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Abstract—High performance computing data centers are
playing increasingly important roles in our daily life. However,
as data centers increase in size and number, the power con-
sumption at the data centers has also increased dramatically.
We are facing the challenge of reducing energy consumption,
lowering down the peak inlet temperature and at the same
time meeting short makespan requirements. In this paper, we
present two dependent task scheduling algorithms to balance
the trade-offs among data center’s power consumption, peak
inlet temperature, and application’s makespan. We compare
them with two existing algorithms, i.e., the List algorithm and
the CoolestInlets algorithms. Our extensive simulations show
clear advantages of the proposed approaches over the List
and the CoolestInlets algorithms for both homogeneous and
heterogeneous data centers.

Keywords-Energy Consumption, Peak Inlet Temperature,
Task Dependency, Application Makespan, Scheduling Algorith-
m

I. INTRODUCTION

High Performance Computing (HPC) data centers are

playing more and more important roles in our daily life,

ranging from modeling financial markets to forecasting

weather and nature disasters. In recent years, their sizes

have grown dramatically, however, the power consumption

has also increased severely. And in large data centers, over

50% of the power consumed is not used for executing tasks,

rather, it is used for cooling the centers [1], [2].

Bash [3] pointed out that heat recirculation often increases

the inlet temperature and causes hot spots in data centers.

In order to prevent data servers from being overheated and

ensure that the temperature at each data server is below the

red line temperature, the computer room air conditioners

are used to supply cold air and remove heat from the

center. The supplied air must be cold enough so that the

hottest server can be quickly cooled down. Clearly, the

higher the temperature of a server, the lower the temperature

of cooling air provided by the air conditioner has to be.

Unfortunately, as pointed out by Moore [4], lowing the room

air conditioner’s working temperature degrades its capability

of removing heat from the room. Therefore, if we can reduce

the peak inlet temperature, the air conditioner can work at a

higher temperature with better performance on heat removal,

and hence lower down the cooling cost.

Researchers have been exploring different approaches to

reduce the cooling cost. Moore et al. [4] has defined heat-

recirculation-factor and used it to guide the power distribu-

tion on each server so that minimal peak inlet temperature

can be achieved, however, which is not a task scheduling

algorithm. Tang et al. [5] extended the work and provided

modify-MinHR and XInt-GA algorithms to minimize the

peak inlet temperature, but the assumption is that servers

in the data centers are homogeneous, tasks are independent

and application’s makespan is not a concern.

In this paper, we investigate how to schedule dependent

tasks in both homogeneous and heterogeneous data centers

to achieve the following objectives:

1) lower the peak inlet temperature,

2) reduce energy consumption for executing tasks, and

3) shorten application’s makespan.

It is not difficult to see that these objectives conflict with

each other. For instance, a powerful server may finish a

task in a very short time period, but has high energy cost.

Therefore, frequently using this server reduces applications’

markspan, but may cause the server to be a hot spot. This

paper presents two multi-phased heuristic task scheduling

algorithms that take an application’s makespan and its ex-

ecution energy consumption into consideration while trying

to minimize a data center’s peak inlet temperature.

The rest of the paper is organized as follows: Section II

introduces the system model. Section III presents two task

scheduling algorithms that balance the trade-offs among data

center’s peak inlet temperature, power consumption, and

application’s makespan. The theoretical analysis about the

proposed algorithms is discussed in Section IV. Section V

discusses simulation results. We conclude the paper and

point out future work in Section VI.

II. MODELS AND ASSUMPTIONS

Task Model
We assume that an application consists a set of dependent

tasks. The dependency relationship among tasks is modeled

by a directed acyclic graph [6] G = (V,E), where each

vertex in the graph represents a task, and dependency among

tasks are represented by an edge between corresponding

task nodes. If (Vi, Vk) ∈ E, i.e., task Vk depends on task
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Vi. When task k is assigned to server u, then the task k’s

finishing time can be obtained as:

Fk,u = Sk,u + ek,u (1)

where, ek,u is execution time of task k on server u and Sk,u
is the starting time of task k on server u. Further more, we

assume that task executions are nonpreemptive and each task

is large and complex enough that it fully utilizes the server

it is assigned to and the execution time is long enough cause

the server to reach certain thermal state[4].

Inlet Temperature Model
Based on [7], the inlet temperature is the summation

of supplied temperature provided by air conditioners and

caused by executing tasks, which is given as:

Tinlet = Tsup + D× Pexe (2)

where
D = [(K− A

T k)−1 −K
−1] (3)

and Tsup = [Tu
sup|u = 1, 2, ..., S]T , Tu

sup is the supplied

air temperature for server u by air conditioners; Pexe =
[Pu

exe|u = 1, 2, ..., S]T , Pu
exe is server u’s power consump-

tion for executing the assigned tasks; A = [au,l]S×S , au,l
is the heat cross interference coefficient between server u
and l, K = diag(k1, . . . , ks), ki = ρfiCp is server i’s
thermodynamic factor, fi is the air flow rate around the

server, Cp is the heat carried by unit of air, and ρ is the

air density.

Power Consumption Model
For data centers, tasks execution and heat cooling are the

two power consumption entities. Given server u’s energy

consumption rate Ru and the execution time of task k on

server u, ek,u (ek,u = 0, if task k is not assigned to server

u), the total power consumption Pexe used for task execution

is:

Pexe =
N∑

k=1

S∑
u=1

ek,uRu (4)

Where N is the number of tasks, and S is the number of

servers in the data center. We assume the energy cost for

communication between different servers is negligible.

The power consumption caused by room air conditioners

for cooling purpose depends on the air conditioners’ sup-

plied temperature. Based on Moore [4], we have:

Pcool =
Pexe

CoP (Tsup)
(5)

Where CoP is the air conditioner’s performance coefficient
defined as:

CoP (Tsup) = 0.0068T 2
sup + 0.0008Tsup + 0.458 (6)

From (5) and (6), it is clear that the cooling cost can be

reduced by increasing the air temperature supplied by the

air conditioners. Furthermore, if the peak inlet temperature

Tpeak is below red line temperature Tred, we can increase

Tsup to T ′sup [5]:

T ′sup = Tsup + Tred − Tpeak (7)

From formula (5) and (6), we can conclude the lower the
peak inlet temperature, the less power cost for cooling.

III. BALANCE POWER CONSUMPTION, TEMPERATURE

AND APPLICATION’S MAKESPAN

Before presenting our approaches, we first introduce two

algorithms that are used for task schedulings, i.e., the

List [8], [9], [10], and the CoolestInlets [4] algorithms.

The optimization goal for the List algorithm is to mini-

mize the makespan of a given application. Hence, at every

scheduling point, List algorithm always chooses the server

that offers the earliest finishing time. The CoolestInlets al-

gorithm, on the other hand, ignores the makespan constraint,

and tries to minimize the peak inlet temperature in the data

center. Therefore, its scheduling policy is always allocating

the incoming task to the currently coldest server. Clearly,

when inlet temperature, computing energy consumption,

and application’s makespan are all taken into consideration,

neither of these approaches works well.

A. Power, Temperature, and Makespan Aware Dependant
Task Scheduling Algorithm

In order to minimize the peak inlet temperature, intuitive-

ly, we need to avoid using the severs that have large heat

cross interference coefficients. Moore [4] defines a heat-

recirculation-factor (HRF ) rule to guide power distribution

within the data center to minimize the peak inlet tempera-

ture. More specially, if the total computing power consumed

by all the severs is Pexe, then the minimum peak inlet

temperature is achieved when server u’s computing energy

p(u), follows the following formula:

p(u) =
HRF (u)∑S
l=1 HRF (l)

× Pexe (8)

Where S is the number of servers, and HRF (u) is the

heat recirculation factor of server u, which is the physical

property of the server describing its contribution for heat re-

circulation within the data center. The HRF measurements

for each server are given in Tang [5] and Moore [4].

As we know, makespan can be shortened by reducing

each task’s earliest finishing time (i.e., latency), computing

energy cost can be reduced by choosing the server with less

computing power consumption, and peak inlet temperature

can be minimized when the power distribution meets the

HRF rule. Unfortunately, these constraints conflict with

each other and can not be met simultaneously. Therefore,

we need to find a better compromise.

For our concerns, lowering the peak inlet temperature

is the first priory. At the same time, we also make ef-

fort to save the computing energy cost and reduce the

application’s makespan. By placing the later two concern-

s in different priorities, we propose two algorithms, i.e.,

temperature-computation-energy-latency (TEL) algorithm
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and temperature-latency-computation-energy (TLE) algo-

rithm. For the TEL algorithm, we set saving the Pexe as

the second priority, and then reducing the makespan; While,

which in TEL algorithm have the reversed orders.

B. The TEL and TLE Algorithm

The basic strategy behind the TEL algorithm is to let

the servers consume the power based on formula (8) to

guarantee the minimum peak inlet temperature. So we first

estimate the total computing energy consumption, then use

HRF rule to distribute the power to each server, we call it

the reserved power, The reserved power is used to guide the

tasks assignment. The general rule is trying to assign each

incoming task to a server that has sufficient reserved power.

If no such server exists, select one that needs the minimal

extra power. Under this rule, we adjust the scheduling policy

to save the computing energy cost and shorten the makespan.

The algorithm is implemented in the following steps:

Step 1: Estimate Pexe: Using the List algorithm to do the

tasks allocation, then add all the computing energy cost to

obtain Pexe.

Step 2: Compute power distribution: Compute and reserve

p(u) for server u using formula (8).

Step 3: Tasks assignment: Using List algorithm to re-

schedule each incoming task, if the selected server u has

enough reserved power, assign the task to it. Otherwise,

choose another one according to the following policy:

1) Choose the server with enough reserved power, break-

ing the ties by selecting the one that has the minimum

computing power cost and breaking further ties by

earliest finishing time.

2) If no server has enough reserved power, select the one

that needs minimal extra power, breaking the ties by

minimal computing energy cost and breaking further

ties by earliest finishing time. In addition, in order to

let the power distribution within the data center match

the HRF rule, we need to add extra reserved power

to other servers according to their HRF factors.

Algorithm 1 gives the details for the TEL algorithm.

Where M = {u|u = 1, 2, ..., S}, and pi,u = ei,u×Ru, that

is, the computing energy cost for task i on server u. ts =
{ts(i)|i = 1, 2, ...N}, and ts(i) stores the server that the task

i will be assigned to. To be more specific, in algorithm 1,

line 1 corresponds to step 1 and line 2 − 4 corresponds to

step 2, line 5− 26 corresponds to step 3, where line 6− 8
is re-scheduling using List, line 9 − 13 is the policy 1 and

line 14− 26 is the policy 2.

When makespan has higher priority than computing en-

ergy cost, the computing orders of line 12 in algorithm 1

should be reversed, that is TLE algorithm. And algorithm 2

gives the details.

Algorithm 1 TEL (S, N , HRF (u), ei,u, Ru, M , ts)

1: task scheduling with List algorithm to get Pexe

2: for i = 1 to S do
3: compute p(i) using formula (8)
4: end for
5: for i = 1 to N do
6: schedule the task i using Pexe and List to server u
7: if p(u) ≥ pi,u then
8: p(u) = p(u)− pi,u; ts(i) = u
9: else

10: MT = {k|p(k) ≥ pi,k, k ∈M}
11: if |MT | > 0 then
12: Compute MET and MLET using the formulas:

1) MET = {k|pi,k = min{pi,k, k ∈MT }}
2) MLET = {k|Fi,k = min{Fi,k, k ∈MET }}

13: ts(i) = MLET (1); p(ts(i)) = p(ts(i))− pi,ts(i)
14: else
15: MT = {k|(pi,k−p(k)) = min{(pi,k−p(k)), k ∈M}}
16: Compute MET and MLET as step 12.
17: ts(i) = MLET (1)
18: for v = 1 to S do
19: if v �= ts(i) then
20: p(v) = p(v) + |pi,ts(i) − p(ts(i))| ×

HRF (v)/HRF (ts(i))
21: end if
22: end for
23: p(ts(i)) = 0
24: end if
25: end if
26: end for
27: return ts

Algorithm 2 TLE (S, N , HRF (u), ei,u, Ru, M , ts)
. . . . . .
12: Compute MLT and MELT by using the formulas:

1) MLT = {k|Fi,k = min{Fi,k, k ∈MT }}
2) MELT = {k|pi,k = min{pi,k, k ∈MLT }}

13: ts(i) = MELT (1)
. . . . . .
16: Compute MLT and MELT as step 12.
17: ts(i) = MELT (1)
. . . . . .

C. Algorithm Complexity

For step 1, we use the List algorithm to obtain the

reserved power of each server, the time cost is O(NS),
where N and S are the number of tasks and servers,

respectively. For step 2, computing reserved power for S
servers, so time cost is O(S). In step 3, for each task, if it

can be scheduled by List algorithm(line 6-8), the time cost

is O(S), otherwise, it will be assigned to a server according

to policy 1)(line 9 - 13) or policy 2) (line 14 - 26), both of

which cost O(S) time. So for N tasks, the time complexity

is O(NS), which is the same for TLE and TEL algorithms.
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IV. THEORETICAL ANALYSIS

Now, we formally analyze our proposed algorithms. A few

definitions are introduced firstly to simplify the discussion.

Definition 1: Energy Consumption Heterogeneity Factor
(ECHF) ECHF represents energy consumption rate varia-

tion within the data center, which is given below:

ECHF =

√
max{Ru|u ∈M}
min{Ru|u ∈M} (9)

Definition 2: Task Execution Heterogeneous Factor
(TEHF) TEHF represents tasks execution time variation

and is given as:

TEHF =
1

N

N∑
j=1

√
max{ej,u|u ∈M}
min{ej,u|u ∈M} (10)

Definition 3: Temperature cumulative distribution func-
tion (TCDF) TCDF (temp) is a function of temp that,

among all the servers, what percentage of which have the

temperature not higher than the value of temp.

TCDF (temp) =
|{u|Tu

inlet ≤ temp, u ∈M}|
S

(11)

Where Tu
inlet is the inlet temperature of server u.

A. Homogeneous Data Center

In homogeneous data center, all the servers have the same

energy consumption rate and task execution rate.

Lemma 4.1: In homogeneous data center, energy con-

sumed by executing the task is independent of the server

which is assigned to.

Proof: This lemma is derived directly from the homo-

geneity property.

Lemma 4.2: In homogeneous data center, for a given task

graph, the total computing energy consumption is a constant

value in spite of different task allocation algorithms.

Proof: According to Lemma 4.1, the computing energy

cost is constant for a specific task, and also, the number of

tasks is fixed. So the total computing power cost is a constant

value and independent of tasks allocation algorithms.

Lemma 4.3: In homogeneous data center, TLE and TEL
algorithms generate the same task schedule.

Proof: According to Lemma 4.1, we cannot break the

ties by minimum computing power cost, so the computing

steps of both algorithms are the same.

According to Lemma 4.2, the total computing energy

consumption is independent of tasks scheduling algorithm.

As the power distributions for TEL/TLE algorithm are

set by HRF rule, so the peak inlet temperature can be

minimized.

B. Heterogeneous Data Center

In heterogeneous data centers, neither the task execution

rate nor energy consumption rate are unified.

As HRF rule is independent of system architecture,

both TEL and TLE algorithms can minimize the peak

inlet temperature. By setting different priorities for saving

computing energy cost and minimizing the makespan, the

TEL saves more computing energy cost, while TLE offers

shorter makespan. If in a deep heterogeneous system, i.e.,

both ECHF and TEHF are very large, this phenomenon

becomes more obvious. The intuitive explanation is that

short makespan requires short execution time, which results

in less computing energy cost. However, when the variances

are larger, the above relationship becomes weaker, hence the

difference between TEL and TLE becomes more obvious.

V. SIMULATION RESULTS AND DISCUSSIONS

In our experiments, we compare the proposed two al-

gorithms: TEL and TLE with List and CoolestInlets
in the aforementioned three facets: peak inlet temperature,

computing energy cost and makespan.

A. Simulation Setup

We adopt the value of Cross Interference Coefficient (au,l)
from Tang’s experiment [5]. The data center has 10 racks,

each rack is equipped with 10 servers. The HRF (u) [5] is

the heat recirculation factor for server u, in our simulation,

we define it as:

HRF (u) =
1∑S

l=1 au,l
(12)

We also use TGFF [11] to generate the dependent task

graph including 356 tasks.

B. Homogeneous Data Center

For a given task graph, the computing energy cost Pexe is

a constant value (Lemma 4.2). So we only need to compare

the peak inlet temperature and makespan. Further more,

based on Lemma 4.3, TEL and TLE converge to the same

result, so in this section, we use TEL to represent the two.

Figure 1 shows the power distribution for all the afore-

mentioned algorithms. That of TEL algorithm has the

maximum similarity as the ideal one(Figure 2b). From the

TCDF comparison(Figure 2a), we can see that TEL has

the minimum peak inlet temperature, which is about 1.5oC
and over 5oC lower than CoolestInlets and List, respectively.

The reason is, List may cause hot spots as some servers

are frequently used, so their inlet temperatures will be much

higher than that of others. For CoolestInlets, generally, it

can balance the heat within the data center, while, it can

still happen to the scenario that the current coldest server

is inefficient for the incoming task and result in the inlet

temperature increasing rapidly.

By using the HRF rule to guide the task scheduling,

TEL algorithm avoids stepping into the above mentioned

snares, so the inlet temperatures can be evenly distributed

among all the servers.
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(a) Power distribution for TEL/TLE (b) Power distribution for CoolestInlets (c) Power distribution for List

Figure 1: Power distribution comparison in homogeneous system

(a) TCDF comparison (b) Ideal power distribution (c) Makespan comparison

Figure 2: Simulation result for homogeneous system

(a) TCDF comparison (b) Total computing power cost (c) Makespans comparison

Figure 3: Simulation result for TEHF = 2.0, ECHF = 2.0
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Figure 2c gives the makespan comparison. In order to

achieve the lowest peak inlet temperature, TEL sacrifices

some performance of makespan, which is about 600sec

longer than that of List and nearly the same as that of

CoolestInlets.

C. Heterogeneous Data Center

The advantages of TEL and TLE are more obvious in

the heterogeneous data center.

Figure 3a gives the TCDF comparison in homogeneous

data center, as reducing peak inlet temperature is the first

priority for TEL and TLE, they have nearly the same peak

inlet temperature, which is about 2oC and 4.5oC lower than

that of CoolestInlets and List, respectively. Figure 3b shows

the comparison for computing energy cost. TEL needs the

least computing power, which of List is about 10000J more

than that of TLE, and CoolestInlets consumes the most.

Figure 3c gives the makespan comparison, although which

of TLE is about two times as long as that of List, it is still

300sec and 600sec shorter than TEL and CoolestInlets.

When the heterogeneous factors become larger, both List
and CoolestInlets behave even worse. However, the variation

of heterogeneous factors have little impact for TEL and

TLE, their peak inlet temperatures grow very slowly, both

of which are about over 5oC lower than that of List and

CoolestInlets (Figure 4).

Figure 4: TCDF comparison (TEHF = 4.0, ECHF = 4.0)

VI. CONCLUSION

The paper addresses the problem of scheduling depen-

dent tasks in data centers with multiples objectives, i.e.,

minimizing data center’s peak inlet temperature, comput-

ing energy consumption and application’s makespan. We

present two task scheduling algorithms, i.e., the TEL and

the TLE algorithms, to make appropriate trade offs based

on the priorities of these three objectives. In particular,

minimizing data center’s peak inlet temperature is the first

priority for both of the algorithms. The TEL algorithm

takes the computing energy consumption reduction as the

second priority and application’s makespan as the third;

while the TLE algorithm takes reversed orders. The TEL
algorithm has good performance in lowering the peak inlet

temperature and saving computation energy cost; while The

TLE algorithm results in the same peak inlet temperature

as the TEL algorithm, but with shorter makespan than the

TLE algorithm by sacrificing certain computation energy.
Our future work will investigate how to schedule tasks

with real-time constraint to servers in data center that mini-

mizes peak inlet temperature and total energy consumption.
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