
Maximizing Online Service Profit for
Time-Dependent Applications

Shuhui Li†, Miao Song†, Zheng Li†, Shangping Ren†
Computer Science Department
Illinois Institute of Technology

Chicago, IL 60616
Email:{sli38, msong8, zli80, ren}@iit.edu

Gang Quan‡
Electrical and Computer Engineering Department

Florida International University
Miami, FL 33174

Email:gang.quan@fiu.edu

Abstract—As computers and Internet technology advance,
many time-dependent applications, such as mobile navigation and
online gaming, are emerging. Time-dependent applications are
associated with a pair of time-dependent functions representing
accrued gain at the time when tasks complete or accrued cost
when tasks fail to complete, respectively. For systems that provide
time-dependent services, the optimization goal is to maximize the
system profit when both potential gain and potential cost exist
for each request the system accepts. This paper presents two
scheduling algorithms, prediction-based highest gain density first
(PHGDF) and iterative PHGDF (iPHGDF) scheduling algorithms
with the objective to maximize the system’s total accrued profit.
Simulation results provide clear evidence that, with respect
to the system total accrued profit, the proposed PHGDF and
iPHGDF algorithms have advantages over other commonly used
scheduling algorithm, such as the Earliest Deadline First (EDF),
the Generic Utility Scheduling (GUS) and the Profit and Penalty
aware scheduling (PP-aware) algorithms.

I. INTRODUCTION

As computers and Internet technology advance, many time-
dependent services are emerging [1], such as mobile naviga-
tion by Google and online gaming by Nintendo, to name a
few. All of these indicate that a new era of time-dependent
on-line services is approaching.

It is worth pointing out that use the term time-dependent
applications to differentiate from the term real-time applica-
tions. The main characteristic of real-time applications is that
their correctness is determined by both functional correctness
and timing correctness. The study of real-time applications
often focuses on how to ensure the timing correctness such
as ensuring the deadline satisfactions. For time-dependent
applications, though they may also have deadline require-
ments, the deadline itself can be time-dependent. Furthermore,
for real-time applications the goal is to meet deadlines and
have predictability; there is often no incentive to finish the
task early. For time-dependent applications the quality of the
applications’ end results is often measured by time. The EDF
and Rate Monotonic scheduling are the two most important
and widely used algorithms [2] for deciding an execution order
for a given set of real-time tasks. Jensen et al. proposed to

†The research is supported in part by NSF under grant number CNS-
0746643 (CAREER).

‡The research is supported in part by NSF under grant number CNS-
0969013, CNS-0917021, and CNS-1018108.

associate each task with a Time Utility Functions (TUF) to
indicate the task’s time-dependent aspect [3]. Since then much
research has been done using accrued value as a scheduling
criteria for time-dependent applications.

For online services there is often a service level agreement
(SLA) [4] made between service providers and their clients.
Service providers are obligated to deliver their service with
the agreed level of quality, such as the timeliness for time-
dependent applications. Service requesters often base their
needed quality level on their request urgency and the cost
for increased quality level. The goal of a service provider is
to make the most profit possible with the given resources.
When the demand for resources exceeds what is available,
service providers may not be able to meet all the requests’
quality requirements but still be able to make a profit for time-
dependent applications. Hence, decisions have to be made as
to which requests to honor in order to maximize the service
provider’s profit.

The task scheduling problem becomes more challenging
when a task is selected to execute and its impact on other tasks,
from both the cost and gain perspectives, has to be taken into
consideration. The Profit and Penalty aware (PP-aware) model
and scheduling paradigm are first proposed in [5]. Li et al. [6]
extended the work to allow preemption into the schedule and
maximize the system’s total accrued profit.

In this paper, we study the profit maximization issue for
time-dependent applications. In particular, we define a model
to abstract time-dependent applications where both gain and
possible cost for executing a time-dependent application are
taken into consideration. Based on the model, we develop two
online scheduling algorithms for maximizing total profit from
a given set of applications. We focus on the prediction of
non-profit-bearing tasks so that an early action can be taken
place to avoid larger a penalty cost. Experimental results show
that the two proposed scheduling algorithms can significantly
outperform the traditional scheduling approaches.

II. PROBLEM FORMULATION

A. System Architecture

Assume the online system consists of two modules: the
service request management module and the request execution
module.

2013 IEEE International Conference on Embedded and Real-Time Computing Systems and Applications

342978-1-4799-0850-9/13/$31.00 ©2013 IEEE

The management module is responsible for (1) deciding the
admission of a newly arrived request, (2) selecting the next
request for execution, and (3) removing non-profit-bearing
requests. The request execution module is not preemptive
nor abortable. Both the request management module and the
request execution module work concurrently.

B. Time-Dependent Request Model

Use a 4-tuple (r, e,G(t),L(t)) to define a time-dependent
request T , where r and e are the request’s release-time and
execution time, respectively. The G(t) and L(t) are the re-
quest’s completion time gain and removal time cost functions,
respectively, which are defined below. In this paper, the terms
task and request are used interchangeably..

Definition 1 (Completion Time Gain Function): The com-
pletion time gain function G(t) for request T is a non-
increasing function of t that denotes the gain obtained when
request T is completed at time t. �

Definition 2 (Removal Time Cost Function): The removal
time cost function L(t) for request T is a non-decreasing
function of t that denotes the cost accrued when request T
is removed at time t. �

Definition 3 (Non-Profit-Bearing Time Point): Given a re-
quest (r, e,G(t),L(t)), its non-profit-bearing time point D is
defined when G(t) = 0, i.e., D = G−1(0). �

Definition 4 (Profit Function): The profit function for exe-
cuting request T = (r, e,G(t),L(t)) is defined as:

P(t) =


0 t ≤ r
G(t) if T is completed at t, where r < t ≤ D
−L(t) if T is removed at t, where r < t ≤ D
−∞ if T is neither completed

nor removed after D

(1)

�
As defined in (1), if a request is removed at its release

time, the service provider makes no profit, or pay any penalty
cost. Once the request is accepted for processing, it has
the potential to both accrue gain and accrue cost. As time
proceeds, gain decreases while cost increases. The overall
system performance is evaluated by the total profit obtained
when executing a given set of requests.

Definition 5 (Potential Gain Density): Given a request
T = (r, e,G(t),L(t)) and time t0, its potential gain density
at time t0 is defined as:

η(t0) =
G(t0 + e)

e
(2)

�

C. Problem Formulation

Problem 1: Given a time-dependent request set Γ =
{T1, · · · , Ti, · · · , Tn}, where Ti = (ri, ei,Gi(t),Li(t)), de-
velop an on-line scheduling algorithm that maximizes a sys-
tem’s total accrued profit, i.e., max

∑
Ti∈Γ Pi(ti), where ti is

the time at which Ti is completed or removed. �

III. PREDICTION-BASED HIGHEST GAIN DENSITY FIRST
TASK SCHEDULING

A. Admission Test

The purpose of the admission test is to prevent the scenario
where a request is accepted but, the system fails to fulfill the
SLA causing it to have to pay a penalty for the failure. There
are two situations when a new request may be accepted: (1)
the system has sufficient resources; or (2) the new request can
bring a higher profit than other requests already accepted by
the system even after penalty is taken into consideration.

Let TN = (rN , eN ,GN (t),LN (t)) denote the newly arrived
request,A(rN) denote the system’s active request set when TN
arrives, and t0 be the time when requests’ gain or cost values
are calculated. Algorithm 1 gives the details of the admission
process The for loop from lines 3 to 12 checks if the potential
gain of admitting the new request is greater than the potential
cost.

Algorithm 1: ADMISSION-TEST(A(rN), TN , t0)

1: isAdmit = true
2: sort requests in A(rN) ∪ {TN} in descent order based on ηi(t0), and

let the sorted order be (T1, . . . , Tk+1);
3: for i = 1 to k + 1 do
4: if t0 +

∑i
j=1 ej > Di then

5: if Ti 6= TN AND
GN (t0 +

∑N
j=1 ej)− Gi(t0 +

∑i
j=1 ej) > Li(rN) then

6: remove request Ti;
7: else
8: isAdmit = false;
9: break;

10: end if
11: end if
12: end for
13: return isAdmit

It is worth pointing out that when TN arrives, if the
execution module is busy executing a request TC =
(rC , eC ,GC(t),LC(t)), we have to calculate the gain/cost
based on the time point when the currently executing request
is completed, i.e., t0 = tC + eC . Otherwise, t0 = rN .

B. Prediction-based Highest Gain Density First Task Schedul-
ing

The system’s goal is to make maximal profit by executing
a set of time-dependent requests. It is not difficult to see that
it is a scheduling problem which has proven to be an NP-
hard. Hence, for online scheduling, we have to resort to a
heuristic approach. The essence behind the prediction-based
highest gain density first (PHGDF) scheduling algorithm is
that at any given scheduling point, it selects and executes the
request with the highest unit time potential gain; Based on the
selection, it predicts if executing the selected request causes
any other request(s) to be non-profit-bearing and if so, removes
them.

Let A(t0) denote the system active request set at time t0.
Algorithm 2 gives the details for the PHGDF. find is the
function used to find the first profit request in a sorted request
set. The for loop from lines 4 to 8 in Algorithm 2 checks
if a request will become non-profit-bearing and removes it if
it is. It should be noticed that the gain function is defined

343

within a time range and the profit becomes negative infinity if
the completion time of a request is beyond non-profit-bearing
point D and needs to be removed (lines 5 to 6).

Algorithm 2: PHGDF(A(t0), t0)

1: sort requests in A(t0) in descent order based on ηi(t0),
and let the sorted order be (T1, . . . , T|A(t0)|);

2: T1 = find((T1, . . . , T|A(t0)|));
3: dispatch request T1 to the execution module;
4: for i = 2 to |A(t0)| do
5: if t0 +

∑i
j=1 ej > Di then

6: remove request Ti;
7: end if
8: end for

The complexity of the algorithm comes mainly from the
sorting and non-profit-bearing prediction check. Hence, the
time complexity of the algorithm is O(n lg n), where n is the
number of requests to be scheduled.

IV. ITERATIVE PREDICTION-BASED HIGHEST GAIN
DENSITY FIRST TASK SCHEDULING ALGORITHM

The iterative prediction-based highest gain density first
(iPHGDF) task scheduling algorithm re-orders the pending
queue every time after simulating a request dispatch to make
the prediction earlier and hence obtain a better system profit.
The admission test and the find function for the iPHGDF
scheduling algorithm is the same as for the PHGDF approach.
Algorithm 3 gives the request selection and removal strategy
for the iPHGDF approach.

Algorithm 3: IPHGDF(A(t0), t0)

1: sort requests in A(t0) in descent order based on ηi(t0),
and let the sorted order be (T1, . . . , T|A(t0)|);

2: T1 = find((T1, . . . , T|A(t0)|));
3: dispatch request T1 to the execution module;
4: set t be t0;
5: while A(t) 6= ∅ do
6: sort requests in A(t) in descent order based on ηi(t), and let the

sorted order be (T ′
1, . . . , T

′
|A(t)|)

7: for i = 1 to |A(t)| do
8: if t+

∑i
j=1 ej > Di then

9: remove request Ti;
10: end if
11: end for
12: disregard request T ′

1 from A(t);
13: set t = t+ e1;
14: end while

The time complexity of the iPHGDF is O(n2 lg n), where
n is the number of requests to be scheduled.

V. PERFORMANCE EVALUATION

In this section, we empirically evaluate the introduced
scheduling algorithms, compare them with the optimal so-
lutions obtained with brute-force search for small task sets,
and compare them with the Earliest Deadline First (EDF) [2],
the Generic Utility Scheduling (GUS) [7], and the Profit and
Penalty aware (PP-aware) [5], [6] scheduling approaches for
large task sets. The evaluation and comparison focus on two
aspects: the system profit and task removal rate.

A. Experiment Setting

The experiments are conducted on a simulator we have
developed. In experiments, we assume that both G and L
are linear functions, and we randomly generate each time-
dependent task T = (r, e,G(t),L(t)) as follows:
• Tasks’ release time r is randomly chosen following the

Poisson distribution with λ = 5;
• Tasks’ non-profit-bearing time point D is randomly gen-

erated, which is uniformly distributed within [10, 100];
• Tasks’ execution time e is randomly generated within the

range of [1, umax×(D−r)], where umax is defined below
in (3);

• The gradients of G and L, i.e., ag and al, are randomly
generated in the range of [4, 10] and [1, 5], respectively;

• Functions G, L are defined as follows:

G(t) =
{
0 t < r + e or t > D

−ag(t−D) r + e ≤ t ≤ D

L(t) =


0 t < r,

al(t− r) r ≤ t ≤ D
∞ t > D

For a given task set Γ = {T1, · · · , Ti, · · · , Tn}, where Ti =
(ri, ei,Gi(t),Li(t)), we use umax to denote the maximum task
demand density of the task set, i.e.,

umax = max
Ti∈Γ
{ ei
Di − ri

} (3)

For each of the following experiments, we let umax increase
from 0.1 to 1 with step size of 0.1 and generate 100 runs under
each umax value. The average values are used in plotting the
figures.

B. Performance Comparison with the Optimal Solutions

In this experiment, we randomly generate a task set of size
12. We use brute-force search to find the optimal schedule that
results in the maximal system profit and use it as a comparison
base. We then apply the PHGDF and iPHGDF algorithms to
the same task sets and obtain corresponding system profits
and task removal rates. Figure 1(a) shows the system profit
normalized to the optimal solutions.

(a) System profit (b) Task removal rate

Fig. 1. Comparison with the optimal solution for small task sets.

As Figure 1(a) shows, when the umax is low, the profit
generated by the algorithms are very close to the optimal
solutions obtained through the brute-force search. The reason
is that when umax is low most of the requests can finish early
and result in a higher system profit. The performances decrease

344

when umax increases. It is because when time demand of the
tasks increases, the competition causes many tasks unable to
finish with profit. As our algorithms make choices according to
the available system information, though the profits are lower
than that of the optimal solutions, PHGDF and iPHGDF can
still achieve as much as 71% and 73% of the optimal profit,
respectively.

Figure 1(b) shows the average request removal rate com-
pared with the optimal results from the 100 runs for each
umax. When umax is low, the system hardly removes tasks.
However, as the demand increases, the competition becomes
intense, and hence the task removal rate increases even with
the optimal solution. When the highest intensity reaches 1, the
task removal rate under the PHGDF or iPHGDF approach is
about 9.3% higher than the optimal solution’s rate.

C. Performance Comparison with EDF, GUS and Profit-
Penalty-Aware Approaches

This set of experiments compares the PHGDF and iPHGDF
with three existing scheduling approaches: the EDF, GUS,
and PP-aware approaches. Similar to previous tests, we ran-
domly generate 100 tasks for each task set. Figure 2(a) and
Figure 2(b) depict the system profit and request removal rate
under the different algorithms, respectively.

(a) System profit (b) Task removal rate

Fig. 2. Comparison among different algorithms.

From Figure 2(a), it is clear that the PHGDF and iPHGDF
scheduling algorithms always outperform the others. It can
also be observed from Figure 2(a) that the EDF scheduling
algorithm produces the worst performance. This is because
EDF gives higher priority to tasks with earlier deadlines
without considering the task’s potential unit of gain. Hence,
even when task demand density is low and all tasks are capable
of finishing before their non-profit-bearing point, EDF may
cause tasks with high potential gain to finish later than they
would have with the other scheduling approaches.

From Figure 2(a), we can observe that the PP-aware al-
gorithm does not have as good of a result as we expected.
The reason is that in the PP-aware task model, the task
execution time is assumed to be statistically distributed within
a given range. The prediction for non-profit-bearing is rather
inaccurate as the information itself that the prediction is based
upon is statistical. Hence, it can only check for non-profit-
bearing requests based on the current selection time and cannot
predict anything beyond it. PHGDF and iPHGDF algorithms
allow us to look ahead to reduce potential cost or penalty.

Another observation is that when umax is lower than 0.5,
the GUS scheduling algorithm has a better performance than
the PP-aware scheduling algorithm. When umax is higher than
0.5, the performance ranks change, This is because, the PP-
aware scheduling algorithm will choose the highest profit task
at scheduling points. The metrics of GUS consider task profit
accrued per execution time unit. When umax is low and most
tasks can be finished, considering the rate of obtaining profit
is more useful. Hence the GUS has better results than the
PP-aware scheduling algorithm. When umax is high and more
tasks will be removed, considering the amount of obtained
profit is a better choice. In this case, the PP-aware has better
results than GUS.

For the request removal rate, because EDF gives higher
priority to tasks with earlier deadlines, it has the lowest
request removal rate among all the scheduling algorithms.
PHGDF scheduling, iPHGDF scheduling, and GUS scheduling
algorithms have the same request removal rate. They all make
decisions based on the active task potential gain density.
Only the removal times are different, which result in different
system profits. However, as the PP-aware scheduling algorithm
only considers profit at the scheduling points, it has the highest
request removal rate.

VI. CONCLUSION

In this paper, we have presented two online scheduling
algorithms for time-dependent applications, i.e., PHGDF and
iPHGDF scheduling algorithms. The objective of these al-
gorithms is to maximize a system’s total accrued profit.
Our simulation results have shown that both PHGDF and
iPHGDF algorithms can accrue more profit than the common
scheduling algorithms. The iPHGDF scheduling algorithm
performs slightly better than the PHGDF algorithm. The time
complexity of the iPHGDF algorithm is also slightly higher
than that of the PHGDF algorithm. They are at O(n lg n) and
O(n2 lg n), respectively.

REFERENCES

[1] F. Casati and M. Shan, “Definition, execution, analysis and optimization
of composite e-service,” IEEE Data Engineering, 2001.

[2] C. L. Liu and J. W. Layland, “Scheduling algorithms for multiprogram-
ming in a hard real-time environment,” Journal of ACM, vol. 20, no. 1,
pp. 46–61, 1973.

[3] E. D. Jensen, C. D. Locke, and H. Tokuda, “A time-driven scheduling
model for real-time operating systems,” in Proceedings of the 6th IEEE
Real-time systems symposium, 1985, pp. 112–122.

[4] C. S. Yeo and R. Buyya, “Service level agreement based allocation
of cluster resources: Handling penalty to enhance utility,” in Cluster
Computing, 2005. IEEE International, 2005, pp. 1–10.

[5] Y. Yu, S. Ren, N. Chen, and X. Wang, “Profit and penalty aware
(pp-aware) scheduling for tasks with variable task execution time,” in
Proceedings of the 2010 ACM Symposium on Applied Computing, 2010,
pp. 334–339.

[6] S. Li, S. Ren, Y. Yu, X. Wang, L. Wang, and G. Quan, “Profit and penalty
aware scheduling for real-time online services,” Industrial Informatics,
IEEE Transactions on, vol. 8, no. 1, pp. 78–89, Feb. 2012.

[7] P. Li, H. Wu, B. Ravindran, and E. Jensen, “A utility accrual scheduling
algorithm for real-time activities with mutual exclusion resource con-
straints,” Computers, IEEE Transactions on, vol. 55, no. 4, pp. 454–469,
April 2006.

345

