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Abstract

Data centers, which include both cyber (e.g., servers)
and physical (e.g., cooling units) assets, are notorious for
their energy consumption and carbon footprint. Nonethe-
less, a less-known fact about data centers is that they are
extremely “thirsty” (for cooling), consuming millions of
gallons water each day and raising serious concerns amid
extended droughts. To curtail the surging water footprint,
we adopt a holistic cyber-physical approach and incorpo-
rate the inherent physical characteristic of data center —
time-varying water efficiency — into server provision-
ing and workload management. Specifically, we propose
an online batch job scheduling algorithm, called WACE
(minimization of WAter, Carbon and Electricity cost),
which dynamically adjusts server provisioning to reduce
the water consumption by deferring delay-tolerant batch
jobs to water-efficient time periods. We demonstrate
the effectiveness of WACE via trace-based simulation-
s, showing that WACE reduces 27% water consumption
compared to state-of-the-art scheduling algorithms.

1 Introduction
Ubiquitous Internet services and explosive IT demand
have led to a new wave of constructing gigantic data cen-
ters, accounting for 1.7-2.2% of the total electricity us-
age in the United States as of 2010 [13]. Data centers
consist of both cyber assets (e.g., servers, networking e-
quipment) and physical assets (e.g., cooling systems, en-
ergy storage device). While data centers are notorious for
huge energy consumption due to power-hungry servers,
cooling systems — data centers’ physical assets — are
very “thirsty”, evaporating millions of gallons of water
each day for rejecting server heat. For example, cooling
towers in AT&T’s large data center facilities consume 1
billion gallons of water in 2012, approximately 30% of
the entire company’s water consumption [3]. In addi-
tion, just as they are accountable for carbon emissions
via electricity usage, data centers also consume a vast
amount of offsite water remotely embedded in electric-

Figure 1: Water consumption in data center.

ity generation: e.g., in the U.S., an average of 1.8 liter
of water is evaporated, or “lost”, into the air for just one
kilowatt-hour electricity generation, even excluding the
water-consuming hydropower [29, 32]. A typical water-
cooled data center is illustrated in Fig. 1.

Why is water critical to data centers? As shown in
a recent survey by Uptime Institute [34], cooling towers
are widely employed by large data centers (over 40%),
even though there exist various types of cooling systems
and data centers in low-temperature regions may use cold
outside air for cooling. Water conservation has been be-
come essential for green certifications (being sought by a
majority of large data centers [34]), tax credits [36], and
corporate social responsibility [3]. On the other hand,
water is also crucial for electricity generation (e.g., ther-
moelectricity, nuclear power) [29, 32], which is undeni-
ably essential for data center operation.

Water is not equal to energy. Despite the nexus be-
tween water and energy [29, 32], the existing studies for
minimizing data center energy consumption cannot min-
imize water footprint, because when optimizing for ener-
gy efficiency, they neglect the physical characteristic (in
particular, time-varying water efficiency, details provided
in Section 3) of data center cooling systems and electric-
ity generation. In fact, for reducing water footprint, it is
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not only important to minimize energy, but also crucial
to consider “when” to consume energy.

Prior studies on minimizing electricity cost [26] and
carbon emissions [9] do not lead to water minimization
solutions either, because water efficiency is not in pro-
portion to electricity cost-/carbon-efficiency (e.g., nucle-
ar power incurs little carbon emission but can consume
more than 2L of water per kWh [20, 23]). While using
air economizer (i.e., “free” cooling) and recycled/sea wa-
ter can reduce potable water consumption [10, 21], these
techniques, however, focus on improved “engineering”
and do not apply to all data centers, because they typi-
cally require high upfront costs and/or suitable location-
s/climate conditions.

Software-based approach to water conservation.
We incorporate water footprint as an integral metric into
data center operation. For water conservation, the high-
level intuition is to exploit the inherent physical charac-
teristic of data center onsite cooling towers and offsite
electricity generation (i.e., temporal diversity of water
efficiency): we would like to defer batch workloads to
time periods with better water efficiency while shutting
down some servers during time periods with low water
efficiency. To turn this intuition into reality, a notable
challenge is that it is difficult to determine which time
periods are water-efficient without foreseeing far future
information, due to the time-varying nature of water effi-
ciency, job arrivals, carbon emission rate and electricity
price. A straw man technique can be setting a thresh-
old on water efficiency: process batch jobs only when
data center water efficiency is better than the threshold.
Nonetheless, setting a too high threshold may degrade
the delay performance too much, whereas setting a too
low threshold may unnecessarily waste water.

To address the challenge, we propose a new online
delay-tolerant batch workload management algorithm,
called WACE (minimization of WAter, Carbon and Elec-
tricity cost), to reduce water footprint, while also includ-
ing electricity cost and carbon footprint as an integral
part of the optimization objective. A remarkable feature
of WACE is that it can be implemented online based on
the currently available information, yet we demonstrate
its effectiveness through a traced-based simulation. Our
simulation results show that, compared with state-of-the-
art scheduling algorithms, WACE can reduce the cost by
approximately 20%, while reducing the water consump-
tion by approximately 27%.

2 Model
We consider a discrete-time model by equally dividing
the entire time horizon of interest (e.g., one year) into
K time slots. The duration of each time slot may range
from minutes up to an hour. We focus on facility-level
server provisioning and workload management. Next,

we provide modeling details, which are consistent with
the literature (e.g., [16, 38]).

2.1 Workload

In general, there are two types of workloads in data cen-
ters: delay-tolerant batch workloads (e.g., back-end pro-
cessing, scientific applications) and delay-sensitive inter-
active workloads (e.g., web services or business trans-
actional applications). We focus on scheduling batch
workloads and denote by a(t) = [0,amax] the amount of
batch workload arrivals at time t, quantified in terms of
machine-time [17,35]. Although this widely-used model
cannot capture all the low-level details (e.g., parallelis-
m), it provides a good guidance for dynamically “sizing”
the data center (i.e., how many servers can be turned off)
and hence suffices for our purpose.

2.2 Data center

The data center has r(t) amount of on-site renewable
energy, e.g., by solar panels [1]. There are a total of
M(t) homogeneous servers that are available for process-
ing batch jobs at time t. Servers may run at differen-
t processing speeds and incur different power [18]: we
consider an array of finite processing speeds denoted by
S = {s1, · · · ,sN}, from which a speed s is chosen for
processing batch workloads. Following [8, 18], we ex-
press the average power consumption of a server at time
t as α · s(t)n + p0 , where α is a positive factor and re-
lates the processing speed to the power consumption, n
is empirically determined (e.g., between 1 ∼ 3), and p0
represents the power consumption in idle or static state.
We model the server energy consumption by interactive
workloads as an exogenously-determined value pint(t).
We write the energy consumption by batch workloads as
pbat(t) = m(t) · [α · s(t)n + p0]. Hence, the total server
energy consumption can be formulated as

p(t) = pbat(t)+ pint(t). (1)

Next, given the available on-site renewable energy
r(t), the data center’s electricity usage at time t is
[γ(t)p(t)− r(t)]+, where [ · ]+ = max{·,0} and γ(t) is
the factor of Power Usage Effectiveness (PUE) captur-
ing the non-IT energy consumption.

3 Online Batch Job Scheduling: WACE
In this section, we formulate the cost, present problem
formulation and develop an online algorithm, WACE, to
minimize the total cost via online batch job scheduling.

3.1 Cost

Our work aims to address three “costs”: water consump-
tion, electricity cost and carbon emission.

• Water consumption. As illustrated in Fig. 1, water
is consumed in data center’s onsite physical asset (i.e.,
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Figure 2: Water-carbon efficiency and workload trace.
(a) EWIF and carbon emission rate in California. (b)
Workload trace [12, 16].

cooling tower) and also offsite power plants. To assess
water usage efficiency, an emerging metric, called Wa-
ter Usage Effectiveness (WUE), was recently developed
by The Green Grid [32]. WUE is the ratio of water con-
sumption to IT equipment energy, where water consump-
tion includes both direct and indirect water consumption
(i.e., onsite water for data center cooling and offsite wa-
ter for electricity production).

Direct water: Cooling towers directly consume onsite
fresh water, and direct WUE at time t, denoted by εD(t),
is affected by various factors, such as non-stationary out-
side wet bulb temperature [31]. Hence, as an inheren-
t characteristic of cooling tower, direct WUE exhibits
a time-varying nature. In practice, direct WUE can be
monitored in real-time [7].

Indirect water: Indirect water efficiency is quantified
in terms of Energy Water Intensity Factor (EWIF), which
measures the amount of water consumption per kWh
electricity. Different energy fuel types (e.g., thermal, nu-
clear, hydro) have different EWIFs [19]. As the energy
fuel mixes vary over time due to varying peak/non-peak
demand [9], the resulting average EWIF exhibits a tem-
poral diversity. Fig. 2(a) demonstrates the time-varying
EWIF for California, calculated based on [19] and Cali-
fornia energy fuel mixes [2]. In our study, we calculate
the average EWIF as follows:

εI(t) =
∑k bk(t)× εk

∑k bk(t)
(2)

where bk(t) denotes the amount of electricity generated
from fuel type k, and εk is the EWIF for fuel type k.

Now, we formulate the water consumption at time t as

w(t) = εD(t) · p(t)+ εI(t) · [γ(t) · p(t)− r(t)]+, (3)

where p(t) is the server power, γ(t) is PUE and r(t) is
available on-site renewable energy.
• Electricity cost. We denote the electricity price at

time t by u(t), and hence the electricity cost is e(t) =
u(t) · [γ(t)p(t)− r(t)]+, where [γ(t)p(t)− r(t)]+ is the

data center electricity usage. Note that with the emer-
gence of smart grid, large data centers may have the
market power to influence real-time electricity price, and
if so, the electricity price u(t) can be modeled follow-
ing [37, 39].

• Carbon emission. We calculate the (average) car-
bon emission rate following [9], and Fig. 2(a) demon-
strates the time-varying carbon emission rate for Cali-
fornia. An interesting observation is that carbon emis-
sion efficiency does not align with EWIF (i.e., indirec-
t water efficiency). The difference between carbon ef-
ficiency and water efficiency becomes even greater if
we factor in the time-varying direct WUE for cooling
towers. The same observation also holds for electricity
cost efficiency versus water efficiency. Next, we express
the total carbon footprint of the data center at time t as
c(t) = ϕ(t) · [γ · p(t)−r(t)]+, where we neglect the small
carbon emission by the on-site renewable energy.

3.2 Problem formulation

In this subsection, we first describe our objective and
constraints, and then present the problem formulation.

Objective. We aim to minimize the electricity cost
while incorporating carbon emission and water con-
sumption. We construct a parameterized total cost func-
tion as follows

g(t) = e(t)+hw ·w(t)+hc · c(t), (4)

where hw ≥ 0 and hc ≥ 0 are weighting parameters for
water consumption and carbon emission relative to the
electricity cost. Such a multi-objective formulation is
common in the literature Our optimization objective is
to minimize the long-term average cost expressed as

ḡ = 1
K

K−1
∑

t=0
g(t), where K is the total number of time s-

lots in the period of interest.
Constraints. First, the number of servers to process

batch jobs needs to satisfy

0 ≤ m(t)≤ M(t), (5)

where M(t) is the maximum available number of servers.
The server can only select one of the supported speeds:

s(t) ∈ S = {s0,s1, · · · ,sN}. (6)

We also need to guarantee that batch jobs will be pro-
cessed (without dropping):

ā < b̄, (7)
b(t) = m(t) · s(t), (8)

where ā=
K−1
∑

t=0
a(t) and b̄=

K−1
∑

t=1
b(t) are the long-term av-

erage workload arrival and allocated server capacity, re-
spectively. The constraint (8) states the relation between
processed batch jobs and server provisioning.

3
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Algorithm 1 WACE
1: At the beginning of each time t, observe the data

center state information r(t), εD(t), εI(t), ϕ(t) and
pB(t), for t = 0,1,2, · · · ,K −1

2: Choose s(t) and m(t) subject to (5)(6)(8) to mini-
mize

V ·g(t)−q(t) ·b(t) (12)

3: Update q(t) according to (11).

Problem formulation. We present an offline problem
formulation for batch job scheduling as follows

P1 : min
D

ḡ =
1
K

K−1

∑
t=0

g(s(t),m(t)) (9)

s.t., constraints (5), (6), (7), (8). (10)

Clearly, finding the optimal offline solution to P1 re-
quires complete offline information (i.e., workload ar-
rivals, direct WUE, EWIF, carbon emission rate, on-site
renewables and electricity prices) throughout the entire
time period, which is very challenging, if not impossible,
to obtain in practice. Therefore, we develop an online al-
gorithm below.

3.3 WACE

To enable an online algorithm, we remove (7) and main-
tain a batch job queue that stores unfinished batch jobs.
Specifically, assuming that q(0) = 0, we write the job
queue dynamics as

q(t +1) = [q(t)−b(t)]+ +a(t), (11)

where [·]+ =max{·,0}, a(t) quantifies batch job arrivals,
and b(t) indicates the amount of processed jobs.

Intuitively, when the queue length becomes large, the
data center should increase the number of servers and/or
server speed to reduce the queue backlog to avoid too
much delay. Hence, we incorporate the queue length in-
to the objective function, as described in Algorithm 1. In
(12), the queue length determines how much emphasis
the optimization gives on the resource provisioning b(t)
for processing batch jobs. WACE is purely online and
only requires the currently available information. The
parameter V ≥ 0 in line 2 of Algorithm 1, referred to
cost-delay parameter, acts as a tradeoff control knob: the
larger V , the smaller impact of the queue length on opti-
mization decisions.

While Algorithm 1 appears simple, it is provably-
efficient, even compared to the optimal offline algorith-
m that has future information. In particular, one can
show based on the recently-developed Lyapunov tech-
nique [22] that the gap between the average cost achieved

by WACE and that by the optimal offline algorithm is
bounded, while the batch job queue length is also up-
per bounded, translating into a finite queueing delay. We
omit the proof details due to space limitations.

4 Performance Evaluation
This section presents trace-based simulation studies of a
data center to evaluate WACE.

4.1 Data Sets

We consider a large data center consisting of 300,000
homogeneous servers with a peak power of 64MW. Each
server has 15 discrete speed levels, uniformly ranging
from 1.6GHz to 3GHz. The duration of each time slot is
set to 1 hour and the total simulation period is 1 year. The
default weighting parameters for water consumption and
carbon emission are hw = 15 and hc = 0.15, respectively,
and the PUE is set to 1.2.

• Workloads: We consider that the data center serves
both interactive and batch jobs, which are taken from the
literature [12, 16], respectively. The maximum arrival
rate for the batch jobs and interactive jobs are scaled to
be 80% and 30% of the data center maximum capaci-
ty, respectively, while the maximum combined workload
arrival rate still satisfies the peak data center capacity.
Fig. 2(b) illustrates a snapshot of the traces for 3 days,
normalized with respect to the maximum data center ca-
pacity.

• Others: We use the demand-responsive electricity
prices modeled by the fitted function shown in [37]. We
collect the temperature data in Mountain View, CA, and
fuel mix data of California ISO [2,5] from October, 2012
to September, 2013. We use the EWIF and carbon emis-
sion rates for different electricity generation methods p-
resented in [19,30,33] to calculate the EWIF and carbon
emission rate for the data center. The first 3-day data
for EWIF and carbon rate are shown in Fig. 2(a). Direct
WUE is modeled based on empirical measurement [31].

4.2 Simulation Results

We now compare the performance of WACE with three
benchmarks.

Benchmarks

The three benchmarks are described as follows.
• SAVING: SAVING only optimizes the electricity

cost of the data center and is water- and carbon-oblivious.
It applies WACE with zero weights for water and carbon.

• CARBON: CARBON only optimizes the carbon e-
mission of the data center and is electricity- and water-
oblivious. Essentially, it applies WACE with an “infinite”
weight for carbon.

• ALWAYS: ALWAYS does not use any optimization
and tries to process jobs as soon as possible. This is the
de-factor algorithm used in many data centers.

4
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Figure 3: Comparison between WACE and benchmarks.

Performance comparison

Here, by fixing the cost-delay parameter V , we compare
the performance of WACE with the three benchmark al-
gorithms and show the results in Fig. 3, where the av-
erage value at any time slot t represents the cumulative
average from 0 to t. In Fig. 3(a), we see that WACE
achieves the lowest average total cost among all the algo-
rithms. Compared to WACE, the other three algorithms,
i.e., SAVING, CARBON and ALWAYS, incur a 20%,
24% and 36% higher cost, respectively. The delay per-
formance comparison shows that ALWAYS has the low-
est delay of 1 (due to its greedy nature), both SAVING
and CARBON have an average delay around 3 time s-
lots (i.e., hours), while WACE has a delay close to 4
time slots. The delay figure identifies that WACE is tak-
ing more advantage from the delay tolerance of batch
jobs and hence achieves a lower average total cost by
opportunistically processing batch jobs when the com-
bined cost factor is relatively lower. The water consump-
tion and carbon emission results show that compared to
WACE, the benchmark algorithms, i.e., SAVING, CAR-
BON and ALWAYS, incur more water consumption by
27%, 25% and 38.5% and higher carbon emission by
23%, 7.4% and 39%, respectively. This highlights the
benefit of WACE in terms of sustainability (while the de-
lay performance is compromised to a small and tolerable
extent).

Impact of water and carbon weights

Now, we will study the impact of water weight (hc) and
carbon weight (hw) on the performance of WACE. For
both weighting factors, we start from zero and go up to
the value which makes the water/carbon cost equal to
90% of the total cost, while keeping the other weight at

(a) Average electricity consump-
tion

(b) Electricty Cost

(c) Water Consumption (d) Carbon Emission

Figure 4: Impact of water and carbon weights.

its default value (i.e., hw = 15, hc = 0.15). We show a set
of 3-dimension figures to capture all the possible com-
binations of water and carbon weights within the above
mentioned range, and compare WACE with ALWAYS
(which is the de factor reference algorithm, as current-
ly many data centers are still performance-driven). In all
cases, V is appropriately chosen for WACE to achieve an
average delay equal to 4 hours.

Fig. 4(a) shows that the average electricity consump-
tion remains almost same with varying water and carbon
weights. This is because, the actual energy consump-
tion for processing a fixed amount of workloads remain-
s relatively the same, no matter WACE is trying to re-
duce carbon emission (i.e., high value of carbon weight)
or water consumption (i.e., high value of water weight).
The small variation in electricity consumption, however,
can be attributed to the effect of discrete speed settings,
which let servers run with variable dynamic energy con-
sumption (but still fixed static energy as long as a serv-
er is turned on). From Fig. 4(b), we see that increase
in either water or carbon weight increases the electric-
ity cost. We have already seen that the weighting fac-
tors have little effect on the actual energy consumption,
and hence the increased electricity cost implies the fol-
lowing fact: with increased water and/or carbon weight,
WACE schedules batch jobs to find low water consump-
tion and/or carbon emission due to sustainability con-
siderations, not solely caring about the electricity cost.
Fig. 4(c) and Fig. 4(d) show the decreasing trend of wa-
ter consumption and carbon emission as the correspond-
ing weighting factor is increased. The effect is straight-
forward, as increased weighting factor means a higher
priority in the optimization algorithm.
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Figure 5: Impact of average delay constraint.

Next, we note that WACE has a lower electricity cost,
carbon emission and water consumption compared to
ALWAYS for a wide range of water and carbon weight-
s, although no algorithms (including WACE) can possi-
bly outperform SAVING/CARBON in terms of electric-
ity cost/carbon emissions, as they solely minimize their
respective metric. Nonetheless, Fig. 4 shows that, by ap-
propriately choosing water and carbon weights, we will
get a better performance from WACE than the widely-
employed ALWAYS scheduling algorithm in terms of
electricity cost, water consumption and carbon emissions
(at the expense of increasing delay for batch jobs).

Impact of average delay constraint

Now, we study the relation of total cost and water with
average delay performance. For this purpose, we vary
the delay constraint from 2 to 12 time slots and show the
corresponding cost and water consumption in Fig. 5. We
see in Fig. 5(a) that the average total cost decreases for
all algorithms with increased delay constraint (i.e., a less
stringent delay requirement). In particular, given any de-
lay constraint, WACE has the lowest average total cost.
The performance gap between WACE and other two al-
gorithms (i.e., SAVING and CARBON) increases with
more relaxed delay constraint. ALWAYS is not shown
as its delay is constantly 1 time slot. Fig. 5(b) shows a
similar pattern of the change in water consumption with
varying delay constraints. We can see that WACE has
the lowest water consumption as it incorporates time-
varying water efficiency when making scheduling deci-
sions. Fig. 5 provides us with an important guidance for
choosing an appropriate set of water and carbon weights
so that the data center can run in low cost and/or reduced
water footprints without much impact on the average de-
lay performance.

We also conduct sensitive studies to demonstrate the
robustness of WACE, and interested readers are referred
to the technical report [12].

5 Related Work
In this section, we discuss the related work.
• Data center optimization: Several prior studies

have focused on identifying methods of cost cutting

while ensuring the quality-of-service. For example, find-
ing a balance between energy cost of data center and per-
formance loss through dynamically provisioning server
capacity has been the primary focus of many recent stud-
ies [11, 16]. Other approaches include, but are not lim-
ited to, exploiting the spatio-temporal variation of elec-
tricity prices [15, 25, 26]. Cyber-physical approaches to
optimizing data center cooling system and server man-
agement are also investigated [14, 24]. Electricity cost
can be further reduced when the advantage of geograph-
ical load balancing is combined with the dynamic capac-
ity provisioning approach [?, 26]. Nonetheless, none of
these studies address water consumption in data centers.

• Water reduction in data center: Most of the exist-
ing efforts on water efficiency have been focusing on im-
proved “engineering”: for example, installing advanced
cooling system [4], and using recycled water [10]. Our
study focuses on integrating physical characteristic of
time-varying water efficiency with control of data cen-
ter’s cyber asset (i.e., servers and workloads). More re-
cent study [28] aims at optimizing water efficiency for
delay-sensitive interactive workloads, but it does not ap-
ply to our study, because it neglects carbon footprints and
does not exploit the temporal diversity of water efficien-
cy. Another work [27] preliminarily minimizes water
footprint via resource management, but it neglects many
important factors, such as carbon emissions, demand-
responsive electricity prices, discrete server speed selec-
tion and interactive jobs. Other research that is remote-
ly related to data center water consumption includes [6],
which develops a dashboard to visualize the water effi-
ciency. To our best knowledge, holistically minimizing
electricity cost, carbon emission and water footprint by
leveraging the delay tolerance of batch jobs and temporal
diversity of water efficiency has not been studied by any
prior work.

6 Conclusions
In this paper, we studied water consumption in data cen-
ters and proposed an efficient online batch job schedul-
ing algorithm, WACE, for minimizing the operational
cost (incorporating electricity cost, water consumption
and carbon emission) while bounding the average queue
length. WACE exploits and integrates the physical char-
acteristic of time-varying water efficiency with data cen-
ter’s cyber asset management (i.e., server provisioning
and workload scheduling). We demonstrated the effec-
tiveness of WACE via trace-based simulations, showing
that WACE reduces the water consumption by over 27%
compared to the state-of-the-art solutions, with a negli-
gible delay increase.
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