkD) are given in Algorithm 3, where data structure VC½i� keeps a
record of where checkpoints are taken for task v i. The values of
VC½i�:wcet;VC½i�:chk, VC½i�:len and VC½i�:mcp represent task v i’s
WCET under f max, the number of inserted checkpoints, the length
of the task segments within task v i, and the maximum number of
checkpoints for v i, respectively.
Algorithm 3. CkD(A;Rg ;D; e; F)
1: sort all the tasks in V by topological sorting
2: for i ¼ 1 to jV j do
3: VC½i�:wcet = ci; VC½i�:mcp ¼ max cpðv iÞ
4: VC½i�:chk = 0; VC½i�:len = ci

5: end for

6: k ¼ 0; VCopt ¼ VC; Eopt ¼ 1; slack ¼ D�
PjV j

i¼1ci

7: Sopt
ps ¼ ðf max;

Pm
i¼1ciÞ; Sopt

rc ¼ ðf max;0Þ
8: while slack > 0 do
9: if 9j : VC½j�:len ¼maxfVC½i�:lenjVC½i�:chk < VC½i�:mcpg
then
10: VC½j�:chk ¼ VC½j�:chkþ 1;

11: VC½j�:len ¼ ciþe�VC½j�:chk
VC½j�:chk

12: set Scp based on VC
13: ðSps; SrcÞ = ExD ðScp;V ;Rg ;D; FÞ
14: calculate Eo ¼ EðScp; Sps; SrcÞ
15: if Eopt > Eo then
16: Eopt ¼ Eo; Sopt

cp ¼ Scp; Sopt
ps ¼ Sps; Sopt

rc ¼ Src;
17: end if
18: slack ¼ slack� e
19: else
20: break
21: end if
22: end while
23: return Sopt

cp ; S
opt
ps ; S

opt
rc

In Algorithm 3, Line 1 sorts all the tasks using topological sort-
ing, Lines 2–7 initialize the variables, and Lines 8–22 compare all
checkpointing strategies and record the one that has minimal
energy consumption.

Time Complexity: The time complexity of Algorithm 3 is dom-
inated by the while loop (lines 8–23). Since the maximum number

of checkpoints in the whole application is N ¼
PjV j

i¼1max cpðv iÞ, the
number of iterations in the while loop is hence OðNÞ. The N check-
points partitions the application into N þ jV j task segments, i.e.

j~V j ¼ N þ jV j. Hence, the time complexity of ExD (Line 13) is



Fig. 3. Sensitivity to L (k0 ¼ 10�6;d ¼ 4; e ¼ 1%; S ¼ 10).

Fig. 4. Sensitivity to Rg (k0 ¼ 10�6; d ¼ 4; e ¼ 1%; L ¼ 1).
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OððN þ jV jÞjV jÞ and the total time complexity of Algorithm 3 is
OððN þ jV jÞjV jjNjÞ.

Execution Frequency Switching Overhead: It is well-known
that DVFS is an effective way to reduce energy consumption. How-
ever, recent studies [32,24] have shown that frequency switching
has both time and energy overhead. Furthermore, frequent fre-
quency switching may decrease the hardware component’s life
span. With our approach, in the case of fault-free execution, at most
two frequencies are used to execute the whole task set, hence, there
is at most one frequency switch. This shows that in addition to more
energy saving, another big advantage of the developed approach is
its negligible execution frequency switching overhead.

7. Performance evaluation

In this section, we evaluate the performance of our proposed
approach from energy saving perspective. Three recent studies in
the literature, i.e. UF, IRCS [27] and GSSR-UNS-IS [34], are chosen
as baselines in our comparisons. The UF (uniform frequency)
selects the lowest uniform frequency that can satisfy the reliability
and deadline requirements to execute the whole application. The
IRCS (Incremental Reliability Configuration Search) is a heuristic
approach that searches for the best working frequencies for tasks
based on the energy-reliability ratio, i.e. energy saving per unit
reliability degradation. The GSSR-UNS-IS (General Subset Sharing
with Uniform/Neighboring Scaling and Iterative Search) is the
improvement of the IRCS by effectively removing the unnecessary
resource reservation to leave more slack time for energy saving.

7.1. Experiment setting

In the experiments, the tested applications are generated by
TGFF [6]. The results shown in the following figures are the average
values of repeating the experiments for 1000 randomly generated
applications. The system parameters related to the energy model
are set as: Pind ¼ 0:05, Cef ¼ 1, and h ¼ 3. These values are consid-
ered realistic and widely used in the research community [27,16].
The available discrete frequencies (normalized to f max) are set as
F ¼ f0:4;0:5; . . . ;1g and the checkpointing overhead e is denoted
as the time overhead under f max ¼ 1, which is assumed to be pro-
portional to the average WCET of tasks in the application. For
instance, e ¼ 1% means e is 1% of average task execution time,

i.e.

P
si2V

ci

jV j . If taking checkpoint under frequency f i, then the time

overhead is e
f i
.

The energy consumption of the application under different exe-
cution strategies is normalized to the energy cost when the whole
application is executed under f max. If R0 is set to be the reliability of
the application when the whole application is executed under f max

without fault recovery, then 1� R0 is the corresponding probability
of failure during the application’s execution. We scale the probabil-
ity of failure to vary the reliability requirement in our experiments.
Particularly, we set Rg ¼ 1� ð1� R0Þ=S, where S is a scaling factor.

The comparisons among the CkD, UF, IRCS and GSSR-UNS-IS
approaches are from the following four perspectives:

1. Sensitivity to available slack time (L).
2. Sensitivity to reliability requirement (Rg).
3. Sensitivity to checkpointing overhead (e).
4. Sensitivity to system’s fault arrival rate (k0 and d).

where

L ¼ D�
PjV j

i¼1ciPjV j
i¼1ci

is used to indicate the available slack time in the system.
The evaluation parameters are set as follows: L ¼ 1; S ¼ 10;
e ¼ 1%; k0 ¼ 10�6, and d ¼ 4. When a specific aspect is evaluated,
for instance, when the impact of available slack time is evaluated,
the value of L varies, but the other parameters remain unchanged.
7.2. Experiment results and discussions

Sensitivity to available slack time
In this set of experiments, we increase the value of L from 0.2 to

1.6 and the experiment results are depicted in Fig. 3. Fig. 3 clear
shows that our proposed CkD approach consumes the least amount
of energy. It is 10% lower than the energy cost consumed by
the GSSR-UNS-IS approach when L ¼ 1:6. However, IRCS and UF
approaches always consume more energy than that of GSSR-UNS-
IS.

Sensitivity to reliability requirement Rg

This set of experiments investigates the energy saving perfor-
mance of the four approaches under different reliability require-
ments. According to the results shown in Fig. 4, all the
approaches consume more energy under a higher reliability
requirement. This is because a higher reliability requirement
requires more fault recoveries. As a result, less slack time can be
used for reducing execution frequency. Compared with GSSR-
UNS-IS, IRCS and UF, CkD consumes the least amount of energy.
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When the reliability requirement becomes higher, i.e. S becomes
larger, the advantage of CkD becomes more obvious. When
S ¼ 1000, i.e. Rg ¼ 1� ð1� R0Þ=1000, the CkD approach can save
about 12%;18% and 28% more energy compared with the GSSR-
UNS-IS, IRCS and UF approaches, respectively.

Sensitivity to the system’s fault arrival rate
According to formula (4), the system parameters d and k0 have

great impact on the fault arrival rate. This set of experiments inves-
tigates how sensitive each approach is to d and k0. We vary d
between 2 and 5 and vary k0 between 10�9 and 10�6, these are
the typical values used in the related research work [27,25,17].

We first set k0 ¼ 10�6 and vary d from 2 to 5. The experiment
results are shown in Fig. 5. When d becomes larger, all four
approaches consume more energy. The experiments are then
repeated with d ¼ 4 and k0 varying from 10�9 to 10�6. Based on
the results illustrated in Fig. 6, all these four approaches consume
more energy under a higher k0. This is due to the fact that a larger d
and a higher k0 mean a higher fault arrival rate and hence more
slack time is reserved for fault recovery and less can be used for
energy saving. Among these four approaches, our proposed CkD
approach wins the comparison and always saves the most energy.

Checkpointing overhead impact
Fig. 7 shows the impact of the checkpointing overhead on the

performance of CkD approach. When e is 1%, our proposed CkD
Fig. 6. Sensitivity to k0 (d ¼ 4; e ¼ 1%; L ¼ 1; S ¼ 10).
approach can save about 8% more energy than GSSR-UNS-IS
approach. However, the checkpointing overhead significantly
impacts the energy saving performance. When e is increased to
7% or even larger, the checkpointing overhead outweighs the gain
by taking checkpoints in the application for energy saving purpose.
8. Conclusion

Reliability and deadline guarantee and power/energy conserva-
tion are the most critical issues in designing today’s real-time sys-
tem. However, these two design constraints are often at odds. This
paper presents an approach that utilizes both DVFS and check-
pointing techniques to reduce energy consumption while guaran-
teeing system reliability and deadline satisfaction of real-time
task set. We formally prove that if a processor remains active
within the same interval to accomplish the same workload, using
the same constant speed not only consumes the least amount of
energy, but also results in the highest system reliability. If such
constant speed is not available, the neighboring speeds can be used
to achieve the optimal solution. Based on the theoretical results, a
novel DVFS strategy and checkpointing method are developed to
minimize energy consumption and at the same time guarantee
the satisfaction of system reliability and deadline requirements.
Compared with existing approaches, extensive experimental
results have shown that the proposed technique has better energy
saving performance, i.e. up to 12% more energy saving compared
with other existing approaches.
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