
78 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 8, NO. 1, FEBRUARY 2012

Profit and Penalty Aware Scheduling for
Real-Time Online Services

Shuhui Li, Shangping Ren, Member, IEEE, Yue Yu, Xing Wang, Li Wang, and Gang Quan, Senior Member, IEEE

Abstract—As computer and Internet technology continue to
advance, real-time online services are emerging. Different from
traditional real-time applications for which the scheduling ob-
jective is to meet task deadlines, the optimization goal for online
service systems is to maximize profit obtained through providing
timely services. For this class of applications, there are two dis-
tinctive characteristics. First, tasks are associated with a pair
of time dependent functions representing accrued profit when
completed before their deadlines and accrued penalty otherwise,
respectively. Second, the service requests or tasks arrive aperi-
odically with execution time varying in a wide range. This paper
presents a novel scheduling method and related analysis for such
applications. Two scheduling algorithms, i.e., the nonpreemptive
and preemptive Profit and Penalty aware (PP-aware) scheduling
algorithms, are proposed with an objective to maximize system’s
total accrued profit. Our simulation results clearly demonstrate
the advantages of the proposed algorithms, with respect to the
system total accrued profit, over other commonly used scheduling
algorithms, such as Earliest Deadline First (EDF) and Utility
Accrual (UA) algorithms.

Index Terms—Online services, real-time, scheduling.

I. INTRODUCTION

A S computers and Internet technology advance, many
real-time e-services are emerging [1], [2]. For real-time

e-service applications, there is usually a service level agreement
(SLA) [3] established between a client and a service provider.
Service providers agree to guarantee services with certain
levels of quality-of-service, such as timeliness; in return, clients
pay for the services completed before their requested dead-
lines. However, missing a deadline normally does not cause
a catastrophic result; instead, penalties are applied if timing
requirements are not met [4]–[6]. Furthermore, depending on
how fast a request is served, or how soon a client is notified the
termination of his/her request due to the inability to meet the
required deadlines, the price paid by the client or the penalty
suffered by the service provider may be different. To a client,

Manuscript received May 26, 2010; revised December 30, 2010, May 13,
2011, August 17, 2011; accepted September 12, 2011. Date of publication
October 18, 2011; date of current version January 20, 2012. This work was
supported in part by the National Science Foundation (NSF) under Award
CNS-1018731, Award CNS-0746643(CAREER), Award CNS-1035894, Award
CNS-0969013(CAREER), Award CNS-0917021, and Award CNS-1018108.
Paper no. TII-10-05-0123.

S. Li, S. Ren, Y. Yu, X. Wang, and L. Wang are with the Department
of Computer Science, Illinois Institute of Technology, Chicago, IL 60616
USA (e-mail: sli38@iit.edu; ren@iit.edu; yyu8@iit.edu; xwang86@iit.edu;
lwang64@iit.edu).

G. Quan is with the Department of Electrical and Computer Engi-
neering, Florida International University, Miami, FL 33174 USA (e-mail:
gang.quan@fiu.edu).

Digital Object Identifier 10.1109/TII.2011.2172447

Fig. 1. Time-dependent gain and loss.

besides the quality of the deliverables, the timeliness is a major
criterion in judging the quality-of-service provided by the
service provider; while to a service provider, the goal is to
maximize its long term profits attained under uncertain appli-
cation workloads and with different classes of SLA constraints
[7]–[9].

For illustrative purpose, consider a real-time e-service request
given below.

Example 1: A traveler from city A to city B requests a travel
plan from an online travel planning service provider and indi-
cates a deadline he/she is willing to wait. Depending on
when the traveler gets the requested travel information from the
service provider, the payment is different—the longer it takes,
the less he/she pays. In other words, the payment is given only
when the request is successfully completed before its deadline
and the amount is decided by a nonincreasing time dependent
payment function . Furthermore, the longer the client
waits fruitlessly, the more penalty the system suffers, either by
paying more monetary compensation to the client, or losing
future service requests from unsatisfied clients. Specifically,
the penalty occurs when a request is unfulfilled and it is a
nondecreasing time dependent function .

To make the example more concrete, we assume that the trav-
eler’s deadline is , and the profit and penalty functions
are: and , respectively,
where for both and . Then, if the request is
completed successfully or aborted at time 2, the provider gains
$9 or loses $1.5, respectively. In contrast, if the request termi-
nation happens at the deadline, i.e., time 10, the provider may
only gain $5 if the termination is a successful completion, but
lose $7.5 if the request is aborted at that time. Fig. 1 shows the
time-dependent gains and losses. Clearly, if we have sufficient
confidence to know that the task would not be completed before
its deadline, the earlier we abort the task and notify the client,
the less loss the service provider would suffer.

1551-3203/$26.00 © 2011 IEEE

LI et al.: PROFIT AND PENALTY AWARE SCHEDULING FOR REAL-TIME ONLINE SERVICES 79

At the first glance, it seems that we can directly apply tra-
ditional Utility Accrual (UA) approach to solve real-time on-
line service problems stated above. For instance, it would seem
that we could use UA-based scheduling algorithms incorpo-
rated with the Time Utility Function (TUF) (e.g., [10]–[18]) to
schedule the client request for the example above. However, the
following critical characteristics inherent in the problem make
the traditional scheduling approaches inadequate.

• Different from the traditional UA-based scheduling prob-
lems, there are two TUFs that coexist for the same service.
Each request is associated with a TUF for profit and a TUF
for penalty. Depending on whether the request is success-
fully completed or aborted, the TUF for profit or the TUF
for penalty is applied to compute the system’s gain or loss,
respectively. Even though the penalty can be defined as
negative utility values for tasks aborted or completed after
their deadlines, a single variable TUF defined in this way
cannot represent both gain and loss caused by completing
or aborting a task at different times.

• The processing time for a service may vary widely. For
instance, the time to generate a travel plan for driving from
city A to B may vary significantly under different road
construction scenarios and traffic conditions. Even though
we can use the worst-case execution time to schedule
each request and ensure the satisfaction of all the accepted
requests—as what is usually done in traditional real-time
scheduling—such level of conservation is not likely to
bring the most profit to service providers.

• Requests arrive aperiodically. For real-time online service
applications, tasks arrive aperiodically and system tran-
sient overload is a normal rather than an exceptional sce-
nario. Furthermore, often times it is impossible to predict
the time interval between two consecutive requests. Tradi-
tional UA-aware scheduling algorithms in general assume
that tasks are periodic, while scheduling algorithms that do
consider aperiodic task arrivals are often not targeted for
optimizing utility gains.

In this paper, we introduce a novel scheduling method, i.e.,
the Profit and Penalty aware (PP-aware) scheduling algorithm,
that can effectively take these features into account and maxi-
mize the system’s total accrued profit for real-time online ser-
vices. Specifically, the main contributions of this paper are listed
as follows.

• We introduce a new task model, the Variable Execution
Time with Known Probability, i.e., the VEP model. This
model effectively captures the characteristics of real-time
service requests discussed above. At the same time, this
model is rather general and can be used to model a large
variety of real-time service oriented applications. In this
model, task execution time is a random variable ranging
from its best-case execution time to its worst-case execu-
tion time with a known probability density function. In ad-
dition to the common parameters that define a traditional
real-time task, i.e., release time and deadline, a task in our
model is also associated with two TUFs, i.e., a completion
TUF for gains when a task is completed, and an abort TUF
for losses when the task is aborted.

• Based on the VEP model, we introduce a novel scheduling
policy, i.e., the Profit and Penalty aware (PP-aware) sched-

uling. Two scheduling algorithms, i.e., with and without
preemption, are introduced with the objective of maxi-
mizing system’s total accrued profit.

• We have performed extensive simulations to compare the
PP-aware scheduling with other scheduling algorithms
in respect of system’s total accrued profit under different
conditions. Our experiment results show that PP-aware
scheduling always outperforms EDF scheduling. While
UA-aware scheduling is comparable with the PP-aware
scheduling when the system utilization is underloaded, the
PP-aware algorithm outperforms the UA-aware algorithm
by as much as over 74% in overloaded situations.

The rest of this paper is organized as follows. Section II
introduces terms and definitions that are used throughout this
paper, and then formally defines the PP-aware scheduling
problem. Section III discusses decision making strategies for
PP-aware scheduling of a single task. The PP-aware scheduling
of multiple tasks without and with preemptions are discussed
in Sections IV and V, respectively. Section VI presents our
experimental results and discussions. We discuss related work
in Section VII and conclude in Section VIII.

II. PRELIMINARIES

In this section, we first introduce several terms used
throughout the paper, then formulate a scheduling problem to
be addressed.

Definition 1 [Completion Time Utility Function (TUF)]: The
completion TUF for task is a nonincreasing function of

that denotes the gain accrued when is completed at time .
Definition 2 (Abort TUF): The abort TUF for task is a

nondecreasing function of that denotes the loss accrued when
task is aborted at time .

It is worth pointing out that it takes time to abort a task, espe-
cially when the task involves some time-consuming I/O devices.
However, although the abort TUF itself does not explicitly de-
fine the latency for aborting a service, we can adjust the function
value properly to accommodate the additional penalty due to the
extra delay.

With both the completion time and abort TUFs, we can define
a task’s overall utility function as follows.

Definition 3 (Overall Utility Function): The overall utility
function for task is defined as

(1)

where and are the completion and abort TUF of ,
respectively.

With functions and , we define VEP task model as
follows.

Definition 4 VEP Task Model: A VEP (i.e., Variable
Execution Time with Known Probability) task is defined by a
hex-tuple , where
are the task’s release-time, deadline, the best-case execution
time, and the worst-case execution time, respectively. The
is the task execution time probability density function,
and are task ’s completion and abort TUFs, respectively.

Note that, the deadline in our case represents the latest
time when the service provider needs to abort the task to avoid

80 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 8, NO. 1, FEBRUARY 2012

large penalty. This deadline can be imposed by the service re-
quest itself or based on the expectation of minimal gain set by
the service provider. In this paper, we assume if
and the task is automatically aborted at its deadline. Hence,
functions and , and thus , are defined within interval

only. To simplify the notations and discussions, we intro-
duce an indicator function to identify a domain range.

Definition 5 (Indicator Function): An indicator function
is defined as:

(2)

A VEP task’s expected gain at a given time is then defined
below.

Definition 6 (Expected Gain): For a VEP task
), the expected gain at time

is defined as

(3)

Under the VEP model, a task is associated with both a profit
function and a penalty function. Executing a task has the poten-
tial to gain profit by completing it in time, it also has a possi-
bility to incur a penalty if it is aborted or the deadline is missed.
The overall system performance is therefore evaluated by the
total utility obtained when executing all tasks. We formulate the
problem to be addressed in this paper as follows.

Problem 1: Given an independent VEP task set
, where

, develop online scheduling algorithms
that maximize total utility gain, i.e., .

It is not difficult to see that Problem 1 is NP-hard since a sim-
pler version of this problem, i.e., the total weighted completion
time scheduling problem is shown to be NP-hard [19]. There-
fore, in this paper, we focus on developing an effective heuristic
scheduling algorithm to solve this problem.

III. PP-AWARE SCHEDULING OF SINGLE VEP TASK

Before we introduce the PP-aware scheduling algorithms for
multiple tasks in details, we first investigate how a single VEP
task is scheduled based on PP-aware scheme. Under the VEP
model, task execution time is not known a priori. Therefore,
before and during the execution of a VEP task, we face choices
regarding whether to continue or abort the task. On one hand,
the longer we execute the task, the closer we are to the comple-
tion point of the task and hence have a high possibility to make
profit. On the other hand, due to the nonincreasing property of

and nondecreasing property of , the longer the task ex-
ecutes, the less profit we make even if the task finishes before
its deadline. We may even have to pay higher loss if it cannot
meet its deadline. Hence, in order to maximize the gain for exe-
cuting a task, a judicious decision as to continue or to abort the
task with the consideration of both gain and loss function, i.e.,

and , is required. This is illustrated in the following
example.

Example 2: Consider a VEP task
) defined next.

• Release time: .
• Best-case execution time and worst-case execution time

interval: .
• Task execution time probability density function:

, where is a indicator
function defined in Section II, Definition 5, and is the
task’s starting time (if the system starts executing
the task at the time of its release).

• The completion TUF:
• The abort TUF: .
• Deadline: .
We now analyze the system payoffs at different time points.

Let denote the finishing time of .
1) At time 0, i.e., when the task is released:

• if the task is executed, the system’s expected gain (de-
fined in Section II Definition 6) is calculated as

(4)

• if the task is aborted at time 0, i.e., not accepted, the
penalty function evaluates to ;

• the probability that the task cannot be finished by the
deadline is:

% (5)

2) At time , assume the task is still not finished:
• if continuing with the task, the conditional expectation

of gain given that the task is not finished at 9 is calculated
as

(6)

• if the task is aborted, the penalty function evaluates to
;

• the conditional probability that the task cannot be fin-
ished by the deadline is

% (7)

From previous discussions, we can see that at every time in-
stant , the expected gain and the penalty to abort are different. It
is desirable that the decision to abort or continue a task be made
judiciously based on these factors. The ratio between a poten-
tial loss against an expected gain is hence used as an index to
measure the risk of processing a task.

LI et al.: PROFIT AND PENALTY AWARE SCHEDULING FOR REAL-TIME ONLINE SERVICES 81

Fig. 2. Risk factor ����.

Definition 7 (Risk Factor): Given a single VEP task,
, assume that the task starts at

time and has not been finished by .
Then, the risk factor of task at time is defined as

(8)

where represents the finishing time of , and
and are calculated by (9) and (10),

respectively

(9)

(10)

From (8)–(10), we have

(11)

As shown in (8), the larger the expected gain, the smaller the
risk factor is; and the larger the penalty to abort a task, as well
as the larger the probability to miss the deadline, the higher the
risk factor is to continue the execution.

Fig. 2 graphically illustrates the risk factor function of the task
given in the example above with . As can be seen from
Fig. 2, when the time approaches the deadline, the risk factor
increases dramatically. In fact, when

, and consequently, .
In general, the higher risk a system is willing to take, the

higher gain the system may obtain, but at the same time, the
loss may also be high as well. Different service providers may
be willing to tolerate different risk levels, and only tasks with
the risk level lower than the tolerable risk level, i.e., the maximal
risk factor , are accepted and executed.

During the execution of a VEP task that starts at , if the
risk factor at time instant , i.e., , exceeds the risk
tolerance threshold , i.e., , and the task is
not yet finished, the task is aborted regardless of the amount of

time it has been executed. This time instance is called the task’s
critical time.

Definition 8 (Critical Time): Given a maximum tolerable risk
factor , for a task that starts at time , its critical time

is defined as

(12)

As shown later in the paper, the concept of critical time plays
an important role in the development of our online scheduling
algorithm for Problem 1.

IV. NONPREEMPTIVE PP-AWARE SCHEDULING

Section III reveals several interesting characteristics of
PP-aware scheduling of a single VEP task. In this section,
we develop our online nonpreemptive PP-aware scheduling
policy for multiple VEP tasks with the objective of maximizing
system accrued utility. The policies consist of an admission test
strategy when a new task arrives, and a task selection strategy
during the scheduling process.

A. Task Admission Test

Recall that a penalty will incur once a task is accepted but later
discarded. The later a task is aborted, the higher the penalty is.
Therefore, the purpose of the admission test is to reject a task as
early as possible if accepting it is more likely to bring penalty
than profit. The question is how to at the earliest time quickly
but not too pessimistically identify tasks that should be rejected.
The strategy in our approach is to consider whether at the best
favorable scenario, a newly arrived task can contribute profit
without adding too much risk. In particular, the best favorable
scenario is when all tasks take their best case execution times.
Hence, assume a VEP task arrives at time . If the potential
penalty for each unit of gain when the task takes its best-case
execution time does not exceed the system’s tolerable risk
level, i.e., if , the task is admitted; otherwise it
should be rejected. We study the benefit of having the admission
test empirically in Section VI-B.

B. Nonpreemptive PP-Aware Scheduling

When VEP tasks are accepted to the pending queue, the
problem becomes how to make appropriate scheduling de-
cisions to maximize the system’s profit. For nonpreemptive
PP-aware scheduling, this scheduling decision is made at the
time when:

1) a task successfully completes its execution before its dead-
line;

2) the current time reaches the critical time of the
task being executed.

As penalty increases and gain decreases with time, our non-
preemptive PP-aware scheduling method selects a task with the
highest expected gain and executes it only to its critical time,
aborts and removes a task as soon as it has a higher-than-tol-
erable risk to cause a loss. Therefore, at each scheduling point

, we not only choose the next task to execute, but also further
check whether the current selection raises the risks of other tasks
beyond the tolerable level, and remove them as soon as pos-
sible. Algorithm 1 describes the process of scheduling, where

82 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 8, NO. 1, FEBRUARY 2012

, and denote task ’s gain, loss,
risk factor, and expected gain, respectively.

The rationale behind Step 11 in Algorithm 1 is that if we opti-
mistically assume that both and take their best-case execu-
tion time, task should be discarded if it cannot meet its dead-
line. Task should also be discarded if, upon finishing higher
priority task , the risk level of task exceeds the system’s
tolerable risk level.

Time Complexity: The nonpreemptive PP-aware scheduling
algorithm is in fact a greedy algorithm. From Algorithm 1, we
can see that the complexity of algorithm can be largely formu-
lated as , where is the number of tasks to be sched-
uled, and refers to the worst-case computation cost of calcu-
lating (3), (8), and (12) for a given task. Note that, as the calcula-
tion of formula (3), (8), and (12) does not depend on the number
of tasks, i.e., do not depend on is constant with respect to

. On the other hand, depends heavily on the complexity of
utility functions and , and task execution time proba-
bility density function . For simple linear functions of
and and simple probability density function such as the
uniform distribution for can be trivial. However, for
a more complicated utility function such as high-order polyno-
mial or nonlinear function, or a more complicated probability
density function, can be very large.

We next use an example to illustrate Algorithm 1 and also
compare it with other traditional scheduling methods such as
the EDF and GUS [14].

Example 3: Consider a task set , where
:

• ,

Fig. 3. EDF, GUS, and PP-aware w/o preemption schedule comparison.

• , and
•
Assume at runtime, the execution time for task , and

are 20, 12, and 18, respectively. The following cases illustrate
the performances of different scheduling algorithms on the task
set.

Case 1: EDF: The task execution order is , and .
Completing task and gaining , and com-
pleting task and gaining , but missing dead-
line for task and losing , therefore, the total
accrued utility is .

Case 2: GUS: For UA-aware scheduling, we choose the GUS
algorithm defined in [14], for which the tasks with largest PUD
(potential utility density) [15] is scheduled first. Without loss
of generality, we use the average of best-case execution time
and worst-case execution time to get the gain per unit of exe-
cution for task , and . They are , 4 36/19.5, and
4 28/17.5, respectively. Since task is released before the
other two tasks become available, therefore, the execution order
is , and . Completing task and , but missing dead-
line for task , the total accrued utility is .

Case 3: Nonpreemptive PP-Aware Scheduling: As the
system is overloaded when the last task is released, we set
risk level . For task , we use formula (12) to
get the critical time . At time 6 and 12 when
task and are released, we use (11) to calculate the rise
factors of executing and , respectively. Both are under the
threshold which is set to 1, and both are accepted. At time
17, is dropped with penalty of 51 and task is set to start.
Since is discarded with penalty of
20. Task is executed to its completion with a gain of 52. The
system’s total utility gain is thus . Fig. 3 depicts the three
schedules.

The above example shows that the PP-aware scheduling al-
gorithm outperforms the traditional approach such as the EDF
and GUS. Even though the nonpreemptive PP-aware algorithm
(i.e., Algorithm 1) is a greedy approach, it not only takes into
account of profit gain and loss , but also other fac-
tors such as the risk levels, which helps to improve statistically
the performance of the scheduling decisions. In Section VI, we
conducted extensive simulation studies to further investigate the
performance of the PP-aware nonpreemptive scheduling.

LI et al.: PROFIT AND PENALTY AWARE SCHEDULING FOR REAL-TIME ONLINE SERVICES 83

V. PREEMPTIVE PP-AWARE SCHEDULING

If preemption is allowed and a task with higher potential gain
emerges, the current executing task will be preempted by the
one with higher gains. As a task’s gain and loss functions are
time dependent, the expected gains of tasks in the pending queue
change as time progresses. Therefore, higher gain tasks may
emerge from the pending queue, or arrive from a new client re-
quest. This section discusses in detail the preemptive PP-aware
scheduling.

A. Preemptive PP-Aware Scheduling

For preemptive PP-aware scheduling, scheduling decisions
are made and preemption points are calculated at the time when:

1) a new task arrives;
2) a task successfully completes its execution before its dead-

line;
3) the current time reaches previously calculated preemption

point (Section V-B), or critical time defined in Definition
8, or its deadline, whichever is the earliest.

These time instances are called scheduling points. It is worth
pointing out that task arrival times are also scheduling points
for preemptive PP-aware algorithm which is different from the
nonpreemptive PP-aware scheduling algorithm. The reason is
that for nonpreemptive PP-aware scheduling algorithm, newly
arrived tasks cannot preempt the current task even if they have
higher priorities and hence do not call for scheduling decisions;
while for preemptive algorithm, current task may be preempted
by newly arrivals. Therefore, task arrival times are also sched-
uling points for the preemptive PP-aware scheduling algorithm.

At each scheduling point , the task with highest expected
gain is selected for execution until the next scheduling point. At
the same time when the task is selected, its preemption point is
also calculated accordingly (see Section V-B). The scheduling
algorithm is given in Algorithm 2.

The following example compares the preemptive PP-aware
scheduling with EDF and GUS.

Example 4: We use the same example given in Section IV to
compare the three preemptive algorithms.

Case 1: EDF: The task execution order is the same as in
nonpreemptive EDF. Hence, the total accrued utility is .

Case 2: GUS: As task has higher PUD than , task is
preempted by task at time 6. Completing task , the system
obtains 96 gain. As has higher PUD than is executed
and the system gains 16. However, as misses its deadline, the
system loses 108. Hence, the total accrued utility is only 4.

Case 3: PP-Aware: Task is executed until task
is released at time 6. Because has higher expected
gain than the conditional expected gain of is
preempted. The remaining task of , i.e.,

, is inserted into .
When arrives, as it has lower expected gain than , it cannot
preempt . However, at the time when arrives, i.e., time
12, as , task is dropped and the system
loses 36. is executed to its completion with gain of 96. Then

is selected to run, at time 36, to its completion with gain
of 16. The system’s total profit is 76. Fig. 4 depicts the three
schedules.

Fig. 4. EDF, GUS, and PP-aware with preemption schedule comparison.

Time Complexity: Similar to Algorithm 1, the preemptive
PP-aware scheduling algorithm is also a greedy algorithm and
its time complexity can be formulated as ,
where is the number of tasks, is the worst case computa-
tional cost when calculating (3), (8), and (12) for a given task,

84 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 8, NO. 1, FEBRUARY 2012

and is the worst-case computational cost for identifying the
potential preemption point for a given task, which is explained
further below.

B. Determining the Preemption Point

A key aspect for a preemptive scheduling approach is to de-
termine when preemption should take place.

For a set of VEP tasks ,
let the current running task be

, which has started at .
Assume that at time , task ’s expected gain
becomes higher than . Clearly, time is a legitimated pre-
emption time. The potential preempting task ’s expected gain
and the current task’s conditional expected gain at time are
given by (13) and (14), respectively

(13)

(14)

Note that since the expected gain of does not change before
the task is executed for at least amount of time, we have

, and therefore,

(15)

Substitute (13) and (14) into (15), we obtain the constraint (16)
for preemption point

(16)

Based on the definitions of , and , (16) is rewritten as
(17) given below

(17)

If (17) has a valid solution for potential preempting task ,
we calculate the task’s best-case risk at time , i.e., .
If the task’s best-case risk does not exceed the system’s toler-
able risk level, i.e., , time is a potential
preemption point.

However, as shown by (17), the complexity of computing
the potential preemption points depends on the gain function

and task execution time probability distribution function .
For complex and , it may be too difficult to obtain an an-
alytical solution for (17). Under this situation, many iterative
approaches, such as the secant method [20], may be used to ob-
tain numerical results.

Fig. 5 shows an iteration process and Table I illustrates the
relative errors after each iteration step when the secant method
[20] is applied to Example 5. As indicated by Fig. 5 and Table I,

Fig. 5. Iterations used in preemption point computing.

TABLE I
RELATIVE ERRORS VS. ITERATION STEPS

the relative error decreases rapidly for each iteration step. For
more general scenarios, it has been shown [21], [22] that when
the secant method converges to its analytical solution, it con-
verges rather fast, with asymptotic convergence rate of 1.618.
That is, at the th iteration, the error between an approximation
value and the analytical solution satisfies (18), where is a con-
stant. For the given example, the error is only about 1.5% after
three iteration steps

(18)

After calculating the potential preemption point for each
task, the earliest one is set as the valid preemption point
and its corresponding task is chosen to preempt the current
task at the preemption point. The remaining part of the pre-
empted task, i.e.,

, is treated as a new task and
inserted into the task queue , where the remaining execution
time probability density function is given below

(19)

We use an example to illustrate how to calculate preemption
point and select the appropriate preempting task.

Example 5: Consider a task set , where:
• ;
• .

and we set the system’s tolerable risk level .
Their expected gains at the scheduling point for task
and are given by and , respectively

(20)

(21)

LI et al.: PROFIT AND PENALTY AWARE SCHEDULING FOR REAL-TIME ONLINE SERVICES 85

Fig. 6. Example of preemption.

As is chosen to run at time .
To check if there is any preemption point for , the ex-

pected gain of at is given below

(22)

The expected gain when executes to is

(23)

If there exists a preemption point for task , (24) shall
hold

(24)

As , i.e., ,
(17) has the following two cases.

Case 1: , i.e., .
Hence, which is after the deadline of .
Therefore, the is not valid.

Case 2: , i.e., In this case,
substitute corresponding values into (17), we have

(25)

i.e.,

(26)

Fig. 6 shows the solution of (26), where the solid line is the
conditional expectation of gain of , i.e., the right side of (26),
and the dashed line is the maximum expected gain of in terms
of time, i.e., the left side of (26). Their intersection point, i.e.,

, is the preemption point for as it satisfies both
and . Therefore, task does not

finish at time , it will be preempted by at that time.

VI. EXPERIMENTAL RESULTS

In this section, a set of simulations are performed to compare
the performance of PP-aware scheduling algorithm with both

non-UA-aware (EDF) and UA-aware (GUS) scheduling algo-
rithms in respect to system total accrued gain.

A. Simulation Settings

In our experiments, we assume that both and are
linear functions, and we randomly generate each VEP task

as follows.
• , and are randomly generated, which are uniformly

distributed within [1,10], [30, 50], and [10, 70] respec-
tively, with a constraint .

• The gradient of and , i.e., and , are randomly
generated in the range of [4, 10] and [1,5], respectively.

• Task release time are randomly chosen following the
Poisson distribution with .

• Functions are defined as follows:
—- ;
—- ;
—- .

For EDF and GUS scheduling algorithms, if a task is finished
at time before its deadline , the system gains profit
from completing the task. On the other hand, if the task misses
its deadline, the penalty paid is .

B. The Benefit of Admission Test

To investigate the benefit of having an admission test, we
adopt a concept similar to the “task load” definition given in
[23]. In particular, for a given VEP task set, the task load is de-
fined belo.

Definition 9 (VEP Task Load): Given a set of VEP
tasks , where

, and they are ordered by their dead-
lines in the set. At any given time , the system task load is
defined below

(27)

Under different task loads, we compare system accrued
profits when admission test is or is not applied while sched-
uling tasks based on the nonpreemptive scheduling algorithm
(Section IV-B). We randomly generate 100 tasks for each task
set with its system load being 0.2, 0.4, 0.6, 0.8, 1, 1.5, 2,
2.5, 3, respectively, and . The tests are repeated 100
times and the average over the 100 runs depicted in Fig. 7. As
shown in the figure, when the system load is low, the advantage
is not significant. This observation confirms with our intuition
that under low system load, most of the newly arrived tasks are
accepted. However, as the system load increases, the difference
becomes more obvious.

C. Performance Comparison Under Different Workload

In our experiments, we randomly generate 100 tasks for each
task set with its system load being 0.2, 0.4, 0.6, 0.8, 1,
1.5, 2, 2.5, 3, respectively. For each system load, 100 task sets
are generated and the total expected gains are collected. Fig. 8
shows the average results from the 100 runs for each system
load. In this set of experiments, we set .

86 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 8, NO. 1, FEBRUARY 2012

Fig. 7. PP-aware admission test and w/o admission test comparison.

Fig. 8. Performance of different scheduling under different system load.

It can be observed from Fig. 8 that when the system load is
low (under 40% in the case), all algorithms other than the pre-
emptive EDF scheduling algorithm obtain about the same profit.
This is because the preemptive EDF gives the higher priority
to tasks with earlier deadlines without considering the system
profit. Hence, though under low system load scenario, jobs are
able to meet their deadlines, the preemptive EDF may unneces-
sarily prolong the completion time of tasks with high profit.

Furthermore, for all compared scheduling algorithms, at the
beginning, system performances increase as the load increases
until they reach their maximals and then start to decrease as the
load further increases. The reason behind this observation is that
when the system load is small, most of the tasks will meet their
deadlines and the system will make more profit if it executes
more tasks. However, as the system load increases, some tasks
start to miss their deadlines and hence the system starts to en-
counter penalty. The higher the system load increases, the more
tasks may miss their deadline and cause penalty to increase and
profit to decrease. In particular, for our test case, when is
around 60%, the system accrued gain under both PP-aware and
GUS algorithms reaches its maximum. The profit starts to de-
crease when the load increases beyond 60%.

Though the performance of PP-aware and GUS are similar
when the system is in underload situation, under high load or
overload situation , nonpreemptive PP-aware sched-
uling can gain as much as 7541.34, whereas nonpreemptive
GUS only gets 4334.06, indicating that PP-aware scheduling al-
gorithm can outperform the GUS scheduling algorithm as much
as 74%. The reason is that PP-aware scheduling algorithm takes
into account of not only profit gain and loss , but also
other factors such as the risk levels, which help to improve sta-
tistically the performance of the scheduling decisions.

Fig. 9. � and its impact on overload system performance.

Fig. 10. � and its impact on underload system performance.

Another observation is that the performance differences
between preemptive and nonpreemptive versions of PP-aware
scheduling scheme are small, at most 16%. Similar evidences
are observed between preemptive GUS and nonpreemptive
GUS as well. The results suggest that if preemption overhead
is not negligible, the advantages of preemptive approach for
PP-aware scheme become less evident, specially when the
complexity of calculating the preemption points is considered.

D. and Its Impact

We further study the potential impact that the risk factor,
i.e., , may have toward the performance of the PP-aware
scheduling algorithms. For this study, we fix the system load,
and only vary the value of the risk factor . Specifically,
we conduct two sets of experiments. In the first set of ex-
periments, we randomly generate 100 tasks for each task set
with system load fixed at (overloaded), and then
set , respec-
tively. This test is repeated for 100 times and the total gain for
each test case is collected. In the second set of experiments,
we study the underloaded scenario by setting . The
average results are shown in Figs. 9 and 10, respectively.

As shown in the Fig. 9, when the system is overloaded,
taking lower risk, i.e., , under nonpreemptive
PP-aware scheduling, the system gain over 7% more profit than
taking higher risk, i.e., . Similarly, under preemptive
PP-aware scheduling, when taking higher risk, the system
profit drops 30% comparing with taking lower risk. The results
confirm with our intuition that allowing system overload is
itself taking a risk when knowing some of accepted jobs may
not be finished on time. When preemption is allowed, some
jobs which could finish on time may be preempted, and the
system have to pay penalties for these jobs. It is obvious that

LI et al.: PROFIT AND PENALTY AWARE SCHEDULING FOR REAL-TIME ONLINE SERVICES 87

Fig. 11. Comparison of system performance between nonpreemptive PP-aware
scheduling and preemptive PP-aware scheduling.

when the system is overloaded, if the system can not discard
nonprofitable jobs on time, it will suffer penalty. The risk factor

decides how soon the system should react, the smaller
value, the more frequent the system has to check if an action
should be taken. Hence, under system overload situation, we
should use smaller for better performance.

On the other hand, when the system is less utilized, the risk
factors have less impacts on the system performance, as shown
in Fig. 10. The reason is that when the system is underloaded,
most tasks will be able to be completed before their deadlines.
Although our experimental results show general guidelines on
how to choose an appropriate risk factors, how to identify the
optimal risk factor for each system is a complex and yet inter-
esting problem and needs further study.

E. Nonpreemptive PP-Aware Scheduling Versus Preemptive
PP-Aware Scheduling

Next, we compare the performance of PP-aware nonpreemp-
tive and preemptive scheduling under different workload and
risk factors. In this experimental study, we vary both the system
load and risk factors. Specifically, we randomly generate 100
tasks for each task set, with system load set at 0.2, 0.4,
0.6, 0.8, 1, 1.5, 2, 2.5, 3. We also set the risk factors to be
0.2, 0.4, 0.6, 0.8, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, respectively. The
tests are repeated 100 times and the average over the 100 runs
is used in the figures given below.

Fig. 11 compares the system profits between nonpreemptive
and preemptive PP-aware scheduling algorithms. Each point on
the bright surface is the average system profit using nonpre-
emptive PP-aware scheduling. The dark surface is the average
system profit using preemptive PP-aware scheduling approach.
It is worth pointing out that as we use the average system profit
instead of actual system profit, it does not reflect individual spe-
cial situations, such as a performance boost caused by, for in-
stance, a higher profit task comes later than the lower profit
tasks.

Fig. 12 shows the average percentage of tasks being pre-
empted introduced by preemptive PP-aware scheduling as a
function of , when system load and ,
respectively.

As shown in the Fig. 11, when the system is approaching the
threshold of overload, i.e., , preemptive PP-aware
scheduling outperforms nonpreemptive PP-aware scheduling.
However, as shown in the Fig. 12, on average, about 30% of

Fig. 12. Preemptions introduced by preemptive PP-aware scheduling as a func-
tion of the � .

tasks are preempted. Clearly, such high percentage of task pre-
emption renders the preemption overhead being not negligible.
The observation in Section VI-C and the test results in this sec-
tion indicate that from system profit perspective, nonpreemptive
PP-aware scheduling is comparable with preemptive PP-aware
scheduling, but it has much less implementation cost and oper-
ation overhead. When the system load is in the range of [0.6, 1],
which is more common in practice, preemptive PP-aware sched-
uling outperforms nonpreemptive PP-aware scheduling.

VII. RELATED WORK

For conventional real-time systems, such as process control
systems, the major concern is to meet task deadlines. Extensive
research has been conducted in designing and analyzing sched-
uling algorithms for such purposes. The deadline monotonic
and rate monotonic scheduling algorithms are among the most
widely studied algorithms and form the basis against which
other algorithms are compared. However, with these classes of
algorithms, the task’s urgency, rather than its importance, is
used as job scheduling criteria.

Jensen et al. propose to associate each task with a value func-
tion to indicate the task’s importance [10]. More specifically, a
TUF is defined to describe utility accrued by a system at the time
when a task is completed. Since then, the topic of UA sched-
uling, or UA-aware scheduling, has been explored widely in the
research community. In particular, in [24], [25], a specific class
of TUFs, i.e., step functions, is studied; while [11]–[14] focus
on nonstep function of TUFs. Arbitrary shaped TUFs and their
corresponding scheduling algorithms are studied by Locke [12]
and Li [14].

Wu et al. apply UA-aware scheduling on codependent task
sets [26], [27] with variable execution times [28]. They intro-
duce the concept of Progressive Utility which generalizes the
imprecise computational model and describes the progress of
tasks. In this model, utility can be accrued by either finishing
current tasks or by improving the progress of related tasks. The
computational goal is to maximize the weighted sum of com-
pletion time, progressive and joint utilities. Ahmad et al. in [29]
propose a preemptive utility accrual scheduling (or PUAS) al-
gorithm for adaptive real-time system environment where unto-
ward effects such as deadline misses and overloads are tolerable.
The proposed algorithm improves the General Utility Sched-
uling algorithm by preempting the tasks that GUS abort due to
its lower Potential Utility Density (PUD) [15].

88 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 8, NO. 1, FEBRUARY 2012

In [30], Cortes et al. propose a quasi-static scheduling ap-
proach, neither purely offline, nor purely online, to find a task
execution order that results in maximal utility and at the same
time guarantees hard deadlines. With the quasi-static approach,
a set of scheduling algorithms are defined at the design time
and at runtime, the system can change its scheduling algorithm
in order to guarantee hard deadlines and also maximize the ac-
crued utility.

The topic of TUF/UA scheduling is further branched out into
other areas, such as in resource sharing [4], [7], [14], [31]–[34],
energy consumption [17], [35]–[37], memory cost [38], [39],
fault tolerance [40]–[42], overhead [30], and multiprocessor
[43], [44] etc.

However, all these existing variations of UA-aware sched-
uling algorithms share the assumption that utility is accrued only
when a task is successfully completed. Although Bartal et al.
studied the online scheduling problem when penalties have to
be paid for rejected jobs [45], [46]. The objective of the pro-
posed algorithm is, nevertheless, to minimize the makespan of
the schedule for accepted jobs plus the sum of the penalties of
rejected jobs.

In [47], Irwin et al. present a heuristics for value-based task
scheduling, in which a task’s yield decays linearly with its
waiting time. However, the penalty only be given if a task is
delayed beyond the zero value point.

Liu uses usefulness function in the book [48]. The usefulness
of the job becomes zero or negative as soon as the job is tardy.
In the latter case, it is better than late.

Recently, Niz et al. [49] also use the task’s criticality (impor-
tance) as the scheduling criteria. They consider both scheduling
priorities and task criticalities in the Zero-slack scheduling, the
task criticalities are similar to the expected gain in our algo-
rithms. It can be assumed that task with higher criticalities will
gain higher profit in our system. However, in [49], they assume
the task’s criticality in the study is static with time and is known
before execution. Scheduling criteria based on dynamic criti-
cality, i.e., the task’s criticality varies with time and is unknown
before execution, is still an open topic.

The PP-aware model and scheduling paradigm are first pro-
posed in [50]. Based on the model, we have extended our work
in a number of ways, including using a new metric to quantify
the risk when executing a task [51]; developing new scheduling
heuristics to maximize the overall profit [52]; and employing
PP-aware model to real online service applications [53].

VIII. SUMMARY AND FUTURE WORK

In this paper, we present: 1) a novel scheduling method and
related analysis results for tasks that may not only generate
profit when being completed before their deadline, but also
incur penalty otherwise and 2) two scheduling algorithms,
i.e., the nonpreemptive and preemptive Profit and Penalty
aware (PP-aware) scheduling algorithms with an objective to
maximize system’s total accrued profit. Our simulation results
clearly demonstrate the advantages, in respect to system total
accrued profit, of the proposed algorithms over other commonly
used scheduling algorithms, such as EDF and UA algorithms.

The current work will be extended in a number of ways. First,
the PP-aware nonpreemptive and preemptive scheduling algo-
rithms we have proposed in this paper are highly heuristic. Is
there an optimal algorithm for the PP-aware scheduling problem

we propose in this paper? How close the performance of the pro-
posed nonpreemptive and preemptive scheduling algorithms to
the optimal algorithm?

Second, as our experiments have shown, the risk factor
has an important impact on the performance of the PP-aware
scheduling algorithms in system overload conditions. How to
identify the optimal for different task load is an interesting
problem that needs further research.

Third, both the gain and penalty functions in this paper are
very simple, i.e., the linear function, we intend to relax this
assumption and consider more complicated profit and penalty
function. Furthermore, the gain function used in the model rep-
resents the “positive gain” the system accrued, it can be ex-
tended to represent “negative gain.” Similarly, we intend to ex-
tend the loss function to represent “negative loss” as well.

Forth, the preemption point calculation is complex and
mostly related to the complexity of the profit and penalty func-
tions. If a simple periodic sampling approach is used in replace
of calculated preemption point, what is the optimal period and
how to adapt when task set changes?

Fifth, our current experiments only compare PP-aware ap-
proach with other approaches under the assumption that task
execution time is uniformly distributed within a time interval,
however, how sensitive the proposed PP-aware scheduling ap-
proach is to task execution time distribution model and gain/loss
function is yet to be further studied.

ACKNOWLEDGMENT

The authors highly appreciate the constructive comments and
suggestions from the reviewers, which contribute significantly
to improve the quality of this paper.

REFERENCES

[1] F. Casati and M. Shan, “Definition, execution, analysis and optimiza-
tion of composite e-service,” IEEE Data Engineering, vol. 24, no. 1,
pp. 24–39, Mar. 2001.

[2] H. Kuno, “Surveying the e-services technical landscape,” in Proc. 2nd
Int. Workshop on Advanced Issues of E-Commerce and Web-Based In-
form. Syst., 2000, pp. 94–101.

[3] C. S. Yeo and R. Buyya, “A taxonomy of market-based resource man-
agement systems for utility-driven cluster computing,” Software Prac-
tice and Experience, vol. 36, pp. 1381–1489, 2006.

[4] K. Xiong and H. Perros, “Sla-based resource allocation in cluster com-
puting systems,” in Proc. IEEE Int. Symp. Parallel Distrib. Process.,
2008, pp. 1–12.

[5] L. Zhang and D. Ardagna, “Sla based profit optimization in autonomic
computing systems,” in Proc. 2nd Int. Conf. Service Oriented Comput.,
ICSOC’04, New York, 2004, pp. 173–182.

[6] Z. Liu, M. S. Squillante, and J. L. Wolf, “On maximizing ser-
vice-level-agreement profits,” in Proc. 3rd ACM Conf. Electronic
Commerce, EC’01, New York, 2001, pp. 213–223.

[7] D. A. Menasce, V. A. F. Almeida, and M. A. Mendes, “Business-ori-
ented resource management policies for e-commerce server,” Perform.
Eval., vol. 42, pp. 223–229, 2000.

[8] L. Zhang and D. Ardagan, “Sla based profit optimization in autonomic
computing systems,” in Proc. 2nd Int. Conf. Service Oriented Comput.,
2004, pp. 173–182.

[9] Z. Liu, M. S. Squillante, and J. L. Wolf, “On maximizing service-level-
agreement profits,” in Proc. 3rd ACM Conf. Electron. Commerce, 2001,
pp. 213–223.

[10] E. D. Jensen, C. D. Locke, and H. Tokuda, “A time-driven scheduling
model for real-time systems,” in Proc. IEEE Real-Time Syst. Symp.,
1985, pp. 112–122.

[11] K. Chen and P. Muhlethaler, “A scheduling algorithm for tasks de-
scribed by time value function,” J. Real-Time Syst., vol. 10, no. 3, pp.
293–312, May 1996.

[12] C. D. Locke, “Best-effort decision making for real-time scheduling,”
Ph.D. dissertation, Carnegie Mellon Univ., Pittsburgh, PA, 1986.

LI et al.: PROFIT AND PENALTY AWARE SCHEDULING FOR REAL-TIME ONLINE SERVICES 89

[13] J. Wang and B. Ravindran, “Time-utility function-driven switched
Ethernet packet scheduling algorithm, implementation, and feasibility
analysis,” IEEE Trans. Parallel Distrib. Syst., vol. 15, no. 2, pp.
119–133, Feb. 2004.

[14] P. Li, “Utility accrual real-time scheduling: Models and algorithms,”
Ph.D. dissertation, Virginia Polytechnic Inst. State Univ., Blacksburg,
, VA, 2004.

[15] R. K. Clark, “Scheduling dependent real-time activities,” Ph.D. disser-
tation, Carnegie Mellon Univ., Pittsburgh, PA, 1990.

[16] H. Cho, B. Ravindran, and E. D. Jensen, “Lock-free synchronization
for dynamic embedded real-time systems,” ACM Trans. Embedded
Comput. Syst., vol. 9, no. 3, pp. 23:1–23:28, Feb. 2010.

[17] H. Wu, B. Ravindran, and E. D. Jensen, “Energy-efficient, utility ac-
crual real-time scheduling under the unimodal arbitrary arrival model,”
in Proc. ACM Design, Automation, and Test in Europe (DATE), 2005,
pp. 474–479.

[18] W. T. Strayer, “Function-driven scheduling: A general framework for
expressing and analysis of scheduling,” Ph.D. dissertation, Univ. Vir-
ginia, Charlottesvile, VA, 1992.

[19] I. D. Baev, W. M. Meleis, and A. E. Eichenberger, “Algorithms for total
weighted completion time scheduling,” in Proc. 10th Annu. ACM-SIAM
Symp. Discrete Algorithms, SODA’99, 1999, pp. 852–853.

[20] A. Kaw and E. Kalu, “Numerical methods with applications,”1st ed.
2008. [Online]. Available: autarkaw.com

[21] W. Press, B. Flannery, S. Teukolsky, and W. Vetterling, “Secant
method, false position method, and ridders method,” Numerical
Recipes in FORTRAN: The Art of Scientific Computing, pp. 347–352.

[22] A. Leykin, “Convergence of secant method,” 2006. [Online]. Available:
http://www.math.uic.edu/leykin/mcs471/NOTES/secant.pdf

[23] G. Buttazzo, Hard Real-Time Computing Systems. New York:
Springer, 2005.

[24] D. Mosse, M. E. Pollack, and Y. Ronen, “Value-density algorithm to
handle transient overloads in scheduling,” in Proc. Euromicro Conf.
Real-Time Systems, 1999, pp. 278–286.

[25] G. Koren and D. Shasha, “D-over: An optimal online scheduling al-
gorithm for overloaded real-time systems,” in IEEE Real-Time Syst.
Symp., 1992, pp. 290–299.

[26] H. Wu, B. Ravindran, and E. Jensen, “On the joint utility accrual
model,” in Proc. 18th Int. Parallel and Distrib. Process. Symp., Apr.
2004, p. 124.

[27] H. Wu, B. Ravindran, and E. Jensen, “Utility accrual scheduling under
joint utility and resource constraints,” in Proc. 7th IEEE Int. Symp. Ob-
ject-Oriented Real-Time Distrib. Compu. , May 2004, p. 307.

[28] H. Wu, U. Balli, B. Ravindran, and E. Jensen, “Utility accrual real-
time scheduling under variable cost functions,” in Proc. 11th IEEE Int.
Conf. Embedded and Real-Time Comput. Syst. Appl., Aug. 2005, pp.
213–219.

[29] I. Ahmad, M. Othman, Z. Zulkarnain, and M. F. Othman, “Improving
utility accrual scheduling algorithm for adaptive real-time system,” in
Proc. Int. Symp. Inform. Technol., ITSim’08, Aug. 2008, vol. 1, pp. 1–5.

[30] L. Cortes, P. Eles, and Z. Peng, “Quasi-static scheduling for real-time
systems with hard and soft tasks,” in Proc. Design, Autom. Test in Eu-
rope Conf. Exhibition, Feb. 2004, vol. 2, pp. 1176–1181, vol. 2.

[31] A. Popescu, M. Sharaf, and C. Amza, “Sla-aware adaptive on-demand
data broadcasting in wireless environments,” in Proc. 10th Int. Conf.
Mobile Data Manage.: Syst., Service, Middleware, MDM’09, May
2009, pp. 142–151.

[32] B. Ravindran, E. D. Jensen, and P. Li, “On recent advances in
time/utility function real-time scheduling and resource management,”
in Proc. IEEE Int. Symp. Object-Oriented Real-Time Distrib. Comput.
(ISORC), 2005, pp. 55–60.

[33] P. Li, H. Wu, B. Ravindran, and E. Jensen, “A utility accrual sched-
uling algorithm for real-time activities with mutual exclusion resource
constraints,” IEEE Trans. Comput., vol. 55, no. 4, pp. 454–469, Apr.
2006.

[34] H. Wu, B. Ravindran, E. D. Jensen, and U. Balli, “Utility accrual
scheduling under arbitrary time/utility functions and multiunit re-
source constraints,” in Proc. IEEE Real-Time and Embedded Comput.
Syste. Appl., 2004, pp. 80–98.

[35] H. Wu, “Energy-efficient utility accrual real-time scheduling,” Ph.D.
dissertation, Virginia Polytechnic Inst. State Univ., Blacksburg, VA,
2005.

[36] H. Wu, B. Ravindran, and E. D. Jensen, “Utility accrual real-time
scheduling under the unimodal arbitrary arrival model with energy
bounds,” IEEE Trans. Computers, vol. 56, no. 10, pp. 1358–1371, Oct.
2007.

[37] H. Wu, B. Ravindran, and E. D. Jensen, “Energy-efficient, utility ac-
crual real-time scheduling under the unimodal arbitrary arrival model,”
in Proc. Confe. Design, Autom. Test in Europe, DATE’05, Washington,
DC, 2005, pp. 474–479.

[38] S. Feizabadi and G. Back, “Automatic memory management in utility
accrual scheduling environments,” in Proc. ISORC, 2006, pp. 11–19.

[39] S. Feizabadi, B. Ravindran, and E. D. Jensen, “MSA: A memory-aware
utility accrual scheduling algorithm,” in Proc. 2005 ACM Symp. Appl.
Comput., SAC’05, New York, 2005, pp. 857–862.

[40] J. Stankovic, “Misconceptions about real-time computing: A serious
problem for next-generation systems,” Computer, vol. 21, no. 10, pp.
10–19, Oct. 1988.

[41] Y. Yu, S. Ren, and O. Frieder, “Prediction of timing constraint violation
for real-time embedded systems with known transient hardware fault
distribution model,” in Proc. 28th IEEE Real-Time Syst. Symp., 2007,
pp. 454–466.

[42] V. Izosimov, P. Pop, P. Eles, and Z. Peng, “Scheduling of fault-tolerant
embedded systems with soft and hard timing constraints,” in Proc. De-
sign, Autom. Test in Europ, DATE’08, Mar. 2008, pp. 915–920.

[43] H. Cho, B. Ravindran, and E. Jensen, “Utility accrual real-time
scheduling for multiprocessor embedded systems,” J. Parallel Distrib.
Comput., pp. 101–110, Feb. 2010.

[44] H. Cho, B. Ravindran, and C. Na, “Garbage collector scheduling in
dynamic, multiprocessor real-time systems,” IEEE Trans. Parallel Dis-
trib. Syst., vol. 20, no. 6, pp. 845–856, Jun. 2009.

[45] Y. Bartal, S. Leonardi, A. Marchetti-Spaccamela, J. S. Gall, and L.
Stougie, “Multiprocessor scheduling with rejection,” in Proc. SODA,
1996, pp. 95–103.

[46] H. Hoogeveen, M. Skutella, and G. Woeginger, “Preemptive sched-
uling with rejection,” Proc. 8th Annu. Eur. Symp. Algorithms, pp.
268–277, 2000.

[47] D. Irwin, L. Grit, and J. Chase, “Balancing risk and reward in a market
based task service,” in Proc. 13th IEEE Int. Symp. High Perform. Dis-
trib. Comp., 2004, pp. 160–169.

[48] J. W. S. Liu, Real-Time Systems. New York: Prentice-Hall, 2000.
[49] D. d. Niz, K. Lakshmanan, and R. Rajkumar, “On the scheduling of

mixed-criticality real-time task sets,” in Proc. 30th IEEE Real-Time
Syst. Symp., RTSS’09, Dec. 2009, pp. 291–300.

[50] Y. Yu, S. Ren, N. Chen, and X. Wang, “Profit and penalty aware (PP-
aware) scheduling for tasks with variable task execution time,” in Proc.
ACM Symp. Appl. Comput., SAC’10, New York, 2010, pp. 334–339.

[51] S. Liu, G. Quan, and S. Ren, “On-line scheduling of real-time services
for cloud computing,” in Proc. 6th World Congr. Services, Jul. 2010,
pp. 459–464.

[52] S. Liu, G. Quan, and S. Ren, “On-line preemptive scheduling of real-
time services with profit and penalty,” in Proc. IEEE Southeastcon’11,
Mar. 2011, pp. 287–292.

[53] S. Liu, G. Quan, and S. Ren, “On-line real-time service allocation and
scheduling for distributed data centers,” in Proc. 8th Int. Conf. Services
Computing, 2011, pp. 528–525.

Shuhui Li, photograph and biography not available at the time of publication.

Shangping Ren, photograph and biography not available at the time of publi-
cation.

Yue Yu, photograph and biography not available at the time of publication.

Xing Wang, photograph and biography not available at the time of publication.

Li Wang, photograph and biography not available at the time of publication.

Gang Quan, photograph and biography not available at the time of publication.

