
Journal of Systems Architecture 57 (2011) 840–849
Contents lists available at ScienceDirect

Journal of Systems Architecture

journal homepage: www.elsevier .com/locate /sysarc
Resource allocation robustness in multi-core embedded systems
with inaccurate information

Jiayin Li a, Zhong Ming b,⇑, Meikang Qiu a, Gang Quan c, Xiao Qin d, Tianzhou Chen e

a Dept. of Elec. and Comp. Engr., University of Kentucky, Lexington, KY 40506, USA
b College of Comp. Sci. and Software Engr., Shenzhen University, Shenzhen, GD 518060, China
c Dept. of Elec. and Comp. Engr., Florida International University, Miami, FL 33174, USA
d Dept. of Comp. Sci. and Software Engr., Auburn University, Auburn, AL 36849, USA
e College of Comp. Sci., Zhejiang University, Hangzhou, ZJ 310027, China

a r t i c l e i n f o a b s t r a c t
Article history:
Received 19 October 2010
Received in revised form 22 January 2011
Accepted 28 March 2011
Available online 5 April 2011

Keywords:
Probability
Robustness
Errors
PMF
Multi-core
Embedded system
1383-7621/$ - see front matter � 2011 Elsevier B.V. A
doi:10.1016/j.sysarc.2011.03.005

⇑ Corresponding author.
E-mail addresses: jli6@engr.uky.edu (J. Li), m

mqiu@engr.uky.edu (M. Qiu), Gang.Quan@fiu.edu (
(X. Qin), tzchen@zju.edu.cn (T. Chen).
Multi-core technologies are widely used in embedded systems and the resource allocation is vita to guar-
antee Quality of Service (QoS) requirements for applications on multi-core platforms. For heterogeneous
multi-core systems, the statistical characteristics of execution times on different cores play a critical role
in the resource allocation, and the differences between the actual execution time and the estimated exe-
cution time may significantly affect the performance of resource allocation and cause system to be less
robust. In this paper, we present an evaluation method to study the impacts of inaccurate execution time
information to the performance of resource allocation. We propose a systematic way to measure the
robustness degradation of the system and evaluate how inaccurate probability parameters may affect
the performance of resource allocations. Furthermore, we compare the performance of three widely used
greedy heuristics when using the inaccurate information with simulations.

� 2011 Elsevier B.V. All rights reserved.
1. Introduction

The embedded multi-core technologies are represented mainly
by two categories of multi-core processors [1]: (1) processors with
dual, quad, and eight cores based on symmetric multiprocessing
and (2) processors with the combination of heterogeneous cores.
An example of the later kind of multi-core is the typical system
on chip (SoC), which has almost unlimited combination of hetero-
geneous processors on the chip. As the number and the heteroge-
neity of cores increase, resource allocation management in the
embedded multi-core system can efficiently improve the QoS.

Embedded systems usually operate in environments replete
with uncertainties [2]. Meanwhile, these systems are expected to
provide a given level of QoS. resource allocation can deal with
the environment uncertainties and satisfy the QoS demand. In
resource allocation, the uncertainties in system parameters and
their impacts on system performance can be modeled stochasti-
cally. This stochastic model is then used to derive a quantitative
evaluation of the robustness of a given resource allocation. This
quantitative evaluation results in a probability that the allocation
ll rights reserved.

ingz@szu.edu.cn (Z. Ming),
G. Quan), xqin@auburn.edu
will satisfy the given constraints. A proper approach of stochastic
model is using the probability mass function (PMF) to describe the
probability distributions of execution times of tasks running on
cores.

According to [3], any claim of robustness for a given system
must answer three questions: (a) what behavior of the system
makes it robust? (b) What uncertainties is the system robust
against? (c) Quantitatively, how robust is the system? For example,
some systems are robust if they are capable of finishing all the
tasks within a given deadline. A resource allocation deployed in
these systems must be robust against uncertainty of the task exe-
cution time. The robustness of a system can also be the makespan
(total execution time) or the time slackness.

The problem of resource allocation in the field of heterogeneous
multi-core systems is NP-complete (e.g., [4]). Heuristics are used to
find near optimal solutions (e.g., [5–11]). In static resource alloca-
tions, decisions are made based on estimated PMFs of execution
time of tasks running on different cores. However, when estimated
PMFs of task execution times are based on inaccurate information,
estimated PMFs may be different from actual PMFs. Therefore,
decisions generated by estimated PMFs may be less robust and
the resource allocation is not able to guarantee the given level of
QoS.

For example, in a surveillance sensor network, such as the
Omnitrack [12], a large number of cameras are installed across

http://dx.doi.org/10.1016/j.sysarc.2011.03.005
mailto:jli6@engr.uky.edu
mailto:mingz@szu.edu.cn
mailto:mqiu@engr.uky.edu
mailto:Gang.Quan@fiu.edu
mailto:xqin@auburn.edu
mailto:tzchen@zju.edu.cn
http://dx.doi.org/10.1016/j.sysarc.2011.03.005
http://www.sciencedirect.com/science/journal/13837621
http://www.elsevier.com/locate/sysarc

J. Li et al. / Journal of Systems Architecture 57 (2011) 840–849 841
the target field, and connected to sinks. The tasks of sinks include
collecting data from the cameras, recognizing the moving objects
in the images, compressing the images, and sending the results
to the background server for further processing. After the surveil-
lance sensor network is switched on, the tasks come periodically.
To better manage resources of a sink, the operating system in each
sink schedules a stochastic static resource allocation before the
sensors start working. The estimated PMFs can be obtained by
observing previous executions of the tasks or analyzing the codes
of the tasks. Using the static stochastic resource allocation, certain
level of uncertainties can be tolerated, and the sensor network can
maintain a given level of QoS.

However, statistical characteristics of a task may be signifi-
cantly various from period to period, due to impacts from the
environment, the system, and tasks themselves. For instance,
when the temperature of the target field increases, processors
in the sink of a sensor network may be unstable, leading to long-
er execution time in average. In this case, the mean of the actual
PMF may increase. In another case, the frame size of the image
may be reduced by the administrator in a surveillance system,
which means the data size decreases and the average execution
time of this task is shorter. Besides, tasks may arrive at sinks in
a short period of time due to the synchronization among cam-
eras. In this case, a lot of tasks need to wait for execution, queu-
ing in the task buffer of the sinks. Since the order of the queue is
random, the execution time of a given task may be random. The
deviations of actual PMFs increase.

Some questions arise when estimated PMFs are different from
actual PMFs: (1) How does the original static schedule work? Does
it still maintain the required level of QoS? (2) If the performance of
the original schedule degrades, how much is the degradation? (3)
How much improvement can re-scheduling provide? Is re-schedul-
ing a practical solution? The stochastic resource allocation includes
a lot of convolutions, which are time consuming. Furthermore, the
number of convolutions is proportional to the number of process-
ing units, i.e., cores. The recent many-core technologies provide
hundreds of cores in one processor. The re-scheduling may become
a significant overhead. Our experiment shows that the Min–min
algorithm takes more than an hour to schedule 1024 tasks in an
eight-core system. Only when the overhead of re-scheduling is
smaller than the degradation of the original schedule, the re-
scheduling can be considered as a practical solution.

The major objective of this paper is to answer above questions.
In the first part of this work, a stochastic model for resource allo-
cation is presented. The estimated task execution time information
is known as a PMF. For a given task schedule, the makespan PMF of
a core is generated by convoluting PMFs of all the tasks on its task
list. A probability that the whole system can complete all tasks in a
certain time is computed by convoluting makespan PMFs of cores.
So for a given resource allocation, we find the robustness, e.g.,
makespan, that system can provide with a given probability. We
also propose a measurement metric for the impacts of differences
between estimated PMFs and actual PMFs. In the second part of
this work, we simulate the environment with inaccurate informa-
tion and compare three greedy heuristics when using the inaccu-
rate information.

In summary, two major contributions of this work include: (1)
The development of a metric for measuring the impact of the inac-
curate information on stochastic resource allocation; (2) The per-
formance comparison of three greedy heuristics when using
incorrect information.

In Section 2, we discuss related works. In Section 3, models for
stochastic task scheduling in multi-core embedded systems are
presented. We also provide the model for information inaccuracies
in this section. A motivational example is provided in Section 4. We
discuss three algorithms for stochastic task scheduling in Section 5,
followed by experimental results in Section 6. Finally, we give the
conclusion in Section 7.
2. Related works

A framework for robust resource allocation is provided in [3].
Authors in [3] give a robustness definition. Also, a four-step proce-
dure is established for deriving a robustness metric. In step one,
the robustness of system is described in a quantitative way, and
the range of performance parameter ðbmin; bmaxÞ is given. In step
two, all the system and environmental parameters that may im-
pact the robustness of the system are modeled. In step three, the
relationship between these perturbation parameters and the per-
formance parameters is defined. Finally, the robust range of pertur-
bation parameter is determined by substituting the perturbation
parameters in the range of performance parameter ðbmin; bmaxÞ.

Previous works have been reported on determining the sto-
chastic behavior of application execution times [13–19]. A new
approach for predicting task execution times is proposed in
[20]. In [6], the authors present a derivation of the makespan
problem that relies on a stochastic representation of task execu-
tion times. In [21], the problem of robust static resource alloca-
tion for distributed computing systems under imposed QoS
constraints is investigated. A stochastic robustness metric is pro-
posed based on a stochastic model describing the uncertainty in
system and its impact on system performance. Although the sto-
chastic representation of task execution times can describe the
system uncertainty, problems arise when modeling the stochas-
tic representation. There are two conventional ways to model
the stochastic representation that is usually PMFs: (1) using
the statistic information from previous runs of the same task
to generate the PMF directly; (2) assuming PMFs of task execu-
tion times are Gaussian distributions, and using the statistic
information from previous runs to determine the expectation
and the variance [21]. However when the environment is
changed, these stochastic representations may not be accurate.
For example, a set of PMFs are generated based on some previ-
ous runs that occur in a light-weight contention scenario. When
they are applied in other heavy contention scenarios, these PMFs
are not accurate in the sense that actual ones may have larger
variance due to the heavy contention. So resource allocation
with these inaccurate PMFs may lead to the violation of QoS
requirements. The related works above does not evaluate what
the relationship is between the degree of inaccurate in stochastic
representation and the degradation of robustness in the system.
3. Model and definition

3.1. Stochastic model

In a normal heterogeneous multi-core embedded system, usu-
ally there is a set of tasks to be executed. Also, there are a number
of cores with various computation power and characteristics in the
system. An estimated probabilistic estimated time to compute (ETC)
matrix P is known before scheduling. For the convenience of read-
ers, we list acronyms used in the rest of this paper in Table 1. We
assume that the estimated probabilistic ETC matrix is generated
using the second approach as discussed in Section 2. The entry
Pi;j of P represents the PMF of execution time of task i on core j.
When making mapping decisions, we use the information to gen-
erate probability distributions of task completion times on differ-
ent cores.

For a given set of tasks and a given schedule, the estimated
makespan distribution is the probability distribution of total execu-
tion time of the whole set of tasks based on the ETC matrix. We can

Table 1
Acronyms used in the paper.

Name Description

QoS Quality of the service
PMF Probability mass function
ETC Estimated time to compute
CAT Core available time
MCT Minimum completion time alogrithm
Mo Original makespan
Mn New makespan
Mc Correct makespan
MNo Normalized original makespan
MNn Normalized new makespan
MNc Normailzed correct makespan
Rn New_ratio
Rc Correct_ratio
Ri Improve_ratio

842 J. Li et al. / Journal of Systems Architecture 57 (2011) 840–849
calculate this probability distribution by convoluting probability
distributions of task execution times. The robustness in this paper
is the minimum makespan ðKÞ while maintaining a pre-deter-
mined probability h that all cores will complete their tasks list
within K.

As estimated PMFs of task execution times are generated with
statistic information of previous runs of tasks, any environment
or system changes may lead to inaccuracy. Assuming that we can
get the updated information about those distribution by some
methods, we are able to obtain a resource allocation that meets
the QoS requirement with more confidence. We call these distribu-
tions (PMFs) updated PMFs. There are methods to obtain updated
PMFs, for example, on-line profiling [22,23]. The development of
these methods is out of the scope of this paper.

In the case that we can get updated PMFs of task execution
times, whether a new resource allocation is necessary becomes an-
other problem. Using a new resource allocation not only requires
time to re-run the scheduling algorithm, but also brings the over-
head of re-arranging resources in the system. However, if we can
predict the degradation of robustness based on the difference be-
tween updated PMFs and estimated PMFs, i.e., the degree of inac-
curate information, we can decide whether a new resource
allocation is necessary. Furthermore, with knowledge of which
scheduling algorithm performs the best when using inaccurate
information, we can reduce the probability that a new resource
allocation is necessary by using the best scheduling algorithm.
We will provide some insights on these two questions in our eval-
uation part in the paper.

3.2. Measurement parameters

Since differences between estimated PMFs and updated PMFs
may cause the robustness degradation, several measurement
parameters are introduced to measure the robustness
degradation.

� Original Schedule: Task Schedule generated by using estimated
PMFs
� Remapped Schedule: Task Schedule generated by using updated

PMFs
� Makespan: The total time taken for a system to finish all tasks

with a given task schedule
� Original Makespan ðMoÞ: The makespan using estimated PMFs

and the original Schedule
� New Makespan ðMnÞ: The makespan using updated PMFs and

the original Schedule
� Correct Makespan ðMcÞ: The makespan using updated PMFs and

the remapped Schedule
� New_ratio ðRnÞ:
Rn ¼
Mn �Mo

Mo
ð1Þ
� Corretc_ratio ðRcÞ:
Rc ¼
Mc �Mo

Mo
ð2Þ
� Improve_ratio ðRiÞ:
Ri ¼
Mn �Mc

Mc
ð3Þ
As discussed in the previous section, the robustness metric
in this paper is the minimum makespan ðKÞ while maintaining
a pre-determined probability h that all cores will complete their
tasks list within K. The smaller the makespan ðKÞ is, the more
robust the system is. Original makespan gives the robustness of
the system assuming accurate information is used in the sche-
dule. When inaccurate information is used in the original sche-
dule, new makespan results in the actual robustness of the
system without re-running the scheduling algorithm. Correct
makespan indicates the new robustness when a new schedule
is generated with updated accurate information. New_ratio
shows the degradation of the robustness when using the inac-
curate information. Improve_ratio reveals the improvement
caused by re-running the scheduling algorithm. Correct_ratio
indicates impacts of changes of environment on the system’s
robustness.
4. Motivational example

In this section, we will demonstrate how the inaccurate infor-
mation impacts the robustness of a schedule. Consider a case with
five independent tasks that need to be scheduled in a two cores
embedded system. The estimated execution time distributions of
different tasks running in these two-core are shown in Fig. 1(a).
We assume all these distributions are normal distributions as
shown in Fig. 1(b).

In this example, we use the Min-min heuristic, which will be
introduced in the next section, to schedule these independent
tasks. Task A is scheduled first in core P1, followed by task C
in core P0. Then we schedule task D in core P1 right after task
A, and task B in core P0, as shown in Fig. 2. After we schedule
these four tasks in the system, we can compute the probability
distributions of makespans in these two cores by convoluting
task execution time distributions. Makespan distributions are
shown in Fig. 3. For each of these two cores, we can calculate
the convolution of the makespan distribution of the core and
the execution time distribution of E running in the core, which
is shown in Fig. 4. By comparing results of these convolutions,
we can make a greedy decision of which core task E is sched-
uled to. If task E is scheduled in P0, all five tasks can be finished
by time 34, with the probability of 90%. Otherwise, If task E is
scheduled in P1, all tasks can be finished by time 27 with the
probability of 90%. We schedule task E in P1.

In some cases, current statistical characteristics of the task
execution time may be different from previous estimated ones.
The estimated PMF cannot represent the actual distribution of
the task execution time accurately. Assuming that the actual dis-
tribution of task E is different from the estimated one, the distri-
bution of E in core P0 is a normal distribution with the mean of
9, and the standard deviation of 1, while the distribution in core
P1 is another normal distribution with the mean of 14 and the
standard deviation of 6. In this case, if E is scheduled in P1,

Fig. 1. (a) Means and standard deviations of the task execution time distributions; (b) Normal distributions of task execution time.

Fig. 2. The schedule without task E.

Fig. 3. Makespan probability distribution

J. Li et al. / Journal of Systems Architecture 57 (2011) 840–849 843
the system will finish tasks by time 34 with 90% guarantee,
about 26% robustness degradation. If E is scheduled in P0, all
tasks will be done by time 33 with 90% guarantee, which results
in a different greedy decision from the one based on estimated
information as shown in Fig. 5.

In this example, the inaccurate information can degrade the
robustness, i.e., makespan in this example. Therefore, we will
investigate how different degrees of inaccurate impact the robust-
ness and how different scheduling heuristics perform under an
inaccurate information environment in following sections.
s of cores before task E is scheduled.

Fig. 4. Estimated makespan probability distributions of cores after task E is scheduled.

5 10 15 20 25 30 35 40 45
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

X: 33
Y: 0.01648

Total execution time

Pr
ob

ab
ilit

y

X: 34
Y: 0.02229

Actual PMF if task E is shceduled to P0
Actual PMF if task E is shceduled to P1

Fig. 5. Actual makespan probability distributions of cores after task E is scheduled.

844 J. Li et al. / Journal of Systems Architecture 57 (2011) 840–849
5. Algorithms

5.1. Overview

Three static greedy heuristics are used. Minimum completion
time (MCT) [24] is an one-phase heuristic. The output of this heu-
ristic depends on the order in which tasks are mapped to cores.
Min–min [24,25] and Max–min [24,25] are two-phase heuristics.
These two heuristics are independent from tasks assigning order
in the sense that for a given set of tasks and a system with a certain
set of cores, outputs are identical no matter how many times it
runs.

Greedy heuristics are widely used in heterogeneous system re-
source allocation. Compared to global heuristics such as genetic
algorithm and simulated annealing, greedy heuristics can get a sche-
dule much quicker than global heuristics. Previous works show
that Min–min heuristics can get a schedule as optimal as the one
generated by a genetic algorithm.
Definitions of these three heuristics are provided below. Core
available time (CAT) is the probability distribution of time when
the core will finish all tasks that are assigned to this core previ-
ously. The PMF of the completion time for a new task ti on core
cj; cti;j, can be calculated by convoluting the CAT of core cj and
the execution time distribution of task ti on core cj.
5.2. MCT

Minimum Completion Time (MCT) [24] assigns tasks in an arbi-
trary order to cores. For an unmapped task, MCT maps it on the
core that can complete this task in the earliest time while main-
taining a certain probability. The idea behind MCT is that it consid-
ers both the execution time of the task on the core as well as the
load balance. Since MCT assigns tasks in an arbitrary order, the
scheduling results are non-determinstic. The MCT algorithm is
shown in Fig. 6.

Fig. 8. Max–min algorithm.

Fig. 9. COV based method for generate Gamma random matrix.

J. Li et al. / Journal of Systems Architecture 57 (2011) 840–849 845
5.3. Min–min

Min–min [24,25] selects the task-core pair in two phases. In
phase 1, for each unmapped task, the core that can complete it in
the earliest time while maintaining a certain probability is selected
to form a pair. In phase 2, among all pairs, the pair that has the
minimum ct is selected, and the task in the pair is mapped to the
corresponding core. The idea behind Min-min is that it does its best
to keep the current load balance with the least change on it. The
Min0-min is provided in Fig. 7.

5.4. Max–min

Max–min [24,25] is similar to Min–min. In phase 1, Max–min
does exactly the same as that of Min–min. Then in phase 2,
Max–min finds the task-core pairs with the maximum ct, which
is different from Min–min. The idea behind is that tasks with larger
execution time will likely increase the penalty if these tasks are not
assigned to their best cores. Fig. 8 shows the Max–min algorithm.

6. Simulation

6.1. Simulation setup

To evaluate the robustness degradation caused by the inaccu-
rate information, the following approach was used to simulate
the stochastic resource allocation in a heterogeneous multi-core
embedded system. A set of 1024 independent tasks was formed
randomly. They consist of 28 task classes, where tasks in the same
class are identical. There are 8 heterogeneous cores in a system.
Each of these cores has its own computation power and character-
istic. So the estimated probabilistic ETC matrix P has the size of
28� 8. PMF Pi;j is based on Gamma distribution with a mean of
mi;j and a standard deviation of sdi;j. In our simulation, we generate
PMFs by sampling the probability density functions (PDF) of Gamma
distributions with a start point, an end point and a fixed step. Each
of the 40 simulation trials has different estimated probabilistic ETC
matrix P.
Fig. 6. MCT algorithm.

Fig. 7. Min-min algorithm.
Before generating PMFs of Gamma distributions, values of
means and standard deviations need to be determined. We ran-
domly generate a 28� 8 mean matrix based on Gamma distribu-
tion as well as the standard deviation matrix. Here, we use the
COV based method [26] with the mean of task execution time from
40 to 80, and both coefficients of variation of tasks and cores uni-
formly from 0.35 to 1, as shown in Fig. 9. When forming the PMF
Pi;j, we can sample the PDF of Gamma distribution with a mean
of mi;j and a standard deviation of sdi;j. The objective of this method
to generate PMFs for simulation. And this method can be imple-
mented easily by a statistical computing tool R [27]. In literature,
there are several low-overhead methods [28–30] to generate sto-
chastic profiles with sufficient coverage of variances in practical
applications.

To simulate the case in which updated PMFs are different from
estimated PMFs, parameters (mean or standard deviation) of up-
dated PMFs are generated by multiplying parameters of estimated
PMFs with a scalar matrix S.

For example, if mean values are modified,

updated meanði; jÞ ¼ meanði; jÞ � Si;j ð4Þ

The entry of scalar matrix S is based on a uniform distribution
with a range of ½Smin; Smax�.
6.2. Simulation results

6.2.1. Compare impacts on robustness when modifying different
parameters

In this part, we compare impacts on robustness when using dif-
ferent scalar matrixes as well as modifying different parameters.

We simulate two different scenarios in which two different
kinds of inaccurate information occur:

Fig. 11. The original makespan when changing the mean and the standard
deviation with a fixed scale parameter.

Fig. 12. The normalized new makespan when changing the mean and the standard

846 J. Li et al. / Journal of Systems Architecture 57 (2011) 840–849
1. Keep standard deviations unchanged, and multiply means with
a scalar matrix.

2. Keep means unchanged, and multiply standard deviations with
a scalar.

The first scenario usually happens when the embedded system
is employed in a physically inconstant environment. For example,
in an environment where temperature changes rapidly, cores will
likely run faster in low temperature than that in high temperature.
As the temperature increases, means of the probability distribution
of execution times may increase. In this case, the statistic informa-
tion collected previously in low temperature may not be accurate.
The second scenario happens when resource contention among
tasks changes. When the resource contention is light, a core likely
finishes same tasks in a narrow distribution, especially around the
mean of the distribution. When the contention is heavy, the distri-
bution of a task class in a core may be wide, i.e., with larger stan-
dard deviations. In our simulation, the scalar matrixes are within
the range of [0.1,1.9], [0.1,2.9], [0.1,3.9], [0.1,4.9].

MCT heuristic is used in all these four parameter modifications.
The result of each trial is the average value of MCT with 25 differ-
ent task mapping order.

In Fig. 10(a), the increase of new_ratio is proportional to the in-
crease of the scalar matrix range with 20% to 70% penalty. Obvi-
ously, the increase of mean values of the execution time
distribution leads to a longer makspan. This 20% to 70% penalty
is caused by the inaccurate information used in the original sche-
dule. We find that the improve_ratio, which indicates the improve-
ment of re-scheduling, does not change as much as the increase of
the scalar matrix range. Note that when we calculate the impro-
ve_ratio, we compare the difference between the new_makespan
and the correct_makespan. In the convolution of these two distri-
Fig. 10. (a) New_ratio, correct_ratio and improve_ratio when changing the mean;
(b) new_ratio, correct_ratio and improve_ratio when changing the standard
deviation.

deviation with a fixed scale parameter.

Fig. 13. The normalized correct makespan when changing the mean and the
standard deviation with a fixed scale parameter.
butions, we use the updated PMFs. The ‘‘improve_ratio’’ columns
show that the level of improvement brought from the re-schedul-
ing does not mainly depend on the inaccurate degree of the infor-
mation, but depends on what the task set consists of. The
correct_ratio is also proportional to the increase of the scalar ma-
trix range. It shows that the degradation of robustness is a linear
function of the degree of how the environment changes. Compar-
ing Fig. 10(b) with Fig. 10(a), we find that the inaccurate standard
deviations have much less impacts on the robustness than that of
the inaccurate means.

6.2.2. Compare the performance of different heuristics
In this part, three different heuristics (Min–min, MCT, Max–

min) are compared with their performance when using inaccurate

J. Li et al. / Journal of Systems Architecture 57 (2011) 840–849 847
information. In this part, we will keep the standard deviations fixed
and change mean values. To compare the performance of these
heuristics, normalized makespans of MCT and Max-min are
introduced.

� Max–min normalized original makespan
Fig. 14
standar
MNoðMax—minÞ ¼ MoðMax—minÞ
MoðMin—minÞ ð5Þ
� Max–min normalized new makespan
MNnðMax—minÞ ¼ MnðMax—minÞ
MnðMin—minÞ ð6Þ
� Max–min normalized correct makespan
Fig. 15. The correct_ratio of three heuristics when changing the mean and the
standard deviation with a fixed scale parameter.
MNcðMax—minÞ ¼ McðMax—minÞ
McðMin—minÞ ð7Þ
� MCT normalized original makespan
MNoðMCTÞ ¼ MoðMCTÞ
MoðMin—minÞ ð8Þ
� MCT normalized new makespan
MNnðMCTÞ ¼ MnðMCTÞ
MnðMin—minÞ ð9Þ
� MCT normalized correct makespan
MNcðMCTÞ ¼ McðMCTÞ
McðMin—minÞ ð10Þ
Fig. 16. The improve_ratio of three heuristics when changing the mean and the
standard deviation with a fixed scale parameter.
In the respect of the three ratios (Nnew_ratio, correct_ratio, and
improve_ratio), Figs. 14–16 show that the Max-min is least im-
pacted by the inaccurate information. However, in Figs. 11–13,
Max–min has the longest new makespans and the longest correct
makespans among these three heuristics. It means that the Max–
min generates the least robust schedules in the environment with
or without inaccurate information, even though the inaccurate
information has smallest impacts in the Max–min. So the Max–
min performance is the worst among these three heuristics. The
performance of MCT is very close to the performance of Min-min
with respect to the original makespan. Furthermore, MCT outper-
forms the Min–min in the new makespan. It means that MCT is less
impacted by the inaccurate information and performs close to the
Min–min in the original makespan, and it performs the best in the
new makespan even though the difference between these two heu-
ristics is not significant.
. The new_ratio of three heuristics when changing the mean and the
d deviation with a fixed scale parameter.
7. Conclusion

We propose a systematic method of measuring the robustness
degradation with a stochastic approach. We evaluate impacts of
inaccurate information on system robustness in two different sce-
narios. In our simulation, the makespan is the robustness metric.
We find that the makespan with inaccurate information increases
proportional to the increase of mean values of task execution time
distribution caused by environment changes. Also, 20% to 70% pen-
alty is caused by the inaccurate information used in making sched-
uling decisions. The impact of environment changes on the
robustness is linear to the degree of how much inaccurate informa-
tion (mainly the shift of means of PMFs) is generated by these envi-
ronment changes. However, the improvement of re-scheduling
with updated information mainly depends on how the task set
consists of, not how inaccurate the information is. We also find
that the impact of inaccurate means of PMFs is much larger than
inaccurate standard deviations.

Among these three greedy algorithms, MCT performs the best
under inaccurate information. It generates schedules that are al-
most as optimal as ones from Min–min where accurate informa-
tion is used. And inaccurate information has less impacts on
schedules from MCT than it does on Min–min. Max–min performs
the worst.

Acknowledgements

This work was supported in part by the NSFC 61071061, the
Univ. of Kentucky Start Up Fund; SZ-HK Innovation Circle proj.

848 J. Li et al. / Journal of Systems Architecture 57 (2011) 840–849
ZYB200907060012A, NSF GD:10351806001000000, S&T proj. of SZ
JC200903120046A; the NSF CNS-0969013, CNS-0917021, and CNS-
1018108; the NSF CNS-0915762 (CSR), CCF-08452578 (CAREER),
CNS-0917137 (CSR), CNS-0757778 (CSR), CCF-0742187 (CPA),
CNS-0831502 (CyberTrust), CNS-0855251 (CRI), OCI-0753305
(CI-TEAM), DUE-0837341 (CCLI), and DUE-0830831 (SFS), Auburn
Start Up grant and Intel gift (2005-04-070); the NSFC 61070001,
RFEB Zhejiang Y200803333 and Y200909683, State Key Lab of High
End Server Storage Tech. 2009HSSA10, National Key Lab STASI,
SFKPC 2009ZX01039-002-001-04, 2009ZX03001-016, 2009ZX
03004-005.
References

[1] M. Levy, T.M. Conte, Embedded multicore processors and systems, IEEE Micro
29 (3) (2009) 7–9.

[2] M. Qiu, E.H.M. Sha, Cost minimization while satisfying hard/soft timing
constraints for heterogeneous embedded systems, ACM Transactions on
Design Automation of Electronic Systems (TODAES) 14 (2) (2009) 1–30.

[3] S. Ali, A. Maciejewski, H. Siegel, J. Kim, Measuring the robustness of a resource
allocation, IEEE Transactions on Parallel and Distributed Systems (2004) 630–
641.

[4] E. Coffman, J. Bruno, Computer and Job-Shop Scheduling Theory, John Wiley &
Sons, 1976.

[5] T. Braun, H. Siegel, N. Beck, L. Boloni, M. Maheswaran, A. Reuther, J. Robertson,
M. Theys, B. Yao, D. Hensgen, A comparison of eleven static heuristics for
mapping a class of independent tasks onto heterogeneous distributed
computing systems, Journal of Parallel and Distributed Computing 61 (6)
(2001) 810–837.

[6] T. Braun, H. Siegel, A. Maciejewski, S. Noemix, Static mapping heuristics for
tasks with dependencies, priorities, deadlines, and multiple versions in
heterogeneous environments, in: International Parallel and Distributed
Processing Symposium (IPDPS), Fort Lauderdale, Florida, USA, 2002, pp. 78–85.

[7] M. Eshaghian, Heterogeneous Computing, Artech House Publishers, 1996.
[8] D. Fernandez-Baca, Allocating modules to processors in a distributed system,

IEEE Transactions on Software Engineering 15 (11) (1989) 1427–1436.
[9] C. Leangsuksun, J. Potter, S. Scott, Dynamic task mapping algorithms for a

distributed heterogeneous computing environment, in: 4th IEEE
Heterogeneous Computing Workshop (HCW), Santa Barbara, California, USA,
1995, pp. 30–34.

[10] M. Maheswaran, S. Ali, H. Siegel, D. Hensgen, R. Freund, A comparison of
dynamic strategies for mapping a class of independent tasks onto
heterogeneous computing systems, in: Proceedings of the Heterogeneous
Computing Workshop (HCW), Orlando, Florida, USA, 1998, pp. 57–69.

[11] L. Wang, H. Siegel, V. Roychowdhury, A. Maciejewski, Task matching and
scheduling in heterogeneous computing environments using a genetic-
algorithm-based approach, Journal of Parallel and Distributed Computing 47
(1) (1997) 8–22.

[12] B. Li, K. Nahrstedt, Qualprobes: Middleware QoS profiling services for
configuring adaptive applications, Lecture Notes in Computer Science 1795/
2000 (2002) 256–272.

[13] L. David, I. Puaut, Static determination of probabilistic execution times, in:
Euromicro Conference on Real-Time Systems (ECRTS), Catania, Italy, 2004, pp.
223–230.

[14] Y. Li, J. Antonio, H. Siegel, M. Tan, D. Watson, Determining the execution time
distribution for a data parallel program in a heterogeneous computing
environment, Journal of Parallel and Distributed Computing 44 (1) (1997)
35–52.

[15] G. Bernat, A. Colin, S. Petters, WCET analysis of probabilistic hard real-time
systems, in: IEEE real-time systems symposium, 2002, pp. 279–288.

[16] M. Qiu, L. Yang, Z. Shao, E.H.-M. Sha, Rotation Scheduling and Voltage
Assignment to Minimize Energy for SoC, in: The International Conference on
Computational Science and Engineering, 2009, pp. 48–55.

[17] M. Qiu, Z. Jia, C. Xue, Z. Shao, E.H.M. Sha, Voltage assignment with guaranteed
probability satisfying timing constraint for real-time multiproceesor dsp,
Journal of VLSI Signal Processing Systems 46 (1) (2007) 55–73.

[18] V. Shestak., J. Smith., H.J. Siegel, A.A. Maciejewski, A stochastic approach to
measuring the robustness of resource allocations in distributed systems, in:
International Conference on Parallel Processing (ICPP), Columbus, Ohio, USA,
2006, pp. 459–470.

[19] J. Smith, E.K.P. Chong, A.A. Maciejewski, H.J. Siegel, Stochastic-based robust
dynamic resource allocation in a heterogeneous computing system, in:
International Conference on Parallel Processing (ICPP), Vienna, Austria, 2009,
pp. 188–195.

[20] M. Iverson, F. Ozguner, L. Potter, Statistical prediction of task execution times
through analyticbenchmarking for scheduling in a heterogeneous
environment, in: Heterogeneous Computing Workshop (HCW), San Juan,
Puerto Rico, 1999, pp. 99–111.

[21] V. Shestak, J. Smith, A. Maciejewski, H. Siegel, Stochastic robustness metric and
its use for static resource allocations, Journal of Parallel and Distributed
Computing 68 (8) (2008) 1157–1173.
[22] X. Zhang, Z. Wang, N. Gloy, J.B. Chen, M.D. Smith, System support for automatic
profiling and optimization, Computer Networks 38 (4) (2002) 393–422.

[23] C. Krintz, Coupling on-line and off-line profile information to improve program
performance, in: International Symposium on Code Generation and
Optimization, San Francisco, California, USA, 2003, pp. 69–78.

[24] R. Armstrong, D. Hensgen, T. Kidd, The relative performance of various
mapping algorithms is independent of sizable variances in run-time
predictions, in: 7th IEEE Heterogeneous Computing Workshop (HCW),
Orlando, Florida, USA, vol. 5, 1998.

[25] R. Freund, M. Gherrity, S. Ambrosius, M. Campbell, M. Halderman, D. Hensgen,
E. Keith, T. Kidd, M. Kussow, J. Lima, et al., Scheduling resources in multi-user,
heterogeneous, computingenvironments with SmartNet, in: IEEE
Heterogeneous Computing Workshop (HCW), Orlando, Florida, USA, 1998,
pp. 184–199.

[26] S. Ali, H. Siegel, M. Maheswaran, D. Hensgen, S. Ali, Representing task and
machine heterogeneities for heterogeneous computing systems, Tamkang
Journal of Science and Engineering 3 (3) (2000) 195–208.

[27] The R project for statistical computing, 2010. <http://www.r-project.org/>.
[28] G. Bernat, A. Colin, S.M. Petters, WCET analysis of probabilistic hard real-time

systems, in: IEEE Real-Time Systems Symposium (RTSS), Austin, Texas, USA,
2002, pp. 279–288.

[29] A. Burns, G. Bernat, I. Broster, A probabilistic framework for schedulability
analysis, Lecture Notes in Computer Science 2855/2003 (2003) 1–15.

[30] Y. Li, J.K. Antonio, H.J. Siegel, M. Tan, D.W. Watson, Determining the execution
time distribution for a data parallel program in a heterogeneous computing
environment, Journal of Parallel and Distributed Computing 44 (1) (1997) 35–
52.

Jiayin Li received the B.E. and M.E. degrees from
Huazhong University of Science and Technology (HUST),
China, in 2002 and 2006, respectively. And now he is
pursuing his Ph.D. degree in the Department of Electri-
cal and Computer Engineering (ECE), University of
Kentucky. His research interests include software/
hardware co-design for embedded systems and high
performance computing.
Zhong Ming is a professor at College of Computer and
Software Engineering of Shenzhen University. He is a
member of a council and senior member of China
Computer Federation. His major research interests are
software engineering and embedded systems. He led
two projects of National Natural Science Foundation,
and two projects of Natural Science Foundation of
Guangdong province, China.
Meikang Qiu received the B.E. and M.E. degrees from
Shanghai Jiao Tong University, China. He received the
M.S. and Ph.D. degrees of Computer Science from Uni-
versity of Texas at Dallas in 2003 and 2007, respectively.
He had worked at Chinese Helicopter R&D Institute and
IBM. Currently, he is an assistant professor of ECE at
University of Kentucky. He is an IEEE Senior member
and has published more than 100 peer reviewed papers,
including 35 journal papers. He has been on various
chairs and TPC members for many international con-
ferences. He served as the Program Chair of IEEE
EmbeddCom’09 and EM-Com’09. He received Air Force

Summer Faculty Award 2009. He won three best paper awards (IEEE Embedded and
ubiquitous Computing (EUC’09), IEEE/ACM GreenCom’10, and IEEE CSE’10) and one
best paper nomination. His research interests include embedded systems, computer

security, and wireless sensor networks.

http://www.r-project.org/

J. Li et al. / Journal of Systems Architecture 57 (2011) 840–849 849
Gang Quan is currently an Associate Professor with the
Electrical and Computer Engineering Department,
Florida International University, Miami. He received the
B.S. degree from the Tsinghua University, Beijing, China,
the M.S. degree from the Chinese Academy of Sciences,
Beijing, and the Ph.D. degree from the University of
Notre Dame, Notre Dame, IN. His research interests
includes real-time system, power/thermal aware
design, embedded system design, advanced computer
architecture and reconfigurable computing. Prof. Quan
received the NSF CAREER award in 2006.
Xiao Qin received the B.S. and M.S. degrees in computer
science from Huazhong University of Science and
Technology, Wuhan, China, in 1996 and 1999, respec-
tively, and the Ph.D. degree in computer science from
the University of Nebraska- Lincoln in 2004. He is cur-
rently an associate professor of computer science at
Auburn University. Prior to joining Auburn University in
2007, he had been an assistant professor with New
Mexico Institute of Mining and Technology (New
Mexico Tech) for three years. He won an NSF CAREER
award in 2009. His research interests include parallel
and distributed systems, real-time computing, storage

systems, fault tolerance, and performance evaluation. His research is supported by
the U.S. National Science Foundation, Auburn University, and Intel Corporation. He
is a senior member of the IEEE and the IEEE Computer Society.
Tianzhou Chen is a professor of computer science at
Zhejiang University. His current research interests
include computer architecture, multi-core system, on-
chip interconnection, embedded system, power-aware
computing, hardware/software co-design and security.

	Resource allocation robustness in multi-core embedded systems with inaccurate information
	1 Introduction
	2 Related works
	3 Model and definition
	3.1 Stochastic model
	3.2 Measurement parameters

	4 Motivational example
	5 Algorithms
	5.1 Overview
	5.2 MCT
	5.3 Min–min
	5.4 Max–min

	6 Simulation
	6.1 Simulation setup
	6.2 Simulation results
	6.2.1 Compare impacts on robustness when modifying different parameters
	6.2.2 Compare the performance of different heuristics

	7 Conclusion
	Acknowledgements
	References

