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Abstract—The growing environmental and sustainability concerns have made energy efficiency a pressing issue for data center

operation. Governments, as well as various organizations, are urging data centers to cap the increasing energy consumption. Naturally,

achieving long term energy capping involves deciding energy usage over a long timescale (without accurately foreseeing the far future)

and hence, we call this process “energy budgeting”. In this paper, we introduce an online resource management solution, called eBud

(energy Budgeting), for a virtualized data center. eBud determines the number of servers, resource allocation to virtual machines and

corresponding workload distribution to minimize data center operational cost while satisfying a long term energy cap. We prove that

eBud achieves a close-to-minimum cost compared to the optimal offline algorithm with future information, while bounding the potential

violation of energy budget constraint, in an almost arbitrarily random environment. We also perform a trace-based simulation study to

complement the performance analysis. The simulation results show that eBud reduces the cost by more than 16 percent (compared to

state-of-the-art prediction-based algorithm) while resulting in a zero energy budget deficit. We also perform an experimental study

based on RUBiS, demonstrating that in a real life scenario, eBud can achieve energy capping with a negligible increase in operational

cost.

Index Terms—Computer system organization, resource allocation, virtualization, energy budgeting

Ç

1 INTRODUCTION

THE incontestable benefits from resource consolidation
have led to a widespread adoption of virtualization in

recent years, with 46 percent penetration among enter-
prises [1]. The thriving number and scale of virtualized
data centers consume a huge amount of energy, surging
the operational expenditure through electricity bill. On top
of that, data centers are also held accountable for the envi-
ronmental impacts (e.g., carbon emission) associated with
the electricity usage. As a result, nowadays, energy con-
sumption is emerging as a critical concern of data center
operation. While economizing short term energy consump-
tion helps to some extent, capping the long term energy
has been recently proven to be a more pragmatic move for
IT companies [2].

Why is capping the long term energy consumption important?
According to a recent survey [3], about 77 percent of large
data centers1 are actively pursuing green certifications
such as LEED program [4], which requires data centers to
restrict the annual energy consumption under a certain
level (e.g., reduce by 10� 25 percent, compared to a set of
benchmarks). Such certifications also supplement cost
savings from reduced energy consumption with tax
reductions and favorable accreditations. Moreover, in var-
ious regions, governments are imposing tighter energy

consumption requirements on large facilities like
data centers (e.g. California Energy Efficiency Plan [5]).
The U.S. government sets annual energy usage targets for
the federal establishments which include the data centers
[6]. Industry leaders, such as Google and Microsoft [7],
[8], have also been leading by example to achieve “carbon
neutrality” (a.k.a., net-zero, completely offsetting electric-
ity usage with renewables), which can also be translated
into energy capping if the desired energy consumption
cap is interpreted as the total available renewables. Fur-
ther, energy capping for data centers are motivated by
the common business practice of setting a cost budget in
advance (e.g., monthly or yearly budget for electricity
bill) [9].

Energy budgeting and its challenges. Capping long term
energy means to meet a certain energy consumption tar-
get (energy budget), within a predetermined time frame
(budgeting period). This requires deciding the energy
usage for a long term, and hence, we term it as energy
budgeting. It is different from the well studied problem
of power budgeting, which studies the allocation of peak
power among servers [10]. Intuitively, the long term
energy budget should be allocated in such a way that
more energy is consumed when workloads are higher to
maintain an acceptable quality of service (QoS). How-
ever, the unpredictable nature of far future workloads
makes the optimal energy budget distribution particu-
larly challenging. A naive approach can be to distribute
the energy budget equally across time, which may lead
to unnecessarily high allocation during low workload
and/or insufficient energy budget at high workloads.
Some existing research attempts to solve the problem [2],
[11], [12], but requires accurate prediction of future work-
loads, which is typically unavailable in practice (due to,

1. “Large” data centers refer to those with more than 5;000 servers
each [3].
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for example, unpredicted traffic spikes). On top of the
energy budgeting challenge, data center also desires to
reduce its operational cost by fine tuning the balance
between resource allocation (hence, energy, too) and
QoS, which itself is an intriguing problem that has
drawn much attention from the research community [10],
[13], [14].

Proposed solution. Realizing the resource management
challenges resulting from the long term energy cap and
lack of far future workload information, we propose a
provably-efficient online algorithm, called eBud (energy
Budgeting), which does not require any long term future
information. It determines the number of servers to be
powered on, virtual machine (VM) resource allocation and
workload distribution among different types of servers to
control the data center performance and energy consump-
tion. eBud minimizes the data center operational cost
(incorporating both electricity cost and delay cost/penalty)
while satisfying the long term energy consumption target.
At the core of our solution is the energy budget deficit
queue (described in Section 3) which tracks how far the
energy consumption is from the long term target. The
energy budget deficit queue steers the resource manage-
ment decisions towards meeting the long term energy con-
sumption target: the longer queue, the more focus on
reducing energy consumption. The queue embedded in
eBud does not adversely affect the data center QoS or elec-
tricity cost significantly and enables eBud to deliver a
close-to-optimal operational cost.

We perform a trace-based simulation to evaluate eBud
and compare it to the state-of-the-art prediction-based
method. Our simulation results show that eBud can reduce
the average cost by over 16 percent while satisfying the long
term energy budget constraint. Sensitivity studies also dem-
onstrate that eBud is robust against inaccurate workload
prediction as well as consideration of server switching cost.
To support our simulation studies, we present results of a
scaled down experiment with RUBiS benchmark applica-
tion and show that eBud can meet a long term energy con-
sumption target in real life scenario while incurring a small
increase in average cost.

The rest of this paper is organized as follows. Section 2
describes the model. In Section 3, we present the problem
formulation and develop our online algorithm, eBud.
Sections 4 and 5 provide simulation and experimental
results to support our analysis. Related work is reviewed in
Section 6 and finally, concluding remarks are offered in
Section 7.

2 MODEL

A discrete time model, which equally divides the total
budgeting period into K equal time slots indexed by
t ¼ 0; 1; . . . ; K � 1, is considered in this paper. The
resource management decisions, governed by eBud to
meet the long term energy budget, are updated periodi-
cally at the beginning of each slot. The granularity of the
time slots are limited by the minimum time gap between
resource management updates. In the following sections,
we present the modeling details for the data center, server
power and workload.

2.1 List of Notations

I Types of physical servers.
J Types of workloads.
Mi Maximum number of type-i servers.
mi Number of type-i servers turned on.
VMi;j VM at type-i server, serving type-jworkloads.
xi;j CPU resource of VMi;j.
�i;j Workload of VMi;j.
mi;j Service rate of VMi;j.
si CPU resource of type-i servers.
pi Power consumption of type-i servers.
ui CPU utilization of type-i servers.
w Electricity price.
e Electricity cost.
g Total cost.
V Cost-capping parameter.
q Budget deficit queue length.

2.2 Data Center

We lay down the foundation of our model by introducing
the data center architecture considered in this paper.
We consider a virtualized data center where the VMs are
hosted in I different types of physical servers distinguished
by their power consumption and processing capacity.
Throughout the paper, servers and physical servers are
used interchangeably wherever applicable. Each server
hosts a set of VMs and contains a VM monitor (VMM, also
called hypervisor) that is responsible for allocating hard-
ware resources to the hosted VMs. The data center serves J
different types of workloads through VMs hosted in differ-
ent servers. The number of VMs to serve each workload
type is determined by the resource management algorithm.
Each server hosts up to J VMs, each corresponding to one
type of workload, and each VM is assigned a fraction
of the total available CPU resource of that server. We denote
the VM serving type-j workload at type-i server by VMi;j

and its CPU resource allocation by 0 � xi;j � si, where si is
the CPU resource available at type-i servers (determined by
resource management algorithm and measured in, e.g.,
GHz excluding the CPU consumption by VMM) for proc-
essing VM workloads. At any time slot t, the CPU resource
allocation xi;j is considered identical among the same type
of servers, with the following rationale. For homogeneous
servers (i.e., the same type of servers in our study), equally
distributing workloads across active servers is optimal in
terms of minimizing the cost, and hence with everything
being the same (i.e., equal workload, equal physical config-
uration), it is natural to allocate the same CPU resource to
VM across all active servers of the same type.

2.3 Server Power

As CPU power is the dominant component of server total
power consumption (typically 40� 50 percent) [15], we
mainly focus on CPU allocation for VMs while considering
other resources (e.g., memory, disk) as sufficient and non-
bottleneck resources that consume a power with relatively
less variation. Although this assumptionmay not hold for all
application scenarios (e.g., memory/disk power consump-
tion may vary considerably for I/O-intensive workloads),
we note that it is reasonably accurate for CPU-intensive
workloads that are the main concentration of our study [16],
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[17] and that the assumption will also be validated using real
life experiments running workloads that are not purely
CPU-intensive.We express the average power consumption2

and peak power of server type i as [16], [18]

piðuiÞ ¼ pi;s þ ui � pi;c
� � � 1ðui>0Þ; (1)

p̂i ¼ pi;s þ pi;c; (2)

where ui is CPU utilization of type-i server (that will be
specified in the next section), pi;s is the static power regard-
less of the workloads as long as the server is turned on, and
it also captures the power consumption resulted from the
CPU usage of the VMM (responsible for managing the VMs
in a server), pi;c is the computing power incurred when the
server is operating, and the indicator function 1ðui>0Þ ¼ 1 if

and only if server utilization ui > 0. Thus, considering
miðtÞ �Mi as the number of type-i servers turned on, the
servers’ total power consumption during time t is given by

pðuðtÞ;mðtÞÞ ¼
XI
i¼1

mi � piðuiðtÞÞ; (3)

where uðtÞ ¼ ðu1ðtÞ; u2ðtÞ; . . . ; uMðtÞÞ is the vector of average
server utilization,mðtÞ ¼ ðm1ðtÞ;m2ðtÞ; . . .mMðtÞÞ is the vec-
tor of number of turned on servers of each type. Note that
we isolate the non-IT power consumption (e.g., by cooling)
which is in proportion to the servers’ power.

2.4 Workload

We focus on delay-sensitive interactive workloads like web
applications (as in [14], [16]), whereas delay-tolerant batch
workloads (e.g. scientific calculations) can be captured sepa-
rately through a batch job queue as considered by several
existing studies [16]. Arrival rate of the J different types of
workloads are denoted by ajðtÞ 2 ½0; aj;max�, where j ¼
f1; . . . ; Jg. As assumed in prior work [2], [14], [19], the value
of ajðtÞ is accurately available at the beginning of each time
slot t, as can be achieved by using various techniques such
as regression analysis, while inaccurate knowledge of the
service rate/workload arrival rate will be investigated in
the simulation section.

Each type of workload is distributed among VMs placed
in different types of servers. Let �i;j be the type j workload
processed at type-i server. Thus, the workload of VMi;j is
�i;jðtÞ
miðtÞ , because servers of the same type get equal workload

distributions. The service rate (i.e., how many jobs can be
processed on average in a unit time) of VMi;j is given by
mi;j ¼ mi;jðxi;j;Þ. The function mi;jð�Þ maps the allocated CPU

resource to the service rate. While in general it is non-trivial
to accurately obtain the mapping mi;jð�Þ [20], [21], we note

that the service rate of CPU-intensive jobs can be approxi-
mated as an affine function of the allocated CPU resource
(provided that memory, disk, etc are non-bottleneck) [17].
Thus, as in [16], [18], we assume in the following analysis
that mi;jð�Þ is exogenously determined, for i ¼ 1; 2; . . . ; I and

j ¼ 1; 2; . . . ; J , while noting that modeling the function
mi;jð�Þ can be done using the techniques developed in [20],

[21], that are beyond the scope of our study.

Now, we are ready to derive the average server utiliza-
tion uiðtÞ as follows:

uiðtÞ ¼
XJ
j¼1

�i;jðtÞ=mi

mi;jðtÞ
� xi;jðtÞ
siðtÞ (4)

where
�i;jðtÞ=mi

mi;jðtÞ is the utilization of VMi;j and
xi;jðtÞ
siðtÞ is portion

of server type i’s CPU resources allocated to VMi;j. This

completes the expression of average server power con-

sumption3 in (1).

3 ONLINE ENERGY BUDGETING

In this section, we specify the data center costs and the opti-
mization problem formulation for the energy budgeting
problem. Then, we develop our online energy budgeting
algorithm, eBud, which makes resource management deci-
sions without far future information. We conduct a perfor-
mance analysis and show that eBud can perform close to
the optimal offline algorithm while satisfying the long term
energy budgeting constraint.

3.1 Data Center Costs

We focus on minimizing operational cost of the data center
rather than capital cost (e.g., building data centers). While
electricity cost takes up a significant portion of the data cen-
ter operational cost, we also incorporate the delay cost
(specified in the following section) which quantifies the
data center performance and affects the user experiences as
well revenues [19].

Electricity cost. We denote the electricity price at time t by
wðtÞ, which is known to the data center operator no later
than the beginning of each time slot but may change over
time if the data center participates in a real-time electricity
market [13], [14]. Thus, the total electricity cost at time t can
be expressed as

eðuðtÞ;mðtÞÞ ¼ wðtÞ � pðuðtÞÞ: (5)

While we use a linear function (5) to model the electricity
cost, our analysis is applicable for nonlinear (i.e convex) cost
functions where the data center is charged at higher rate as
their power consumption increases. Although considering
on-site renewable energy and/or energy storage devices
such as batteries can further reduce the electricity cost [12],
we do not consider them in our work as they are complimen-
tary to our study and our main focus is on deciding resource
management and workload distribution in an online fashion
while satisfying the energy budget constraint.

Delay cost. As in prior research [14], [19], we denote the
delay cost at VMi;j by a convex function di;jð�i;j;mi;j;miÞ,
which is intuitively increasing in �i;j and decreasing in mi;j

and mi. To facilitate our analysis, we model the service pro-
cess at each VM as an M/G/1/PS queue and use the aver-
age response time (multiplied by the arrival rate) to
represent the delay cost. Specifically, it is well known that

the average response time for the M/G/1/PS is 1

mi;j�
�i;j
mi

[22]

and hence, the total delay cost at time t can be written as

dð��ðtÞ;mmðtÞ;mðtÞÞ ¼PI
i¼1

PJ
j¼1

mi��i;jðtÞ
mi �mi;jðtÞ��i;jðtÞ ; (6)

2. This is directly proportional to energy consumption, and since the
length of each time slot is the same, we use (1) as the measure of each
server’s energy consumption in a time slot.

3. The domain0/root VM power consumption is absorbed in the
“static” power ps;i of server i.
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in which ��ðtÞ ¼ ð�1;1ðtÞ; . . . ; �I;JðtÞÞ, mmðtÞ ¼ ðm1;1ðtÞ; . . . ;
mI;JðtÞÞ, mðtÞ ¼ ðm1ðtÞ;m2ðtÞ; . . .mIðtÞÞ, and we ignore the

network delay cost that can be approximately modeled as a
certain constant [14] and added into (6) without affecting
our approach of analysis. The M/G/1/PS model has been
widely used to get a reasonable approximation of the ser-
vice process, and our study does not preclude the incorpo-
ration of other delay performance metrics (e.g., 95 percent
delay), although the analytic convenience may be forfeited.
Finally, we note that the delay cost model in (6) implicitly
assumes that VMs are perfectly isolated without interfering
with each other. While this may not be true in heavy traffic
scenarios (e.g., due to cache, I/O contention) as pointed out
by the existing research [20], we consider perfect isolation
and use the delay cost model only as an approximate indica-
tion for the actual delay performance (as studied in [16]). In
other words, the model is only intended to facilitate the
design of our online algorithm, while the actual decision
and delay performance should still be appropriately cali-
brated online to account for the factors (e.g., VM interfer-
ence, imperfect workload monitoring) that are not captured
by our model. In our experimental study, the assumption
will be further validated using a real life system.

Operational costs. We construct the data center opera-
tional cost by combining the electricity and delay cost in a
parameterized cost function as follows:

gðmðtÞ;xðtÞ; ��ðtÞÞ ¼ eðuðtÞ;mðtÞÞ
þ b � dð��ðtÞ;mmðtÞ;mðtÞÞ; (7)

where the server utilization vector uðtÞ and VM service
rate matrix mðtÞmðtÞ are functions of the VM resource alloca-
tion xðtÞ, and b � 0 is weighting parameter for delay cost
relative to the electricity cost [14], [19]. By tuning b, data
center operator can decide a balance between electricity
bill and QoS.

3.2 Problem Formulation

The optimization problem that minimizes the virtualized
data center’s operational cost subject to a long term energy
capping is presented below:

P1 : minimize �g ¼ 1

K

XK�1
t¼0

gðmðtÞ;xðtÞ; ��ðtÞÞ; (8)

subject to
XK�1
t¼0

pðuðtÞ;mðtÞÞ � Z: (9)

The optimization objective (8) in the above problem for-
mulation indicates the data center aims at minimizing its
long term average operational cost where K is the total
number of time slots in the budgeting period. The long term
energy capping is specified by (9), where Z is target total
energy consumption during the budgeting period. We note
that setting the energy cap Z is out of the scope of our paper
but non-trivial. One method used by LEED program for an
existing data center is to set Z based on the data center’s his-
torical energy consumption or energy consumption by simi-
lar buildings [4].

The optimization problem is also subject to some addi-
tional constraints which arise from the choice of control

variables (number of servers to be powered on, VM
resource allocations and workloads distribution) in the opti-
mization. The constraints are listed below:XI

i¼1
miðtÞ � p̂iðxiðtÞÞ � P̂ ; (10)

0 � miðtÞ �Mi; 8i; (11)

XJ
j¼1

xi;jðtÞ � siðtÞ; 8i; (12)

0 � �i;jðtÞ � u �miðtÞ � mi;jðtÞ; 8i; 8j; (13)

XI
i¼1

�i;jðtÞ ¼ ajðtÞ; 8j: (14)

Constraints (10) and (11) limit data center peak power and
the maximum number of servers that can be brought into
service, where P̂ is the data center peak power and Mi is
the maximum number of i-type servers. Constraint (12)
bounds the VM CPU allocation within the available server
resource. Constraints (13) and (14) specify the conditions for
workload distribution and no workload dropping, respec-
tively, where u 2 ð0; 1Þ specifies the maximum utilization of
a single VM.

While the optimal solution to P1 provides the resource
allocations for the minimum achievable average cost, con-
straint (9) couples together the resource management deci-
sions of all the time slots, and hence requires the complete
offline information (i.e., workload arrivals and electricity
prices) over the entire budgeting period. In practice, how-
ever, it is very difficult to predict the workload in advance
for longer periods because of the traffic spikes caused by
breaking events [23], [24]. Moreover, P1 has an integer deci-
sion variable (i.e., number of servers (11)), turning it into a
mixed-integer nonlinear programming problem spanning
over all the time slots and making P1 computationally
exhaustive even with the long term future information accu-
rately known a priori. Next, we propose an efficient online
algorithm to address these challenges.

3.3 Algorithm for Online Energy Budgeting (eBud)

Developed based on Lyapunov optimization technique [25],
eBud is purely online which requires only the currently
available information yet performs close to the optimal off-
line solution in terms of cost minimization while satisfying
the long term energy budget. eBud also gives data center
operator the flexibility of run-time adjustment of trade-off
between cost minimization and the budget constraint. Next,
we describe eBud in detail.

Budget deficit queue. To enable online resource manage-
ment by removing the resource management decision cou-
pling in P1, we integrate the long term budgeting constraint
with the optimization objective function by introducing a
virtual budget deficit queue. The queue tracks the deviation
from the long term target, and assuming qð0Þ ¼ 0, its
dynamics evolves as follows:

qðtþ 1Þ ¼ qðtÞ þ pðuðtÞ;mðtÞÞ � Z

K

� �þ
: (16)
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Algorithm 1. eBud

1: Input aðtÞ and wðtÞ at the beginning of each time t ¼ 0;
1; . . . ;K � 1

2: if t ¼ rT , 8r ¼ 0; 1; . . . ; R� 1 then
3: qðtÞ  0 and V  Vr

4: end if
5: Choose mðtÞ;xðtÞ and ��ðtÞ subject to (10), (11), (12), (13) and

(14) to minimize

P2 : V � gðmðtÞ;xðtÞ; ��ðtÞÞ þ qðtÞ � pðuðtÞ;mðtÞÞ (15)

6: Update qðtÞ according to (16).

A positive queue length at any time indicates that the data
center has drawn more electricity energy than the allocated
budget thus far and needs to consume less energy in the
consecutive time slots to offset the excess use. Incorporating
the energy budget deficit queue as a guidance, we develop
our online algorithm, eBud, as presented in Algorithm 1.

eBud is an online algorithms which only requires the cur-
rently available information (i.e., aðtÞ, wðtÞ) as inputs, while
its output is: how many servers of each type are turned on,
CPU resource allocation to VMs in each server, and
workload distribution among the servers turned on. In
Algorithm 1, we use V1; V2; . . . ; VR to denote a sequence of
positive control parameters (also referred to as cost-capping
parameters) which determine the relative weight of meeting
long term budget over cost minimization. Lines 2-4 reset the
energy budget deficit queue at the beginning of each frame
r, such that the cost-capping parameter V can be adjusted
and the energy budget deficit in a new time frame will not
be affected by its value resulting from the previous time
frame. Line 5 solves a one-time mixed integer optimization
problem to determine the resource management for the cor-
responding time slot. At the end of each time slot, the
energy budget deficit queue is updated for usage in next
time slot.

Finally, it is worth mentioning that P2 is still a mixed-
integer problem that may be solved using software pack-
ages or other techniques (e.g., branch and bound [26]).
However, although the complexity of P2 is exponential in
the number of server types, eBud is practically realizable,
because the resource management decision is only made
once every time slot (i.e., the total intolerable complexity is
distributed among all time slots). Note further that to
achieve energy capping, the delay performance needs to be
compromised (but still subject to a performance constraint),
as demonstrated in other energy-saving literature [27].
Indeed, Facebook is intentionally hitting the performance
constraint to save energy by dynamically providing com-
puting resources, rather than leaving all the servers on to
achieve the best possible delay performance [28].

3.4 Performance Analysis

This section presents the performance analysis of eBud in
Theorem 1, whose proof follows sample-path Lyapunov
technique in [25] and details are omitted for brevity with a
sketch provided in the Appendix.

Theorem 1. For any T 2 Zþ and R 2 Zþ such thatK ¼ RT , the
following statements hold.

a. The energy capping constraint is approximately satisfied
with a bounded deviation:

1

K

XK�1
t¼0

p uðtÞ;mðtÞð Þ

� Z

K
þ
PR�1

r¼0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CðT Þ þ VrðG�r � gminÞ

p
R

ffiffiffiffi
T
p ;

(17)

where CðT Þ ¼ BþDðT � 1Þ with B and D being certain
finite constants, G�r is the minimum average cost achieved over
the r-th frame by the optimal offline algorithm with T -slot
lookahead information (specified in the appendix), for r ¼ 0;
1; . . . ; R� 1, and gmin is the minimum per-slot cost that can
be achieved by any feasible decisions throughout the budgeting
period.

b. The average cost �g� achieved by eBud satisfies:

�g� � 1

R

XR�1
r¼0

G�r þ
CðT Þ
R
�
XR�1
r¼0

1

Vr
: (18)

Theorem 1 shows that the cost achieved by eBud is within
an additive penalty of Oð1=V Þ compared to the minimum
cost achieved by the offline algorithmwith T -step lookahead
(specified in the appendix), while the energy capping con-
straint is guaranteed to be approximately satisfied with a
bounded deviation. When V increases, eBud is closer to the
offline algorithm, whereas the deviation from the capping
constraint may be larger in theworst case, and vice versa.

We note that despite the provably-efficient performance,
eBud based on Lyapunov optimization has a shortcoming:
slow convergence rate. That is, eBud usually requires quite
a few time slots before the algorithm can yield a stable
performance (both in terms of cost and in terms of energy
capping).

3.5 Updating V Dynamically

As shown in Theorem 1, the value of V is very important in
eBud. V determines how close the average cost achieved by
eBud will be to that of the optimal offline algorithm, which
is the theoretical lower bound on average cost. It also sets
the limit on the maximum deviation from the long term
energy capping target. A large value of V will reduce the
average cost performance gap between eBud and optimal
offline, while the deviation from energy capping target will
be higher. While the appropriate value of V is not possible
to accurately determined at the beginning of the entire
budgeting period, V can be updated at run time to cope
with the operation need. Starting with any initial value of
V , after some time if the data center operator sees that the
energy consumption is exceeding the set target so far, it can
reduce V so that the algorithm emphasizes energy capping
over cost reduction, and vice versa. Based on this intuition,
we implement the following to update the V periodically,

Vtþ1 ¼ max Vt þ a � zt; Vminf g; (19)

where Vt is the value of V after the t-th update, a > 0 is a
scaling parameter, Vmin > 0 is the smallest possible value of

V to avoid zero value, and zt ¼ Z
K � 1

ttþ1
Pttþ1�1

t¼0 pðuðtÞ;mðtÞÞ
is the difference between the average allocated budget and
the energy consumption up to the time slot ttþ1 during
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which V is updated for the ðt þ 1Þ-th time. Using the pro-
posed method, eBud can be applied based on online infor-
mation and, with an initial input of V which does not need to
be accurate, will automatically guide itself towards energy
capping constraint satisfaction. We further investigate the
impact of V on eBud in the simulation and experiment.

3.6 Integration of eBud with Existing Systems

Before concluding this section, we briefly discuss how eBud
can be seamlessly integrated with the existing resource
management module in data centers. As illustrated in
Fig. 1, eBud is placed as part of the data center resource
management module. The control decisions made by eBud
are sent to the server cluster control module, which then
directly controls the servers and VMs. The virtual budget
deficit queue, which is a part of eBud, collects the energy
usage data from the data center monitoring system. While
eBud decides the number of servers as well as VM CPU
resource allocation, supplementary control modules (i.e.,
cooling system control, non-CPU VM resource allocation,
network system control) can be appended after eBud to
improve the performance. Any existing control module that
makes overlapping decisions is placed before eBud, and can
be adopted as additional constraints in our algorithm.

4 SIMULATION

This section presents trace-based simulation studies of a
data center to validate our analysis and evaluate the perfor-
mance of eBud. We first present our data sets and then
show the simulation results.

4.1 Data Sets

We consider a data center with 40;000 physical servers.
There are four types of servers with 10;000 of each type.
The normalized server service rate and power consump-
tion of the server types are: (2.7, 250 W), (2.8, 260 W), (2.9,
270 W), and (3.0, 275 W). The duration of each time slot is
10 minutes. The budgeting period in our study is one
month, and the default total energy budget is set to 6;009
MWh, which is 85 percent of total energy consumption if
there were no long term budget constraint achieved by the
capping-unaware cost saving algorithm (specified later).
The weighting parameter converting the delay to monetary
cost is b ¼ 0:002. The parameter u that determines maxi-
mum VM utilization is set to 95 percent.

� Workloads. We consider that the data center serves
four different types of workloads. The workload
traces for our simulations are taken from the

research publication [27] and originally profiled
from I/O traces taken from 6 RAID volumes at
Microsoft Research (MSR) Cambridge. The traced
period was 1 week starting from 5PM (GMT) on Feb-
ruary 22, 2007 [27]. We first repeat the trace after
adding 30 percent random noise to extend it to one
month, and then add 50 percent random variation to
generate the workload of the four types of jobs.
Fig. 2a illustrates the workload for type-1 jobs, where
the workloads are normalized with respect to the
total maximum service capacity of the data center.

� Electricity price. As in [13], [14], we consider that the
data center participates in a real-time electricity mar-
ket and obtain from [29] the hourly electricity price
for Mountain View, California, during January, 2012.

� Others. We consider that the servers can host VMs to
serve any type of workload. The VM service rate
(i.e., maximum number of jobs served per unit time)
is proportional to the allocated CPU resource, while
the proportionality factor depends on the workload
type as well as the server type: in our simulation, we
use 16 different constants of proportionality to simu-
late four different types of jobs served by four differ-
ent types of server in the data center. In particular,
the constants of proportionality are pre-determined
before the simulation but randomly chosen from the
following set: 0:80; 0:85; 0:90; 0:95; 1:00; 1:05; 1:10;½
1:15; 1:20; 1:25�.

Since the access to commercial data centers is unavail-
able, we obtain the trace data from sources available to us,
but it captures the variation of workloads and electricity pri-
ces over the budgeting period.

4.2 Simulation Results

We now present the simulation results based on the above
settings. We first study the execution of eBud, followed by
performance comparison of eBud with the best known exist-
ing solution. We then show the impact of energy budget Z,
and finally present a sensitivity study showing the robust-
ness of eBud.

4.2.1 Execution of eBud

We first consider cases where V is kept constant through-
out the budgeting period. Figs. 3a and 3b show the impact
of V on the average cost per time slot (i.e., �g) and the total
energy budget deficit (i.e., budget deficit at the end of the
budgeting period). The negative budget deficit in Fig. 3b
indicates that the total energy usage is less than the budget

Fig. 1. System block diagram. Fig. 2. Workload trace and electricity price.
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amount. We also capture the effect of allocated energy
budget using two different budget levels, at 85 percent
(the default value) and 90 percent of total energy con-
sumption without any energy cap. The results conform
with our analysis of dependence of eBud performance on
the value of V . We see that the average cost decreases with
increase in V , while the budget deficit increases. This is
because when the value of V is large, average cost minimi-
zation has a greater weight than energy capping. If a very
large V (e.g., infinity) is used, relative weight of the energy
capping becomes almost zero, thus making eBud act like
an algorithm that only minimizes average cost while disre-
garding energy capping. The average cost achieved in
such a case is the lower bound on average cost achievable
by any algorithm with an energy cap. We also see from
Fig. 3b that zero budget deficit is achieved by eBud at
lower V for lower budget: at V ¼ 65 for 90 percent budget
and at V ¼ 25 for 85 percent budget. The average cost at
the zero budget deficit is fairly close to the lower bound,
greater only by 1 and 3:1 percent at 90 and 85 percent bud-
get, respectively. This shows the effectiveness of using
eBud to cap long term energy without much increase in
the data center cost.

In Fig. 4, we show the effectiveness of using (19) to
dynamically update V . We show two cases with different
starting values of V and compare them with the average
budget deficit and average cost of using constant V . Fig. 4a
shows the evolution of V over time. We see that even
though the starting V of case #2 is five times that of case #2,
the pattern of dynamic V over the entire budgeting period
is similar, with larger variations at the beginning because of
different initial values; beyond time slot 1,500, they become
almost identical. We see in Fig. 4b that despite starting with
different V , in both cases, the long term energy capping is
satisfied. We also see in Fig. 4c that the average cost is very
close to that of the constant V , with only 1.6 percent higher
for both cases. Thus using (19), the data center operator can
be relieved from finding the appropriate V at the beginning
of a budgeting period.

4.2.2 Comparison with Prediction-Based Methods

This simulation compares eBud with the best known exist-
ing solution—prediction-based method for energy/cost
capping as considered in [2], [11], [12]. We incorporate the
nonlinear delay function to the existing prediction-based
methods and consider a heuristic variation as follows.
� Perfect Prediction Heuristic (PerfectPH): The data center

operator leverages perfect prediction of 10-minute work-
load arrival rates for the next 48 hours and allocates the
energy budget in proportion to the workloads. When oper-
ating online, the operator minimizes the cost subject to the
allocated 10-minute energy budget; if no feasible solution
exists for a particular time slot (e.g., workload spikes), the
operator will minimize the cost without considering the
allocated energy budget.

Fig. 5 shows the comparison between eBud and the pre-
diction-based PerfectPH in terms of the average cost and
budget deficit per time slot.4 Fig. 5a demonstrates that
eBud is more cost-effective compared to the prediction-
based methods with a cost saving of more than 16 percent
over the budgeting period of one month, while both algo-
rithms meet the long term budget constraint. The higher
cost of PerfectPH is the result of short term prediction

Fig. 3. Impact of V .

Fig. 4. Dynamically updating V every day. Case #1: initial V ¼ 10. Case
2: initial V ¼ 50. Constant V ¼ 24. a ¼ 50.

Fig. 5. Comparison with prediction-based methods.

4. The average at time t in Fig. 5 is obtained by summing up all the
values from time 0 to time t and then dividing the sum by tþ 1.
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while allocating the energy budget. Without foreseeing
complete offline information, PerfectPH may over-allocate
the energy budget at inappropriate time slots, and conse-
quently have to set a stringent budget for certain time slots
when the workload is high. To satisfy the stringent energy
budget of these time slots, PerfectPH reduces server speed
and/or turns off servers, resulting in increased delay cost
and hence a high average cost. By contrast, eBud does not
impose any per-slot hard energy budget constraint, and
can focus on cost minimization during workload spikes
with the energy budget temporarily violated. In Fig. 5b,
the average budget deficit is shown over the budgeting
period. We see that PerfectPH has a negative budget defi-
cit, because for some time slots, PerfectPH assigns more
budget than the optimum energy consumption. In other
words, the increase in electricity cost for using up the
whole energy budget is greater than the reduction in delay
cost. Thus, there are unused energy budgets in these time
slots that result in the negative budget deficit. Note that, if
a longer-term prediction is combined, eBud can naturally
further reduce the cost, but the cost saving potential is
quite limited, because Fig. 3a already demonstrates that
eBud is fairly close to the lower bound on the cost while
satisfying the budget constraint. This implies that only
using 10-minute-ahead prediction in eBud is sufficiently
good in terms of cost minimization.

4.2.3 Impact of Long Term Energy Budget Z

We now show in Fig. 6 the impact of long term energy bud-
get Z on the cost. Under our simulation settings, the cap-
ping-unaware algorithm consumes 7;069 MWh electricity
energy over one month, which we normalize to 1. We vary
the energy budget from 0:75 to 1 and observe the average
cost achieved by eBud. We appropriately choose V such
that eBud achieves a zero budget deficit. We see that aver-
age cost of eBud increases as the energy budget is shrinking.
This shows the performance penalty (in terms of average
cost) associated with meeting a long term energy target, and
naturally a lower budget results in higher performance pen-
alty. However, we see that given a 75 percent energy bud-
get, average cost of eBud only exceeds the that of capping-
unaware algorithm by approximately 12:2 percent. We also
show the impact of energy budget on the optimal offline
algorithm, called OPT, and PerfectPH. The average cost gap
between eBud and OPT, increasing with decreasing budget,
remains very small, only 4 percent at 75 percent budget.

This supports our analytical claim that eBud performs close
to optimal offline algorithm. PerfectPH, on the other hand,
incurs the greatest cost exceeding the capping-unaware
algorithm by 6:5 percent at even 100 percent budget and
43 percent at a 75 percent budget. These results indicate the
effectiveness of eBud in capping long term energy con-
sumption at different budget levels.

4.2.4 Sensitivity Study

Now, we investigate the robustness of eBud in the following
two scenarios.

Workload overestimation. Since in practice, it may not be
always possible to accurately predict the workload arrivals,
a conservative approach can be overestimating the work-
load, and as a result, keep more server turned on to cope
with unexpected traffic spikes. The overestimation can also
be considered equivalent to imperfect modeling of VM ser-
vice rate. In Fig. 7a, we show the percentage increase in
average cost caused by overestimated workload for eBud.
The cost-carbon parameter V is appropriately adjusted to
achieve zero budget deficit. We see that the average cost for
eBud increases less than 2 percent when we overestimate
the workload by 10 percent. This indicates that eBud is
robust against workload prediction error.

Considering server switching cost. We also study the
performance of eBud when the server toggling power5 is
added to the power cost. We model the switching cost (both
“Power up” and “Shutdown”) of a server as percentage of
the server’s peak energy consumption and calculate the total
switching power consumption by multiplying the switching
power by the change in number of servers between time
slots. In Fig. 7b, we show that the average cost increases less
than 3 percent even when we consider a switching cost of
20 percent. This shows that the performance of eBud is not
degradedwhen the server switching cost is considered.

5 EXPERIMENT

In this section, we present our experiment results to show
the effectiveness of eBud in satisfying long term energy
budget constraint in a scaled down prototype platform. We
first describe our experiment setup and then present the
experiment results.

5.1 Experiment Setup

There are two virtualized servers and one client machine in
our experiment. Fig. 8 shows the connectivity among

Fig. 6. Impact of energy budget.

Fig. 7. Robustness against workload prediction error and switching cost.

5. Power consumption during the “power up” or “shutdown”
period when server cannot serve workload but consumes power.
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different components of the experiment. The resource (e.g.,
server CPU speed) management algorithm eBud and RUBiS
workload generator are placed in the client machine, while
VMs in the two servers host the RUBiS web applications.
Next, we briefly describe the hardware-software configura-
tion of our experiment and RUBiS.

Hardware. We use as the virtualized servers two HP Elite
PCs, each with a Core i7-3770 CPU and 16 GB of memory.
The CPU supports 15 speed levels using DVFS ranging
from 1:6 to 3:41 GHz. In our experiment, we use six speed
settings of 1:6; 1:9; 2:2; 2:6; 3 and 3:4 GHz and a zero speed
to represent server shutdown. The client machine is a Dell
Precision Desktop which has a Core i7 860@2.8GHz CPU
and 4GB of memory. The servers are powered through net-
work enabled WattsUp power meter to measure the energy
consumption remotely through a Java module placed in the
client machine. The client machine is directly connected to
the power outlet, hence the energy consumption of client
machine is not captured by the power meter. In real system,
eBud module will be placed in a control server belonging to
the data center.

Software. XenServer 6.1 with free license is used in the
servers as the hypervisor to host three VMs in each
machine. Ubuntu Linux server 12.04 with SSH and LAMP
server is installed in the VMs to facilitate hosting of the PHP
version of RUBiS web service. Each server CPU has four
processing cores6, among which one is dedicated to Xen-
Server and the remaining three cores, identified as VCPUs
in XenServer, are distributed to the three VMs according to
the CPU allocation decisions made by eBud. The VCPU allo-
cations can take fraction values and the total allocation of
the VMs in one server must remain equal or less than 3. The
client machine runs with Windows 7 operating system and
hosts eBud and RUBiS workload generator, both imple-
mented using Java. XenServer java API is used to connect to
the servers and issue VCPU assignment commands, while
Apache SSH module is used to control the server speed.

RUBiS. RUBiS is a widely used performance benchmark
application developed at Rice University [30], which

imitates the behavior of an auction site (e.g., eBay). The
implementation of RUBiS focuses on the core functionality
of an auction site: selling, browsing and bidding. While
there are several versions of RUBiS available, we use the
PHP implementation in our experiment. The auction sites
are hosted in the VMs and serve the user requests form the
RUBiS workload generator implemented in the client
machine. The RUBiS workload generator creates user ses-
sions (a.k.a. clients) which simulate the user behaviors in an
auction site. The number of clients indicates the workload
being generated for the website.

Other settings. We use the same I/O traces of Microsoft
Research [27] as in our simulation and scale it to have a
maximum VM CPU utilization of 70 percent. To avoid
lengthy experiment, the duration of a time slot in our
experiment is 7 minutes and the total budgeting period is
48 time slots. Our energy budget is set to 2;995 W, which is
90 percent of the total energy consumption of capping-
unaware algorithm and we use b ¼ 0:00006. In the perfor-
mance comparison part, the prediction window for Per-
fectPH algorithm is set to six time slots.

Although our experiment setup is scaled down from our
theoretical formulation and simulation studies, it captures
the long term energy budget problem in a virtualized envi-
ronment, which is our main contribution in this work.

5.2 Experiment Results

In this subsection, we first present the server and VM per-
formance models used in the experiment. We then compare
eBud with the capping-unaware and PerfectPH algorithms,
and finally show the impact of the cost-capping parameter
V in the experiment setup.

Performance models. In Fig. 9, we show the server and VM
performance at different resource allocations and workload
conditions. Fig. 9a shows the impact of server speed and VM
CPU allocation on the VM service rate. We see that with
increase of either of the two resources, speed and VM CPU,
the service rate increases. The service rate in this figure is
normalized with respect to the maximum service rate, which

Fig. 8. Experiment setup for validating eBud.

Fig. 9. Server and VM model for experiment.

6. Core i7-3770 processors support configuration of eight virtual
cores with Intel hyper-threading technology. We disable hyper-thread-
ing in our experiment to avoid complexity in modeling the VM perfor-
mance introduced by two layers (i.e software and hardware) of
virtualization.
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is achieved at speed 3:4 GHz and 2:5 VCPU. In Fig. 9b, we
see the server power consumption at different utilization
levels for different speeds. While the power consumption
increases almost linearly with utilization, we see a non-lin-
ear increase in power consumption with the increase in
server speed (also observed in other studies [31]).

In Figs. 9c and 9d, we study the response time of the
RUBiS website as we change the workload (i.e., number of
clients) and CPU resources. In Fig. 9c, we see that with an
increase in the number of clients, the average response time
increases for different VCPU allocations. The sharp rise in
the response time at these different VCPU allocations corre-
sponds to the service rate (or service capacity) of the VM.
Fig. 9d shows the change in the response time with
increased server speed for different workload levels.

Performance comparison. In Fig. 10, we compare the power
consumption and delay performance as well as the average
cost and average budget deficit of eBud with the benchmark
PerfectPH and the capping-unaware algorithms. Figs. 10a
and 10b show the per-slot power and delay, respectively, for
the three algorithms. We see that eBud has a lower power
consumption compared to the other two algorithms without
much impact on the delay performance. eBud consumes 10
and 16 percent less power compared to capping-unaware
and PerfectPH algorithms. In Figs. 10c and 10d, we compare
the average cost and average budget deficit of the three algo-
rithms. We see that eBud only incurs 3:5 percent more cost
than capping-unaware algorithm while manages to achieve
a zero budget deficit while saving 10 percent energy. Per-
fectPH, on the other hand, incurs a higher cost than eBud
while still missing the average per-slot budget by 11:85 W
(even higher than the capping-unaware algorithm).

Impact of V. The control parameter V determines the
trade-off between cost saving and meeting energy budget-
ing target and hence is a very important parameter for
eBud. In Fig. 11, we show the impact of V on the average
cost and budget deficit for eBud in the experiment setup.
We see that the experiment results match with the simula-
tion studies presented in Fig. 3: with an increase in V , the
average cost decreases while the budget deficit increases.

eBud in these figure achieves a zero budget deficit at

V ¼ 5	 105 with a 3:5 percent more cost compared to the
capping-unaware algorithm.

To sum up, we validate eBud and our analysis through
the above experiments: Fig. 10 demonstrates the effective
performance of eBud, and Fig. 11 captures the working
principle of eBud and serves to validate the observations
and findings of our simulation studies.

6 RELATED WORK

We provide a snapshot of the related work from the follow-
ing aspects.

Data center optimization and VM resource management.
There has been a growing interest in optimizing data center
operation from various perspectives such as cutting electric-
ity bills [13], [14], [32] and minimizing response times [10],
[19]. For example, “power proportionality” via dynamically
turning on/off servers based on the workloads (a.k.a.
dynamic capacity provisioning or right-sizing) has been
extensively studied and advocated as a promising approach
to reducing the energy cost of data centers [32]. As data cen-
ters are becoming increasingly virtualized, VM resource
management has attracted much research interest: e.g., [33],
[34] study optimum VM resource management in the cloud;
[16] proposes admission control and dynamic CPU resource
allocation to minimize the cost while bounding the queueing
delay for batch jobs; [35]minimizes energy in amulti-tier vir-
tualized environment with autonomic resource allocation;
[36], [37], [38] study various dynamic VM placement and
migration algorithms that may be combined with our pro-
posed solution. These studies assume server CPU speed can
be continuously chosen, which may not be practically realiz-
able due to hardware constraints. Moreover, none of them
have addressed the long term energy capping constraint.

Power budgeting and energy capping. Because it is very
costly to increase the data center peak power (currently,
estimated at 10-20 U.S. dollars per Watt) [10], optimally allo-
cating the limited power budget to servers is crucial for per-
formance improvement. In [10], the peak power budget is
optimally allocated to (homogeneous) servers to minimize
the total response time based on a queueing-theoretic
model; [15] studies a similar problem but in the context of
virtualized systems. Despite being a related study to power
budgeting, “energy budgeting” or energy capping is rela-
tively less explored. Recent studies, e.g., [2], [12], rely on
long term prediction of the future information, which may
not be feasible in practice. Similarly, [11] utilizes the

Fig. 10. Server and VM model for experiment.

Fig. 11. Impact of V on average cost and budget.
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prediction of long term future workloads to cap the monthly
energy cost. While several heuristic algorithms (e.g., keep a
schedule margin to offset the uncertainty in workload pre-
diction) have been proposed in view of the unpredictable
future information [2], their evaluation is empirical only,
without providing any performance guarantees analyti-
cally. In comparison, eBud offers provable guarantees on
the average cost while bounding the deviation from energy
capping constraint, and our simulation results also demon-
strate the benefits of eBud over the existing methods empiri-
cally. [39] studies energy budgeting for a data center, but it
only considers dynamically turning on/off servers and
hence does not apply to virtualized systems which require a
set of holistic resource management decisions. Further, our
study advances [39], [40] by proposing a richer set of
resource management (including both workload distribu-
tion and server’s power control) and also presenting a com-
prehensive evaluation of eBud via both simulations and
scaled-down experiments.

7 CONCLUSION

In this paper, we studied energy budgeting for a virtualized
data center and proposed an online algorithm, eBud, which
determines the number of server to be turned on, VM
resource allocation and workload distribution of different
types of workloads for minimizing the data center opera-
tional cost while satisfying a long term energy capping
constraint. It was proved that eBud achieves a close-to-mini-
mum operational cost compared to the optimal offline algo-
rithm with future information, while bounding the
potential violation of energy budget constraint. We per-
formed a trace-based simulation study to complement the
analysis. The results show that eBud reduces the cost by
more than 16 percent (compared to state-of-the-art predic-
tion-based method) while resulting in the same energy con-
sumption. Finally, we support our simulation study
through experiment which shows the effectiveness of eBud
in real life.

APPENDIX

We now provide an outline for the proof that follows the
recently-developed sample-path Lyapunov optimization
technique [25]. We first introduce a family of offline algo-
rithm that we will compare eBud with. Specifically, we
divide the entire budgeting period into R frames, each hav-
ing T � 1 time slots, such that K ¼ RT . There exists an ora-
cle that has the complete information over the entire frame
(i.e., T time slots) at the beginning of each frame. Then, at
the beginning of the r-th frame, for r ¼ 0; 1; . . . ; R� 1, the
oracle chooses a sequence of decisions to solve the following
problem:

P3 : min
mðtÞ;xðtÞ;�ðtÞ

1

T

Xðrþ1ÞT�1
t¼rT

gðmðtÞ;xðtÞ; �ðtÞÞ (20)

s:t:; constraints ð10Þ; ð11Þ; ð12Þ; ð13Þ; ð14Þ; (21)

Xðrþ1ÞT�1
t¼rT

pðuðtÞ;mðtÞÞ � Z

R
: (22)

We assume that P3 admits at least one feasible solution
and denote the minimum average cost for the r-th frame by
G�r , for r ¼ 0; 1; . . . ; R� 1, and hence, the long term

minimum average cost achieved by the oracle’s optimal

T -step lookahead algorithm is given by 1
R

PR�1
r¼0 G�r . Then,

Theorem 1 can be proved following three key steps (whose
details can be found in [25]):

1) We relate the energy deficit queue length to approxi-
mate constraint satisfaction.

2) We define a quadratic Lyapunov function for
the energy deficit queue length and derive upper
bounds on the one-slot as well as T -slot Lyapunov
drift plus cost.

3) We minimize the derived upper bounds using
eBud and then compare with the optimal offline
algorithm with T -step lookahead information to com-
plete the proof.

Through the above steps, it will be seen that the online
optimization problem in P2 is actually equivalent to mini-
mizing the derived upper bound on the T -slot Lyapunov
drift plus cost. Then, by substituting the optimal offline
solution to P3 into the expression of Lyapunov drift plus
cost and through simple mathematical manipulations, we
can obtain a bound on the difference between eBud and the
optimal offline solution to P3.

ACKNOWLEDGMENTS

This work was supported in part by NSF CNS-1018108 and
CNS-1423137.

REFERENCES

[1] Virtualizing the Enterprise: An overview. [Online]. Available:
http://www.zdnet.com/virtualizing-the-enterprise-an-overview-
7000018110 /, 2013.

[2] K. Le, R. Bianchini, T. D. Nguyen, O. Bilgir, and M. Martonosi,
“Capping the brown energy consumption of internet services at
low cost,” in Proc. Int. Green Comput. Conf., 2010, pp. 3–14.

[3] Uptime Institute. (2013). Data center industry survey. [Online].
Available: http://uptimeinstitute.com/2013-survey-results

[4] U.S. Green Building Council, “Leadership in energy & environ-
mental design,” [Online]. Available: http://www.usgbc.org/leed

[5] California energy efficiency goals and potential studies. [Online].
Available: http://www.cpuc.ca.gov/PUC/energy/Energy
+Efficiency/Energy+Efficiency+Goals+and+Potential+Studies.
htm

[6] U.S. Federal Leadership in Environmental, Energy and Economic
Performance—EXECUTIVE ORDER 13514. [Online]. Available:
http://www.whitehouse.gov/administration/eop/ceq/
sustainability

[7] Google, “Google’s green PPAs: What, how, and why,” http://
static.googleusercontent.com/external_content/untrusted_dlcp/
cfz.cc/en/us/green/pdfs/renewable-energy.pdf

[8] T. DiCaprio, “Becoming carbon neutral: How microsoft is striving
to become leaner, greener, and more accountable,” Microsoft
Whitepaper, Jun. 2012.

[9] Uptime Institute, “2014 data center industry survey results,”
[Online]. Available: http://symposium.uptimeinstitute.com/
images/stories/symposium2014/prese ntations/mattstansberry-
surveyresults2014.pdf.

[10] A. Gandhi, M. Harchol-Balter, R. Das, and C. Lefurgy, “Optimal
power allocation in server farms,” in Proc. 11th Int. Joint Conf.
Meas. Model. Comput. Syst., 2009, pp. 157–168.

[11] Y. Zhang, Y. Wang, and X. Wang, “Electricity bill capping for
cloud-scale data centers that impact the power markets,” in Proc.
41st Int. Conf. Parallel Process., 2012, pp. 440–449.

ISLAM ETAL.: ONLINE ENERGY BUDGETING FOR COST MINIMIZATION IN VIRTUALIZED DATA CENTER 431

http://www.zdnet.com/virtualizing-the-enterprise-an-overview-7000018110 /
http://www.zdnet.com/virtualizing-the-enterprise-an-overview-7000018110 /
http://uptimeinstitute.com/2013-survey-results
http://www.usgbc.org/leed
http://www.cpuc.ca.gov/PUC/energy/Energy+Efficiency/Energy+Efficiency+G oals+and+Potential+Studies.htm
http://www.cpuc.ca.gov/PUC/energy/Energy+Efficiency/Energy+Efficiency+G oals+and+Potential+Studies.htm
http://www.cpuc.ca.gov/PUC/energy/Energy+Efficiency/Energy+Efficiency+G oals+and+Potential+Studies.htm
http://www.whitehouse.gov/administration/eop/ceq/sustainability
http://www.whitehouse.gov/administration/eop/ceq/sustainability
http://symposium.uptimeinstitute.com/images/stories/symposium2014/prese ntations/mattstansberry-surveyresults2014.pdf
http://symposium.uptimeinstitute.com/images/stories/symposium2014/prese ntations/mattstansberry-surveyresults2014.pdf
http://symposium.uptimeinstitute.com/images/stories/symposium2014/prese ntations/mattstansberry-surveyresults2014.pdf


[12] C. Ren, D. Wang, B. Urgaonkar, and A. Sivasubramaniam,
“Carbon-aware energy capacity planning for datacenters,”
in Proc. IEEE 20th Int. Symp. Model., Anal. Simul. Comput. Telecom-
mun. Syst., 2012, pp. 391–400.

[13] L. Rao, X. Liu, L. Xie, and W. Liu, “Reducing electricity cost:
Optimization of distributed internet data centers in a multi-
electricity-market environment,” in Proc. IEEE INFOCOM,
2010, pp. 1–9.

[14] Z. Liu, M. Lin, A. Wierman, S. H. Low, and L. L. Andrew,
“Greening geographical load balancing,” in Proc. ACM SIGMET-
RICS Joint Int. Conf. Meas. Model. Comput. Syst., 2011, pp. 233–244.

[15] H. Lim, A. Kansal, and J. Liu, “Power budgeting for virtualized
data centers,” in Proc. USENIX Annu. Tech. Conf., 2011, p. 5.

[16] R. Urgaonkar, U. C. Kozat, K. Igarashi, and M. J. Neely, “Dynamic
resource allocation and power management in virtualized data
centers,” in Proc. IEEE/IFIP Netw. Oper. Manage. Symp., 2010,
pp. 479–486.

[17] S. Ghiasi, T. Keller, and F. Rawson, “Scheduling for heterogeneous
processors in server systems,” in Proc. 2nd Conf. Comput. Front.,
2005, pp. 199–210.

[18] S. Liu, S. Ren, G. Quan, M. Zhao, and S.-P. Ren, “Profit-aware load
balancing for distributed cloud data centers,” in Proc. IEEE 27th
Int. Symp. Parallel Distrib. Process., 2013, pp. 611–622.

[19] M. Lin, Z. Liu, A. Wierman, and L. L. H. Andrew, “Online algo-
rithms for geographical load balancing,” in Proc. Int. Green Com-
put. Conf., 2012, pp. 1–10.

[20] S. Kundu, R. Rangaswami, A. Gulati, K. Dutta, and M. Zhao,
“Modeling virtualized applications using machine learning
techniques,” in Proc. 8th ACM SIGPLAN/SIGOPS Conf. Virtual Exe-
cution Environ., 2012, pp. 3–14.

[21] L. Wang, J. Xu, and M. Zhao, “Modeling VM performance inter-
ference with fuzzy MIMO model,” in Proc. Int. Workshop Feedback
Comput., 2012.

[22] N. U. Prabhu, Foundations of Queueing Theory. Norwell, MA, USA:
Kluwer, 1997.

[23] A. Verma, G. Dasgupta, T. K. Nayak, P. De, and R. Kothari,
“Server workload analysis for power minimization using consol-
idation,” in Proc. USENIX Annu. Tech. Conf., 2009, p. 28.

[24] A. Gandhi, M. Harchol-Balter, R. Raghunathan, and M. A.
Kozuch, “Autoscale: Dynamic, robust capacity management for
multi-tier data centers,” ACM Trans. Comput. Syst., vol. 30, no. 4,
pp. 14:1–14:26, Nov. 2012.

[25] M. J. Neely, Stochastic Network Optimization with Application to
Communication and Queueing Systems. San Rafael, CA, USA:
Morgan & Claypool, 2010.

[26] S. Boyd, A. Ghosh, and A. Magnani. (2003). Branch and bound
methods. [Online]. Available: http://www.stanford.edu/class/
ee392o/bb.pdf

[27] M. Lin, A. Wierman, L. L. H. Andrew, and E. Thereska, “Dynamic
right-sizing for power-proportional data centers,” in Proc. IEEE
INFOCOM, 2011, pp. 1098–1106.

[28] Q. Wu, “Making facebook’s software infrastructure more energy
efficient with autoscale,” 2014.

[29] California ISO. [Online]. Available: http://www.caiso.com/
[30] Rubis: Rice University Bidding System. [Online]. Available:

http://rubis.ow2.org/
[31] J. R. Lorch and A. J. Smit, “Improving dynamic voltage scaling

algorithms with pace,” in Proc. ACM SIGMETRICS Int. Conf. Meas.
Model. Comput. Syst., 2001, pp. 50–61.

[32] B. Guenter, N. Jain, and C. Williams, “Managing cost, perfor-
mance and reliability tradeoffs for energy-aware server
provisioning,” in Proc. IEEE INFOCOM, 2011, pp. 1332–1340.

[33] Q. Zhu and G. Agrawal, “Resource provisioning with budget con-
straints for adaptive applications in cloud environments,” IEEE
Trans. Serv. Comput., vol. 5, no. 4, pp. 497–511, FourthQuarter 2012.

[34] S. Chaisiri, B.-S. Lee, and D. Niyato, “Optimization of resource
provisioning cost in cloud computing,” IEEE Trans. Serv. Comput.,
vol. 5, no. 2, pp. 164–177, Apr. 2012.

[35] D.Ardagna, B. Panicucci,M. Trubian, andL. Zhang, “Energy-aware
autonomic resource allocation in multitier virtualized environ-
ments,” IEEE Trans. Serv. Comput., vol. 5, no. 1, pp. 2–19, Jan. 2012.

[36] V. Shrivastava, P. Zerfos, K.-W. Lee, H. Jamjoom, Y.-H. Liu, and
S. Banerjee, “Application-aware virtual machine migration in data
centers,” in Proc. IEEE INFOCOM, 2011, pp. 66–70.

[37] J. Xu and J. A. B. Fortes, “Multi-objective virtual machine place-
ment in virtualized data center environments,” in Proc. IEEE/
ACM Int’l Conf. Green Comput. Commun./Int. Conf. Cyber, Phys.
Social Comput., 2010, pp. 179–188.

[38] H. Liu, C.-Z. Xu, H. Jin, J. Gong, and X. Liao, “Performance and
energy modeling for live migration of virtual machines,” in Proc.
20th Int. Symp. High Perform. Distrib. Comput., 2011, pp. 171–182.

[39] H. Mahmud and S. Ren, “Online resource management for data
center with energy capping,” presented at the 8th Int. Workshop
Feedback Comput., San Jose, CA, USA, 2013.

[40] M. A. Islam, S. Ren, and G. Quan, “Online energy budgeting for
virtualized data centers,” in Proc. IEEE 21st Int. Symp. Model.,
Anal. Simul. Comput. Telecommun. Syst., 2013, pp. 424–433.

Mohammad A. Islam received the BSc degree in
electrical and electronics engineering from the
Bangladesh University of Engineering and Tech-
nology in January 2008. He is currently working
toward the PhD degree in electrical engineering
at Florida International University (FIU), Miami.
He is a member of the Sustainable Computing
Group (SCG) at FIU led by Dr. S. Ren. His
research interests include data center resource
management, cloud computing, and sustainabil-
ity for IT.

Shaolei Ren received the BE, MPhil, and PhD
degrees, all in electrical engineering, from Tsing-
hua University in July 2006, Hong Kong University
of Science and Technology in August 2008, and
University of California, Los Angeles, in June
2012, respectively. Since August 2012, he has
been with the School of Computing and Informa-
tion Sciences, Florida International University,
Miami, as an assistant professor. His research
interests include cloud computing, data center
resource management, and sustainable comput-

ing. He received the Best Paper Award from IEEE International Confer-
ence on Communications in 2009 and from International Workshop on
Feedback Computing in 2013.

A. Hasan Mahmud received the BSc degree in
computer science and engineering from the
Bangladesh University of Engineering and Tech-
nology, Dhaka, Bangladesh, in January 2008. He
is working toward the PhD degree at the School
of Computing and Information Sciences, Florida
International University, Miami. Before joining
Florida International University, he spent
3:5 years in a leading software company in Ban-
gladesh. He is currently working in the Sustain-
able Computing Group, Florida International

University, led by Dr. S. Ren. His current research interests include
resource management in cloud computing, capacity provisioning, and
autoscaling of virtualized resources. He has received the Best Paper
Award in 8th International Workshop in Feedback Computing, 2013.

Gang Quan (M’02-SM’10) received the BS
degree from Tsinghua University, Beijing, China,
the MS degree from the Chinese Academy of
Sciences, Beijing, and the PhD degree from the
University of Notre Dame, Notre Dame, Indiana.
He is currently an associate professor with the
Electrical and Computer Engineering Depart-
ment, Florida International University, Miami. His
research interests include real-time system,
power/thermal aware design, embedded system
design, advanced computer architecture, and

reconfigurable computing. He is the recipient of a National Science
Foundation Faculty Career Award. He also received the Best Paper
Award from the 38th Design Automation Conference. His paper was
also selected as one of the Most Influential Papers of 10 Years Design,
Automation, and Test in Europe Conference (DATE) in 2007. He is a
senior member of IEEE.

432 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 9, NO. 3, MAY/JUNE 2016

http://www.stanford.edu/class/ee392o/bb.pdf
http://www.stanford.edu/class/ee392o/bb.pdf
http://www.caiso.com/
http://rubis.ow2.org/


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


