
Optimizing Scheduling in Embedded CMP Systems
with Phase Change Memory

Jiayin Li1 Zhiyang Zhang1 Meikang Qiu1,∗ Ping Zhang2, Gang Quan3, Yongxin Zhu4

1 Dept. of Electrical and Computer Engineering, University of Kentucky, Lexington, KY 40506, USA
2 School of Computer Science and Engineering, South China University of Technology, GZ 510640, China
3 Dept. of Electrical and Computer Engineering, Florida International University, Miami, FL 33174, USA

4 School of Microelectronics, Shanghai Jiaotong University, 200240, China

Abstract—Phase Change Memory (PCM) is emerging as one
of the most promising alternative technology to the Dynamic
RAM (DRAM) when building large-scale main memory systems.
Even though the PCM is easy to scale, it encounters serious
endurance problems. Writes are the primary wear mechanism
in the PCM. The PCM can perform 108 to 109 times of writes
before it cannot be programmed reliably. In addition, the PCM
has high write latency. To prolong the lifetime of the PCM as
the main memory and enhance the performance, we propose a
Scratch Pad Memory (SPM) based memory mechanism and an
Integer Linear Programming (ILP) memory activities scheduling
algorithm to reduce the redundant write operations in the PCM.
The idea of our approach is to share the data copies among the
SPMs, instead of writing back to the PCM main memory each
time a modify occurs. Our experimental results show that the
ILP scheduling can generate the optimal schedule of memory
activities with minimum write operations, reducing the number
of write by up to 61%.

I. INTRODUCTION

Dynamic RAM (DRAM) has been the most widely used
technology of the main memory for over three decades. How-
ever, main memory that consists of entirely DRAM is already
reaching the scalability limit [1]. Due to some properties of
DRAM, such as destructive reads and low retention time,
some specific architecture solutions, such as, write after read
operations and the refresh control, are implemented [2]. These
extra costs limit the scalability of DRAM. Scaling DRAM
beyond 40nm sizes would be questionable in future [3]. Phase-
Change Memory (PCM) is a potential alterative of the DRAM
main memory, due to its many desirable properties [2]. PCM is
a non-volatile memory that switches its chalcogenide material
between the amorphous and the crystalline states. By setting
the resistances of different states, we can store the data in
the PCM device. The application of heat that is required by
the switch between states can be provided by using electrical
pulses. In the PCM write, it relies on analog currents and
thermal effects, which means it does not require control over
discrete electrons [4]. PCM can provide four times more

density than DRAM [5]. A 32-nm device prototype has been
demonstrated [6].

Even though PCM is alternative to DRAM as main memory,
large efforts are needed to surmount the disadvantage of PCM,
compared to DRAM. PCM access latencies, especially in
writes, are much slower than those of DRAM. In the read
access, PCM is 2x-4x slower than DRAM. Moreover, PCM
displays asymmetric timings for reads/writes, which means
writes in PCM need 5x-10x more time than reads do. Due to
the fact that phase changes in PCM are induced by injecting
current into the chalcogenide material and heating it, thermal
expansion and contraction in the chalcogenide material make
the programming current injection no longer reliable [4].
Writes are the primary wear mechanism in PCM. The number
of writes performed before the cell is not able to perform
reliably ranges from 108 to 109. Therefore, writes in PCM
limits both the performance and the lifetime of PCM.

In this paper, we propose a PCM main memory optimization
mechanism through the utilization of the Scratch Pad memory
(SPM). Memory activities optimization through the utilization
of the SPM is a challenging problem. First of all, to minimize
the number of write operations, data need to be shared among
SPMs by data migrations. In some cases, multi-hop data
migrations, which are necessary for optimal memory activities
optimization, cannot be well scheduled by greedy scheduling
algorithms. Compared to greedy scheduling algorithms, our
ILP method is more promising, because it explores a larger
solution space. However, modeling the memory activities
scheduling problem through the utilization of the SPM is more
sophisticated than the existing ILP-based memory optimiza-
tion problems [7], [8]. Since the SPM space is limited, the
optimization method should decide not only which copies of
data should be kept, but also how long the SPM should keep
these copies. Moreover, due to data sharing operations among
SPMs, there are more kinds of memory activities to schedule
than that in the existing ILP memory optimization methods.
For example, to have a copy of data in a given SPM, there are
three ways: loading the data from the PCM main memory to

2012 IEEE 18th International Conference on Parallel and Distributed Systems

1521-9097/12 $26.00 © 2012 IEEE

DOI 10.1109/ICPADS.2012.78

532

2012 IEEE 18th International Conference on Parallel and Distributed Systems

1521-9097/12 $26.00 © 2012 IEEE

DOI 10.1109/ICPADS.2012.78

532

2012 IEEE 18th International Conference on Parallel and Distributed Systems

1521-9097/12 $26.00 © 2012 IEEE

DOI 10.1109/ICPADS.2012.78

532

the SPM; outputting the data from the core to the SPM; and
copying the data from a remote SPM via the data migration,
which is either for the input requirement of the next task, or
just temporary stored for future data migrations. Since copies
of data are sharing among SPM via the on-chip network, data
migration activities are also subject to the bandwidth of the
network. Data dependencies across tasks further complicate
the memory activities scheduling. Memory activities should
not violate any data dependency. In this paper, we present
a comprehensive ILP format that covers different kinds of
PCM memory activities when utilizing the SPMs. System and
application constraints, such as the size of SPM, the on-chip
network bandwidth, and data dependencies, are formulated in
our ILP algorithm.

In Section II, we discuss works related to this topic. In Sec-
tion III, the background knowledge of phase change memory is
presented. An illustrating example is given in Section IV. We
propose our algorithms in Section V, followed by experimental
results in Section VI. Finally, we conclude the paper in Section
VII.

II. RELATED WORK

The PCM incorporated in the memory hierarchy was studied
in [5]. A DRAM based page cache was implemented for a
large PCM memory. Enhancement approaches, such as read-
before-write, row-level rotation and segment swapping, were
proposed to improve the lifetime of the PCM [9]. Lee et
al. presented a PCM storage device with a bit level read-
before-write loop [3]. Ferreira et al. described three lifetime
enhancement methods for PCM: N-Chance victim selection
replacement policy, bit level writes, and a swap management
on page cache writebacks [2]. Although techniques introduced
in these papers improve the endurance of the PCM, all of
them require significant modifications in the hardware design.
In this paper, by utilizing the SPM in CMP, our optimization
approach does not require hardware modifications. A preSET
method was proposed to enhance the performance of PCM by
scheduling the SET operation before the actual write opera-
tion [10]. The security issue in PCM has been studied in [11],
[12]. The security refresh approach was proposed to protect
PCM against malicious wear out [11]. A low overhead method
via online attack detection was designed [12]. However, all
those approaches bring extra wrties to PCM.

A major trend of techniques of improving the lifetime of
non-volatile memories is the application level design. Koc and
Kandemir et al. used the recomputation in the SPM to reduce
communications among different cores on chip [13], as well
as between the cores and off-chip memory [14], which can
reduce the number of reads in the main memory. Hu et al.
modeled the data migration problem as a shortest path program
and decided the best route for a given data to migrate from
the source core to the destination core [15]. Nevertheless,

the on-chip data traffic was not considered in Hu’s approach.
Two different optimization approaches for memory activities
in CMP were proposed [16], [17]. These two optimization
approaches cannot handle the data sharing among SPMs. In
our ILP-based optimization approach, we take the capacity
constraint in memory, on-chip data bus bandwidth, as well
as data dependencies into account. Memory operations such
as load, store, and share are well scheduled in the optimal
solution generated by our ILP-based optimization.

III. MODEL AND BACKGROUND

A. Phase-change memory

As one type of non-volatile memory, PCM exploits the
unique characteristic of the chalcogenide to store bits. A
typical PCM cell consists of a chalcogenide layer and two elec-
trodes on both sides. Two stable states of the chalcogenide, i.e.,
the crystalline and the amorphous, can be switched between
when different amount of heat is applied in the chalcogenide.
This procedure is done by injecting current into the PCM
cell. When writing the PCM cell, the SET operation heats the
chalcogenide layer to temperature between the crystallization
temperature (300𝑜C) and the melting temperature (600𝑜C).
By this operation, the chalcogenide is in the low-resistance
crystalline state, which corresponds to the logic “1”. On the
other hand, the RESET operation heats the chalcogenide layer
above the melting temperature. The corresponding state of the
high resistance is amorphous state, i.e., the logic “0”. The read
operation of the PCM is basically sensing the resistance level
of the PCM cell. It is non-destructive and involves much less
heat stress, compared to that of the write operation.

Since both the SET and the RESET write operations apply
dramatic heat stress into the phase change material, write is
the major wear mechanism for the PCM. A PCM cell can
perform stably within 108 to 109 times of writes. Compared
to the 1015-time-write endurance of the DRAM, the lifetime of
the PCM becomes the major issue in implementing the PCM
as the main memory.

The memory controller is one of the crucial parts in the
PCM. In the read operation, the memory controller first checks
the row buffer. If the target is in the buffer, the memory
controller obtains the entry without accessing the memory
bank. Otherwise, the memory controller will issue an activate
command to move the data to an empty row in the buffer, and
a read command to get the data. In the write operation, the
memory controller issues the write command and sends the
data directly to the memory bank.

B. Scratch pad memory

The SPM is an on-chip memory that can be accessed
directly by processors with very low latency. The major
difference between the SPM and the cache is that the data
storage in the SPM is controlled by the system software, while

533533533

the cache is automatically controlled by the hardware [17].
Due to the existence of the controllability on data storage in
the SPM, we are able to optimize memory activities based on
the characteristics of the application running in the system.

In this paper, we focus on a CMP architecture equipped
with the PCM main memory. In this architecture, each core is
connected to an SPM array. All SPMs are networked with the
memory controller, which is also attached to the PCM main
memory. Data are loaded or stored between the SPMs and the
PCM main memory, via the memory controller. In addition,
copies of data are transferred among the SPMs. When a core
is executing a task, it can load data from its own SPM. The
resulting data of a task can be written back to the SPM.

C. Application model

We model the application in this paper as a graph 𝐺 =
⟨𝑇,𝐸, 𝑃,𝑅𝑀 ,𝑊𝑀 , 𝐸𝐶⟩. 𝑇 = ⟨𝑡1, 𝑡2, 𝑡3, ..., 𝑡𝑛⟩ is the set of
n tasks. 𝐸 ⊆ 𝑇 × 𝑇 is the set of edges where (𝑢, 𝑣) ∈ 𝐸

means that task 𝑢 must be scheduled before task 𝑣. 𝑃 =
⟨𝑝1, 𝑝2, 𝑝3, . . . , 𝑝𝑚⟩ is the set of 𝑚 pages that are accessed
by the tasks. 𝑅𝑀 : 𝑇 → 𝑃 is the function where 𝑅𝑀 (𝑡) is
the set of pages that task 𝑡 reads from. 𝑊𝑀 : 𝑇 → 𝑃 is the
function where 𝑊𝑀 (𝑡) is the set of pages that task 𝑡 writes
to. 𝐸𝐶(𝑡) represents the execution time of task 𝑡 while all the
required data are in the SPM.

IV. ILLUSTRATING EXAMPLE

A. An example of an application and a system

(a) (b)

Fig. 1. (a) The DAG of the application in the example, (b) Read pages and
write pages of tasks in the application.

First we give an example, in which we reduce the number
of writes in the PCM by sharing copies across the SPM.
Considering a schedule of an application represented by the
DAG in Fig. 1(a) in a three-core system, each task in the
application requires up to 2 pages that should be in the SPM
before the core executes it. The required pages 𝑅𝑀 of each
task are shown in the “Read page” column of Fig. 1(b).

Moreover, tasks also need to output and modify up to 2 pages,
i.e., 𝑊𝑀 . The write pages 𝑊𝑀 of each task are shown in
the “Write page” column. For example, task A requests two
pages, <page 1 and page 2>, before its execution, and writes
its result in one page, <page 3>.

(a) (b)

Fig. 2. The schedules for the application in Fig. 1 running a three-core
CMP system with two SPM blocks per core. The schedule in (a) is without
data sharing in SPMs. The schedule in (b) is with data sharing in SPMs.
The vertical axis represents the clock cycles. Each core has two SPM blocks,
represented as the “B0” and “B1” columns. The blank box with number 𝑖 in
the “Bx (0 or 1)” column indicates that page 𝑖 resides in SPM block “Bx”
at the corresponding cycles. Since the write operation time (800 cycles) is
400 times longer than the core execution time (2 cycles), the scale of these
figures does not strictly represent accurate clock cycles, only demonstrating
the orders of these schedules.

Using the list scheduling, we have a baseline schedule as
follows: task A, D, and G are assigned to core 0; task B, E, H,
and I are assigned to core 1; and task C and F are assigned to
core 2. A detailed schedule with memory activities is shown in
Fig. 2(a). The Y axis represents the clock cycles. We assume
the execution time of each task is 8 clock cycles. A core needs
2 cycles to access its own SPM, 5 cycles to a remote SPM.
We also assume a read from the PCM main memory takes
80 cycles, while a write takes 800 cycles [15]. The memory
activities, i.e., the shaded boxes in Fig. 2(a), are the major
time consuming part in this schedule.

We observe that before core 0 reads page 5 in its SPM1,
page 5 has been modified by the core 1, which is the output
of task B. In this case, transferring pages across the SPMs

534534534

reduces the write, since it is not necessary to write back page
5 before loading it again in the SPM. In addition, the time of
sharing across SPMs should be much shorter than the time of
writing and reading in PCM.

We modify the schedule as shown in Fig. 2(b). In this exam-
ple, instead of writing back page 5 right after the executions
of task B, we move the copy of page 5 from the SPM of core1
to the SPM of core0 before the execution of task D, which
is represented as a red dotted arrow. The move occurs before
the execution of task E on core1, due to the need of space
in the SPM of core1 for storing the 𝑅𝑀 of task E. After the
move, a copy of page 5 is kept in the SPM of core0, until task
D is executed by core0. By doing this, an unnecessary write
is eliminated. Similarly, we move the copy of page 9 from
the SPM of core0 to the SPM of core1 after the execution
of task D, which is required by the later executed task I. In
the next section, we will discuss our ILP-based optimization
algorithms with more details.

V. ILP MEMORY ACTIVITIES OPTIMIZATION ALGORITHM

In this section, we present our ILP memory activities
optimization algorithm. There are three major parts in our
algorithm: the baseline scheduling, the ILP-based memory
activities scheduling, and the post ILP procedure. The baseline
scheduling generates a baseline schedule for both the task
executions and the SPM assignments. Then, the ILP-based
memory activities scheduling will find the optimal memory
activities strategy to minimize the memory writes based on
the baseline scheduling. Finally, the post ILP procedure will
further reduce total execution time by eliminating the idle slots
in the schedule.

A. Baseline scheduling

The Min-Min is a popular greedy scheduling algorithm [18],
[19]. The Min-Min algorithm generates near-optimal sched-
ules with comparatively low computational complexity [20].
Algorithm 1 shows the procedure of the Min-Min algorithm.
Before we schedule a given task executed on a given core,
we should schedule the required memory pages allocated in
the SPM of the core in advance. We assume that the time
of reading a memory page from the SPM is included in the
execution time of this given task. We load the modified page in
the SPM before it is written back to the PCM main memory.
Complicated policies for memory coherence are out of the
scope of this paper. We apply some simple policies to keep
the memory content among SPMs and the PCM main memory
coherent:

∙ Where a core initiates an SPM modifying process of a
given page 𝑝, other cores that have a copy of this page
in their SPM should initiates an SPM evicting process of
this page. By doing this, there is no “dirty” copy of this
page exists in the SPMs.

Algorithm 1 Min-Min algorithm
Input: A set of 𝑇 tasks represented by a DAG, 𝐶 different cores, 𝐸𝐶 of

tasks
Output: A schedule generated by Min-Min
1: Form a mappable task set 𝑀𝑇
2: while Set 𝑀𝑇 is not empty do
3: for 𝑖: task 𝑖 ∈ [0, 𝑇 − 1] do
4: for 𝑗: core 𝑗 ∈ [0, 𝐶 − 1] do
5: Calculate 𝑇𝑝𝑔𝑖,𝑗 /*The earliest time when all require pages of

𝑖 are available*/
6: 𝑇𝑓𝑖𝑛𝑖,𝑗 = 𝑇𝑝𝑔𝑖,𝑗 +𝐸𝐶(𝑖)
7: end for
8: Find the core 𝐶𝑚𝑖𝑛(𝑖) that Min𝑗(𝑇𝑓𝑖𝑛𝑖,𝑗)
9: end for

10: Find the pair (𝑘,𝐶𝑚𝑖𝑛(𝑘)) with the earliest finish time
𝑇𝑓𝑖𝑛𝑖,𝐶𝑚𝑖𝑛(𝑖) among the task-core pairs generated in the
for-loop

11: Schedule the required pages of task 𝑘 to the SPM of 𝐶𝑚𝑖𝑛(𝑘) as
soon as possible

12: Assign task 𝑘 to core 𝐶𝑚𝑖𝑛(𝑘)
13: Schedule the modification of the resulting pages, 𝑊𝑀 (𝑘), in the SPM

of core 𝐶𝑚𝑖𝑛(𝑘), then the write back process of the resulting pages
14: Remove 𝑘 from 𝑀𝑇 , and update the mappable task set 𝑀𝑇
15: end while

∙ In the baseline scheduling process, we don’t consider
the data sharing in SPMs. When some tasks require the
page that is modified by another task previously, the read
process can only be initiated after the modification is
finished.

∙ We implement the Least Recently Used (LRU) replace-
ment policy in the SPM management.

B. ILP formatting

1) Resource allocation formatting: To input the baseline
schedule to the later memory activities scheduling algorithm,
we define several 0-1 matrixes to indicate the task executions
and the SPM memory activities. The values in these matrixes
are either 0 or 1. For the convenience of the reader, we
list the symbols used in the ILP formatting in Table I. We
give definitions of four 0-1 matrixes, which are related to the
resource allocation, as follows:

(I) Task assignment matrix 𝐴𝑆𝑀 . 𝐴𝑆𝑀𝑡,𝑐 = 1 means that
task 𝑡 is assigned to core 𝑐. The matrix 𝐴𝑆𝑀 has the
characteristic as follows:

𝐶−1∑
𝑐=0

𝐴𝑆𝑀𝑡,𝑐 = 1 ∀ 𝑡 ∈ [0, 𝑇 − 1] (1)

(II) Task start time matrix 𝑆𝑡. When 𝑆𝑡𝑡,𝑐,𝑠 = 1, it means
that the execution of the task 𝑡 starts at clock cycle 𝑠

on core 𝑐.
(III) Core workload matrix 𝑊𝐿. 𝑊𝐿𝑡,𝑐,𝑠 = 1 means that

core 𝑐 is executing task 𝑡 at clock cycle 𝑠. The relation-
ship between 𝑆𝑡 and 𝑊𝐿 is:

𝑊𝐿𝑡,𝑐,𝑠 =
𝑠∑

𝑖=𝑠−𝐸𝑡,𝑐−1

𝑆𝑡𝑡,𝑐,𝑖 ∀ 𝑡 ∈ [0, 𝑇 − 1], 𝑐 ∈ [0, 𝐶 − 1]

(2)

where 𝐸𝑡,𝑐 is the execution time of task 𝑡 on core 𝑐.

535535535

TABLE I
SYMBOLS AND ACRONYMS USED IN THE ILP FORMATTING

Symbol Description
𝑡 Task 𝑡

𝑐 Core 𝑐

𝑠 Clock cycle 𝑠

𝑝 Memory page 𝑝

𝑇 Number of tasks
𝐶 Number of cores
𝑆 Total number of clock cycles
𝑃 Number of pages

𝐴𝑆𝑀𝑡,𝑐 Task assignment matrix
𝑆𝑡𝑡,𝑐,𝑠 Task start time matrix
𝑊𝐿𝑡,𝑐,𝑠 Core workload matrix
𝑀𝑒𝑚𝑝,𝑐,𝑠 Required memory matrix
𝑅𝑀 (𝑡) A set of page required by task 𝑡

𝑅𝑝,𝑐,𝑠 Read matrix
𝑀𝑝,𝑐,𝑠 Modify matrix
𝑊𝑝,𝑐,𝑠 Write matrix
𝐸𝑣𝑝,𝑐,𝑠 Evict matrix
𝑆𝑖𝑝,𝑐,𝑠 SPM input matrix
𝑆𝑜𝑝,𝑐,𝑠 SPM output matrix
𝑂𝐶𝑝,𝑐,𝑠 SPM occupation matrix
𝑃𝑀𝑝,𝑐,𝑠 SPM page available matrix
𝑀𝑜𝑝,𝑐,𝑠 Move out matrix
𝑀𝑖𝑝,𝑐,𝑠 Move in matrix
𝑀𝑖ℎ𝑝,𝑐,𝑠 Move in indicator matrix
𝑀𝑟𝑝,𝑐,𝑠 SPM page modified matrix

(IV) Required memory matrix 𝑀𝑒𝑚. 𝑀𝑒𝑚𝑝,𝑐,𝑠 = 1 means
page 𝑝 is required by core 𝑐 at clock cycle 𝑠.

𝑀𝑒𝑚𝑝,𝑐,𝑠 = 𝑊𝐿𝑡,𝑐,𝑠 ∀ 𝑝 ∈ 𝑅𝑒𝑞𝑀𝑒𝑛(𝑡) (3)

where 𝑅𝑒𝑞𝑀𝑒𝑛(𝑡) is a set of pages required by task
𝑡.

2) Basic memory activities formatting: To transform mem-
ory activities in the baseline schedule into 0-1 matrixes, we
define matrixes for four basic memory activities. Three ma-
trixes are included for modeling a given activity. For example,
we define matrix 𝑅, ˆ𝑅, and �̄� to model the read from the
PCM memory. The element of the matrix with no “hat”, i.e.
𝑅𝑝,𝑐,𝑠 = 1, represents that the corresponding activity of page
𝑝 starts at clock cycle 𝑠, initiated by core 𝑐. While the one with
“∧”, i.e. ˆ𝑅𝑝,𝑐,𝑠 = 1, represents that this corresponding activity
of page 𝑝 is processing at clock cycle 𝑠. And the matrix with
a bar, i.e. �̄�𝑝,𝑐,𝑠 = 1, indicates this corresponding activity of
page 𝑝 finishes at clock cycle 𝑠. The relationships among 𝑅,
ˆ𝑅, and �̄� are as follows:

𝑅𝑝,𝑐,𝑠 =
𝑠∑

𝑖=𝑠−𝑙𝑒𝑛𝑟+1

𝑅𝑝,𝑐,𝑖 (4)

�̄�𝑝,𝑐,𝑠 = 𝑅𝑝,𝑐,(𝑠−𝑙𝑒𝑛𝑟) (5)

where 𝑙𝑒𝑛𝑟 is the length of the corresponding memory activity
(the read in this example). Due to the fact that the latter two
matrixes are determined by the first one and the length of
its corresponding activity, introducing the latter two matrixes
does not increase the complexity of solving the ILP problem.

(I) Read matrixes 𝑅. 𝑅𝑝,𝑐,𝑠 = 1 means page 𝑝 is read from
the PCM memory and loaded into the SPM of core 𝐶

at clock cycle 𝑠.

(II) Modify matrixes 𝑀 . 𝑀𝑝,𝑐,𝑠 = 1 means 𝑝 is modified by
the core 𝐶 and loaded into the SPM of core 𝐶 at clock
cycle 𝑠.

(III) Write matrixes 𝑊 . 𝑊𝑝,𝑐,𝑠 = 1 means 𝑃 is written back
into the PCM memory from core 𝐶 at clock cycle 𝑠.

(IV) Evict matrixes 𝐸𝑣. 𝐸𝑣𝑝,𝑐,𝑠 = 1 means 𝑃 is evicted from
core 𝐶 at clock cycle 𝑠.

3) SPM activities formatting: With the above matrixes,
we can transform a baseline schedule as inputs of the ILP
problem. In order to formulate the ILP problem, we further
introduce four more matrixes, which are related to SPM activ-
ities. These four matrixes are determined by the eight matrixes
mention above. Thus, they do not increase the complexity of
solving the problem.

(I) SPM input matrixes 𝑆𝑖 and 𝑆𝑖. 𝑆𝑖𝑝,𝑐,𝑠 = 1 means page
𝑝 is loaded into the SPM of core 𝑐 at clock cycle 𝑠.
This page can be either read from the PCM memory
or store back from the core after it is modified by that
core. Thus:

𝑆𝑖𝑝,𝑐,𝑠 = 𝑅𝑝,𝑐,𝑠 +𝑀𝑝,𝑐,𝑠 (6)

𝑆𝑖𝑝,𝑐,𝑠 = �̄�𝑝,𝑐,𝑠 + �̄�𝑝,𝑐,𝑠 (7)

(II) SPM output matrixes 𝑆𝑜 and 𝑆𝑜. 𝑆𝑜𝑝,𝑐,𝑠 = 1 means
page 𝑝 is evicted from the SPM of core 𝑐 at clock cycle
𝑠. This page could be modified by the core or evicted
after read. Thus :

𝑆𝑜𝑝,𝑐,𝑠 = 𝑊𝑝,𝑐,𝑠 +𝐸𝑣𝑝,𝑐,𝑠 (8)

𝑆𝑜𝑝,𝑐,𝑠 = �̄�𝑝,𝑐,𝑠 + 𝐸𝑣𝑝,𝑐,𝑠 (9)

(III) SPM occupation matrix 𝑂𝐶. 𝑂𝐶𝑝,𝑐,𝑠 = 1 means page 𝑝
is occupying a part of the SPM of core 𝑐 at clock cycle
𝑠. The SPM occupation matrix 𝑂𝐶 holds the following
equation:

𝑂𝐶𝑝,𝑐,𝑠 = 𝑂𝐶𝑝,𝑐,𝑠−1 + 𝑆𝑖𝑝,𝑐,𝑠 − 𝑆𝑜𝑝,𝑐,𝑠 (10)

(IV) SPM page available matrix 𝑃𝑀 , 𝑃𝑀𝑝,𝑐,𝑠 = 1 means
page 𝑝 is residing in the SPM of core 𝐶 at clock cycle
𝑠. Note that when 𝑂𝐶𝑝,𝑐,𝑠 = 1, core 𝑐 may not be
able to use the page 𝑝 at clock cycle 𝑠, due to the fact
that it may still be in the memory transfer process. And
𝑃𝑀𝑝,𝑐,𝑠 = 1 means that core 𝑐 can surely use page 𝑝
at clock cycle 𝑠. The SPM page matrix 𝑃𝑀 holds the
following equation:

𝑃𝑀𝑝,𝑐,𝑠 = 𝑃𝑀𝑝,𝑐,𝑠−1 + 𝑆𝑖𝑝,𝑐,𝑠 − 𝑆𝑜𝑝,𝑐,𝑠 (11)

We will use these 0-1 matrixes represent the baseline sched-
ule in the following ILP-based memory activities scheduling
algorithm.

C. ILP-based memory activities scheduling algorithm

With the baseline schedule, we will use our ILP approach
to find the optimal memory activities schedule and minimize
the number of the PCM activities. In some cases, a page that
is needed by a task is residing in the SPM of a remote core.
Instead of loading the page from the PCM memory, we can
transfer the page from the SPM of the remote memory.

536536536

1) Additional ILP formatting for data transferring in SPMs:
To represent the sharing activities among the SPMs, we define
additional 0-1 matrixes, which also include three matrixes for
each activity, similar to matrixes for those four basic memory
activities. The definitions are as follows:

(I) Move out matrix 𝑀𝑜. 𝑀𝑜𝑝,𝑐,𝑠 = 1 means page 𝑃 is
moved from the SPM of core 𝐶 to the SPM of another
core at clock cycle 𝑠.

(II) Move in matrix 𝑀𝑖. 𝑀𝑖𝑝,𝑐,𝑠 = 1 means 𝑃 is moved
into the SPM of core 𝐶 from the SPM of another core
at clock cycle 𝑠.

(III) Move in indicator matrix 𝑀𝑖ℎ. 𝑀𝑖ℎ𝑝,𝑠 = 1 means 𝑃
is moved into the SPMs of at least one core at clock
cycle 𝑠.

𝑀𝑖ℎ𝑝,𝑠 =

𝐶−1∑
𝑐=0

𝑀𝑖𝑝,𝑐,𝑠 ∀ 𝑝 ∈ [0, 𝑃 − 1], 𝑠 ∈ [0, 𝑆 − 1] (12)

2) Redefined ILP formatting for data transferring in SPMs:
In the previous “ILP formatting” subsection, we define the
SPM input/output matrixes 𝑆𝑖𝑝,𝑐,𝑠, 𝑆𝑖𝑝,𝑐,𝑠, 𝑆𝑜𝑝,𝑐,𝑠, and 𝑆𝑜𝑝,𝑐,𝑠
to determine whether a page is available in the SPM of a give
core at clock cycle 𝑠. Now, we further modify these definitions
by including the consideration of the 𝑀𝑖, 𝑀𝑜, �̄�𝑖, and 𝑀𝑜,
i.e. transferring data among SPMs. The new definition of 𝑆𝑖,
𝑆𝑖, 𝑆𝑜, and 𝑆𝑜 as follows:

𝑆𝑖𝑝,𝑐,𝑠 = 𝑅𝑝,𝑐,𝑠 +𝑀𝑝,𝑐,𝑠 +𝑀𝑖𝑝,𝑐,𝑠 (13)

𝑆𝑖𝑝,𝑐,𝑠 = �̄�𝑝,𝑐,𝑠 + �̄�𝑝,𝑐,𝑠 + �̄�𝑖𝑝,𝑐,𝑠 (14)

𝑆𝑜𝑝,𝑐,𝑠 = 𝑊𝑝,𝑐,𝑠 + 𝐸𝑣𝑝,𝑐,𝑠 +𝑀𝑜𝑝,𝑐,𝑠 (15)

𝑆𝑜𝑝,𝑐,𝑠 = �̄�𝑝,𝑐,𝑠 +𝐸𝑣𝑝,𝑐,𝑠 +𝑀𝑜𝑝,𝑐,𝑠 (16)

We use these new definitions of SPM input/output matrixes to
calculate the SPM occupation matrix 𝑂𝐶 and the SPM page
matrix 𝑃𝑀 in Equation (10) and (11).

3) ILP constraints for memory activities optimization: One
of the most critical constraint of the memory activities is that
when a task is executed by a given core, all the required
memory pages should be placed in the SPM of that core no
later than the start time of the execution. This requirement can
be expressed as:

𝑃𝑀𝑝,𝑐,𝑠 ≥𝑀𝑒𝑚𝑝,𝑐,𝑠 ∀𝑝 ∈ [0, 𝑃−1], 𝑐 ∈ [0, 𝐶−1]𝑠 ∈ [0, 𝑆−1] (17)

Another important constraint is that no matter how the pages
are transferred, the total amount of pages in the SPM of a core
at every clock cycle should not be larger than the capacity of
this SPM.

𝑃−1∑
𝑝=0

𝑂𝐶𝑝,𝑐,𝑠 ≤ 𝑆𝑃𝑀(𝑐) ∀ 𝑠 ∈ [0, 𝑆 − 1], 𝑐 ∈ [0, 𝐶 − 1] (18)

where SPM(c) is the capacity of the core 𝑐’s SPM.
When data are shared in SPMs, there are several constraints

in scheduling sharing activities. For an eligible data sharing
in SPMs, the source SPM should have the copy of the target
page available when the sharing is initiated.

𝑃𝑀𝑝,𝑐,𝑠 ≥𝑀𝑜𝑝,𝑐,𝑠 (19)

Another constraint we need to set is that only one memory
activity can be performed at a clock cycle, due to the arbi-
tration of the data bus across SPMs and the PCM controller.
Thus

𝑃−1∑
𝑝=0

𝐶−1∑
𝑐=0

(𝑅𝑝,𝑐,𝑠 +𝑀𝑝,𝑐,𝑠 +𝑀𝑖𝑝,𝑐,𝑠 +𝑊𝑝,𝑐,𝑠 + 𝐸𝑣𝑝,𝑐,𝑠

+𝑀𝑜𝑝,𝑐,𝑠) ≤ 1 ∀ 𝑠 ∈ [0, 𝑆 − 1] (20)

Remind that we set the rule in our baseline scheduling: when
a page is modified by a given core, all the copies in the SPMs
of the rest cores should be evicted. There is no conflict data
exist in SPMs. To avoid the case that more than one different
contents of the same page are copied at the same time, we
still need to set a constraint in our ILP model as:

𝐶−1∑
𝑐=0

𝑀𝑜𝑝,𝑐,𝑠 = 1 ∀ 𝑝 ∈ [0, 𝑃 − 1]], 𝑠 ∈ [0, 𝑆 − 1] (21)

When a page move out process is initiated, there also
should be at least one move in process initiated for this
page, indicating the source of the sharing. In some cases,
maybe multiple cores require this page simultaneously. Then
multiple move in processes are initiated. So we can express
this constraint as:

𝑀𝑖ℎ𝑝,𝑠 =

𝐶−1∑
𝑐=0

𝑀𝑜𝑝,𝑐,𝑠 ∀ 𝑝 ∈ [0, 𝑃 − 1]], 𝑠 ∈ [0, 𝑆 − 1] (22)

To address the memory coherence problems, we set the rule
that when a core modifies a given page in its SPM, we will
evict all the “dirty” copies of this page in the SPMs of other
cores.

𝐸𝑣𝑝,𝑐,𝑠 ≥𝑀𝑝,𝑐1,𝑠 ∀ 𝑐1 ∕= 𝑐 (23)

The goal of the memory activities optimization is to reduce
the number of memory writes. In the baseline scheduling,
we do not consider the possible moving of the modified
memory. After the page is modified, it will be written back
immediately. In this case, we can get the relationship between
the SPM modify matrix 𝑀 and the SPM write matrix 𝑊 as
the following:

𝑆−1∑
𝑖=0

𝑀𝑝,𝑐,𝑖 =

𝑆−1∑
𝑖=0

𝑊𝑝,𝑐,𝑖 (24)

The reason why SPM data sharing can reduce the memory
writes is that by moving the copy of a given page among SPMs
of cores, different tasks can modified this page in serial. And
the write back may be initiated after multiple modifications. In
this case, Equ. (24) is not necessary. However, even though the
number of modifies and the number of writes of a given page
may not be equal, at least one write back should be scheduled
for a page that had modified previously. Here, we define a
0-1 matrix 𝑀𝑟 to indicate whether a page has been modified
in the schedule before a give clock cycle. 𝑀𝑟𝑝,𝑠 = 1 means
page 𝑝 has been modified at least once before the clock cycle
𝑠 but not written back yet.

𝑀𝑟𝑝,𝑠 = 𝑀𝑟𝑝,𝑠−1 +

𝐶−1∑
𝑖=0

(𝑀𝑝,𝑖,𝑠 −𝑊𝑝,𝑖,𝑠) (25)

537537537

In the case that a page has been modified by a given core,
but not written back yet, the following tasks that require a
copy of this page can only migrate them from the SPM of
that core. In other words, the following tasks cannot obtain a
copy of this page by reading from the PCM main memory.

𝑅𝑝,𝑐,𝑠 ≤𝑀𝑟𝑝,𝑠 ∀ 𝑐 ∈ [0, 𝐶 − 1] (26)

And for every page, it should have a newest copy in the
PCM main memory at the end of the schedule. Thus

𝑀ℎ𝑝,(𝑆−1) = 0 ∀ 𝑝 ∈ [0, 𝑃 − 1] (27)

Finally, our objective of the memory activities scheduling
is to minimize the times of write process.

Minimize:
𝑃−1∑
𝑖=0

𝐶−1∑
𝑗=0

𝑆−1∑
𝑘=0

𝑊𝑖,𝑗,𝑘 (28)

D. Post ILP procedure

In our baseline scheduling, we schedule all writes without
considering SPM data sharing. Based on this schedule, we
optimize the memory activities in our ILP algorithm. Even
though the number of writes in the schedule generated by our
ILP algorithm is minimized, the start time of each task remains
the same as the one in our baseline scheduling. Since the data
sharing in SPMs is much less time consuming than the write
in the PCM memory, there are a lot of idle slots in which all
cores have neither task execution nor memory activities. To
improve the system performance, we further eliminate these
idle slots in the schedule generated by our ILP algorithm. To
remain the data dependencies, we find out these idle slots and
push the whole schedule of all cores forward, as long as no
data dependency is violated.

VI. EXPERIMENTAL RESULTS

A. Experiment setup

TABLE II
THE GROUPING OF BENCHMARKS

Set No. Benchmarks
Set 1 Convolution, IIR BIQUAD N
Set 2 FIR2D, LMS
Set 3 N REAL UPDATE, N COMPLES UPDATE
Set 4 DOT PRODUCT, MATRIX 1x3, IIR BIQUAD ONE
Set 5 CRC32
Set 6 FFT
Set 7 Blowfish enc
Set 8 Mad
Set 9 PGP sign

Set 10 GSM

In this section, our proposed ILP algorithm is evaluated by
running the DSPstone benchmarks [21] and the MiBench [22].
In our custom simulator, the CMP system has multiple cores,
each of which has the similar performance as that of the
CoDeL DSP [23]. We compare two different sizes of SPM,
which is similar to the SPM setting in [16]. The PCM main
memory parameters are set as in [3]. We use the Lingo [24]
software to solve the ILP problem.

Since most of the DSPstone benchmarks are embarrassingly
parallel, which means there are few data dependencies among
tasks, we group multiple DSPstone benchmarks into four
benchmark sets. In each set, we create data dependencies
by sharing variables among different benchmarks. We also
use another six Mibench benchmarks in our experiment, one
benchmark per set. The grouping of benchmarks is shown as
in Table II.

In Fig. 3(a), we compare the performance of our proposed
ILP algorithm with that of the HAFF (High Access Frequency
First) algorithm [17]. Since its objective is not reducing the
numbers of write, we implement a write buffer with 100 entries
per core in HAFF to reduce the number of write. In addition,
we also compare the numbers of writes in a four-core CMP
system in Fig. 3(b). The HAFF has less numbers of writes than
that of our baseline scheduling algorithm. Thus, the HAFF
outperforms our baseline scheduling algorithm in terms of total
execution time. Since our ILP algorithm targets on minimizing
the number of writes in the PCM main memory, it outperforms
the HAFF algorithm in reducing the numbers of writes by up
to 61%. Due to the fact that the write operation in the PCM
main memory is the major time consuming operation in the
execution of tasks, our algorithm in a four-core CMP system
with 512KB SPM reduces the execution time of benchmark
set by the percentages from 4.3% to 20.8%, compared to the
HAFF algorithm. The performance of CMP with 1MB SPM is
slightly better than the one with 512KB SPM, edging by about
5%. Since the DSPstone benchmarks have small size, the size
of SPMs makes no difference when running these DSPstone
benchmarks.

VII. CONCLUSIONS

In this paper, we presented an ILP-based memory activities
optimization algorithm for the PCM main memory. In order
to increase the lifetime of the PCM memory, we schedule and
share the data in SPMs, reducing the redundant writes to the
PCM memory in this algorithm. Our experimental results show
that our ILP algorithm can significantly reduce the number
of write by 61% on average. In addition, the performance of
the system is also improved due to less writes that are time-
consuming.

538538538

(a) (b)

Fig. 3. (a) The execution time on a four-core CMP system. (b) The numbers of writes on a four-core CMP system. “Initial Sch. (M-M)” is the baseline
scheduling with the Min-Min algorithm; “HAFF” is the High Access Frequency First algorithm; “ILP 512K” is our ILP-based algorithm with total 512KB
SPMs; and “ILP 1M” is our ILP-based algorithm with total 1MB SPM. All columns are normalized by the corresponding values generated by the baseline

scheduling with the Min-Min algorithm.

ACKNOWLEDGEMENTS

This work was supported in part by the NSF CNS-1249223,
NSFC 61071061, the Univ. of Kentucky Start Up Fund;
NSF CNS-0969013, CNS-0917021, CNS-1018108; The Na-
tional High-Technology Research and Development Program
of China (863 Program No. 2009AA012201) and the Shanghai
International Science and Technology Collaboration Program
(09540701900).

REFERENCES

[1] C. Lefurgy, K. Rajamani, F. Rawson, W. Felter, M. Kistler, and T. W.
Keller, “Energy management for commercial servers,” IEEE Computer,
vol. 36, no. 12, pp. 39–48, 2003.

[2] A. P. Ferreira, M. Zhou, S. Bock, B. Childers, R. Melhem, and D. Mosse,
“Increasing PCM main memory lifetime,” in DATE, 2010, pp. 914–919.

[3] B. C. Lee, E. Ipek, O. Mutlu, and D. Burger., “Architecting phase change
memory as a scalable DRAM alternative,” in ISCA, 2009, pp. 2–13.

[4] B. C. Lee, P. Zhou, J. Yang, Y. Zhang, B. Zhao, E. Ipek, O. Mutlu, and
D. Burger, “Phase-change technology and the future of main memory,”
IEEE Micro, vol. 30, no. 1, pp. 131–143, 2010.

[5] M. K. Qureshi, V. Srinivasan, and J. A. Rivers, “Scalable high perfor-
mance main memory system using phase-change memory technology,”
in ISCA, 2009, pp. 24–33.

[6] S. Raoux, G. W. Burr, M. J. Breitwisch, C. T. Rettner, Y.-C. Chen et al.,
“Phase-change random access memory: A scalable technology,” Journal
of VLSI Signal Processing Systems (JSPS), vol. 52, no. 4.5, pp. 465–479,
2008.

[7] M. Qiu, L. Zhang, and E. H.-M. Sha, “ILP optimal scheduling for multi-
module memory,” in CODES+ISSS, 2009, pp. 277–286.

[8] O. Ozturk and M. Kandemir, “Ilp-based energy minimization techniques
for banked memories,” ACM Transactions Design Automation of Elec-
tronic Systems, vol. 13, no. 3, pp. 50:1–50:40, 2008.

[9] P. Zhou, B. Zhao, J. Yang, and Y. Zhang, “A durable and energy efficient
main memory using phase change memory technology,” in ISCA, 2009,
pp. 14–23.

[10] M. K. Qureshi, M. M. Franceschini, A. Jagmohan, and L. A. Lastras,
“Preset: Improving performance of phase change memories by exploring
asysemmetry in write times,” in ISCA, 2012, pp. 380–391.

[11] N. Seong, D. H. Woo, and H.-H. S. Lee, “Security refresh: protecting
phase-change memory against malicious wear out,” IEEE Micro, vol. 31,
no. 1, pp. 119–127, 2011.

[12] M. K. Qureshi, A. Seznec, L. A. Lastras, and M. M. Franceschini, “Prac-
tical and secure pcm systems via online attack detection of malicious
write streams,” in IEEE International Symposium on High Performance
Computer Architecture, 2011, pp. 478–489.

[13] M. Kandemir, G. Chen, F. Li, and I. Demirkiran, “Using data replication
to reduce communication energy on chip multiprocessors,” in ASP-DAC,
2005, pp. 769–772.

[14] H. Koc, M. Kandemir, E. Ercanli, and O. Ozturk, “Reducing off-chip
memory access costs using data recomputation in embedded chip multi-
processors,” in DAC, 2007, pp. 224–229.

[15] J. Hu, C. J. Xue, W.-C. Tseng, Y. He, M. Qiu, and E. H.-M. Sha,
“Reducing write activities on non-volatile memories in embedded CMPs
via data migration and recomputation,” in DAC, 2010, pp. 350–355.

[16] V. Suhendra, C. Raghavan, and T. Mitra, “Integrated scratchpad memory
optimization and task scheduling for MPSoC architecture,” in CASES,
2006, pp. 401–410.

[17] L. Zhang, M. Qiu, W.-C. Tseng, and E. H.-M. Sha, “Variable partitioning
and scheduling for MPSoC with virtually shared scratch pad memory,”
Journal of VLSI Signal Processing Systems (JSPS), vol. 58, no. 2, pp.
247–265, 2010.

[18] O. H. Ibarra and C. E. Kim, “Heuristic algorithms for scheduling
independent tasks on nonidentical processors,” Journal of the ACM,
vol. 24, no. 2, pp. 280–289, 1977.

[19] J. Li, M. Qiu, J. Niu, and T. Chen, “Battery-aware task scheduling in
distributed mobile systems with lifetime constraint,” in Asia and South
Pacific Design Automation Conference (ASP-DAC), 2011, pp. 743–748.

[20] J. Li, M. Qiu, J. Niu, M. Liu, B. Wang, and J. Hu, “Impacts of inaccurate
information on resource allocation for multi-core embedded systems,”
in IEEE 10th International Conference on Computer and Information
Technology (CIT), 2010, pp. 2692 – 2697.

[21] V. Zivojnovic, H. Schraut, M. Willems, and R. Schoenen, “DSPs,
GPPs, and multimedia applications - an evaluation using DSPstone,”
in The International Conference on Signal Processing Applications and
Technology, 1995, pp. 1–5.

[22] M. R. Guthaus, J. S. Ringenberg, D. Ernst, and T. M. Austin, “Mibench:
A free, commercially representative embedded benchmark suite,” in
IEEE International Workshop on Workload Characterization, 2001, pp.
3–14.

[23] N. Agarwal and N. Dimopoulos, “A DSPstone benchmark of CoDeL’s
automated clock gating platform,” in IEEE Computer Society Annual
Symposium on VLSI, 2007, pp. 508–509.

[24] Lindo Sys. Inc., “LINGO 13.0 - optimization modeling software for lin-
ear, nonlinear, and integer programming,” http://www.lindo.com, 2011.

539539539

