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In this paper, we study the problem on how to maximize the throughput of a periodic real-time system under a given peak temperature
constraint. We assume that different tasks in our system may have different power and thermal characteristics. Two scheduling
approaches are presented in this paper. The first one is built upon processors that can be in either active or sleep mode. By judiciously
selecting tasks with different thermal characteristics, as well as alternating the processor’s active/sleep mode, the sleep period
required to cool down the processor is kept at a minimum level and, as the result, the throughput is maximized. We further extend
this approach for processors with dynamic voltage/frequency scaling (DVFS) capability. Our experiments on a large number of
synthetic test cases as well as real benchmark programs show that the proposed methods not only consistently outperform the
existing approaches in terms of throughput maximization, but also significantly improve the feasibility of tasks when a more stringent
temperature constraint is imposed.
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1. INTRODUCTION
The continued scaling of semiconductor technology has resulted in an exponential increase of the tran-
sistor density, which causes the escalading power consumption and the rapidly elevated temperature in
the IC circuits. High temperature not only increases the packaging/cooling cost, but also shortens the life
span of a computing system and degrades its performance, robustness, and reliability [Santarini 2005]. It
is reported in [Yeh and Chu 2002] that a temperature increase of 10−15oC can reduce the chip’s lifespan
by half.

In addition, due to the strong leakage temperature dependency, high chip temperature also dramatically
increases the leakage power, which is becoming a major component of the overall power consumption in
the deep sub-micron domain digital IC. As shown in [Liao et al. 2005] that the leakage power consumption
can be 2-3 times higher than the dynamic power for a 65nm design. High power consumption leads to
high temperature, and high temperature in turn increases the leakage power and thus the overall power
consumption. Evidently thermal awareness is becoming a more and more critical issue and needs to be
incorporated into every abstraction level in the design of electronic computing systems [Skadron et al.
2003].
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To tackle the high temperature problem, advanced packaging and cooling solutions are developed.
These solutions are devised at the end of the design cycle based on the nominal peak power consumption
of a chip. Thus, they can be too expensive to be designed for the worst-case scenarios, e.g. 1-3 dol-
lar/watt [Skadron et al. 2003], given the exponentially increased power density. A less expensive method
is to design the packaging and cooling solutions for the average case and use advanced hardware mech-
anisms to dynamically manage the chip temperature during run-time. Several approaches are proposed
such as dynamic voltage/frequency scaling (DVFS), dynamic power down (DPD), task migration [Powell
et al. 2004], fetch throttling [Brooks and Martonosi 2001], clock gating and etc. These mechanisms are
triggered at run time when processor temperature reaches a predefined threshold to control the tempera-
ture. However, due to the reactive nature and the high execution overhead, these techniques often incur
unexpected performance penalties and cannot guarantee that all tasks meet their deadlines, especially
under the circumstances that the thermal emergencies are no longer infrequent events.

In this paper, we are interested in the problem of employing the scheduling technique to maximize
the throughput of a real-time system under a given peak temperature constraint. Two novel approaches
are proposed, one for processors with simple active and sleep mode and the other for more complicated
processors with DVFS capability. There are several distinct differences between our approaches and the
existing works. First, while several existing techniques (e.g. [Chantem et al. 2009; Jayaseelan and Mitra
2008; Zhang and Chatha 2010]) take the leakage/temperature dependency into consideration, they assume
that the leakage changes only with temperature. In fact, leakage power changes not only with tempera-
ture but also with supply voltage [Liao et al. 2005]. As evidenced in [Huang et al. 2010], the leakage
model ignoring the effect of supply voltage can lead to results deviated far away from actual values and
thus produce potentially inaccurate solutions. Second, the existing approaches, e.g. [Jayaseelan and Mitra
2008] and [Zhang and Chatha 2010], assume that the task sequencing and the processor mode change can
only occur at task boundaries. In contrast, we employ the same principle as implied in the M-Oscillating
approach [Chaturvedi, Huang, and Quan Chaturvedi et al.] to sequence tasks and change processor modes
during the task execution. Our experimental results, based on parameters drawn from the 65nm technol-
ogy, show that our methods consistently outperform the existing approaches [Zhang and Chatha 2010] by
over 23.3% and 5.3% in average for processor without and with DVFS capability, respectively.

The rest of this paper is organized as follows. Section 3 introduces the system models followed by
the motivational examples in Section 4. Our proposed scheduling algorithms are discussed in Section 5.
Experimental results are presented in Section 6 and Section 7 concludes this paper.

2. RELATED WORK
Due to the increased leakage power consumption and its strong dependency with the temperature in
the DSM domain, recently, thermal-aware scheduling problems have attracted many research attentions.
Existing research on thermal-aware scheduling, based on their objectives, can be largely grouped into the
following three categories: (i) energy minimization under the timing or temperature constraint, e.g. [Chen
et al. 2006; Jejurikar et al. 2005; Yuan et al. 2006; Bao et al. 2010, 2009; Huang and Quan 2011; Yang et al.
2010]; (ii) temperature minimization under the timing constraint, e.g. [Bansal et al. 2007; Chaturvedi,
Huang, and Quan Chaturvedi et al.; Jayaseelan and Mitra 2008]; and (iii) throughput maximization under
the peak temperature constraint, which the proposed work falls into.

The desire of high performance computing system together with the awareness of many negative effects
of the high system temperature have driven the researchers into the thermal-aware throughput maximiza-
tion problem. Significant efforts have been spent to address the thermal-constrained throughput maxi-
mization problem for single-processor platforms, e.g. [Wang and Bettati 2006; Quan et al. 2008; Chantem
et al. 2009; Zhang and Chatha 2007, 2010], as well as multi-processor platforms, e.g. [Hanumaiah et al.
2009a,b; Liu et al. 2010b; Zhou et al. 2008; Lung et al. 2011; Zhu et al. 2008; Sun et al. 2007; Coskun
et al. 2009].

For single-processor platforms, Wang et al. [Wang and Bettati 2006] proposed an effective two speed
reactive scheme that runs the processor at the maximum speed until it reaches the temperature threshold,
then uses an equilibrium speed to maintain the temperature. Quan et al. [Quan et al. 2008] proposed a
closed-form formula for feasibility analysis for a given peak temperature threshold. For multi-processor
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platforms, Liu et al. [Liu et al. 2010b] proposed a thermal-aware job allocation algorithm which assigns
hot tasks to the cores close to the heat sink by taking advantage of its better heat removing capability.
Cool tasks are assigned to cores far away from heat sink. By doing so, better thermal condition can be
achieved such as a lower peak temperature and less temperature variations. In [Zhou et al. 2008], Zhou
et al. proposed a task scheduling technique based on the observation that the vertically adjacent cores
have strong thermal correlations. This method then jointly considers vertically adjacent cores and forms
them into super-cores. Lung et al. [Lung et al. 2011] presented a fast thermal simulation method, based
on which, a task allocation algorithm is proposed by assigning a given task to a core that can lead to a
minimized peak temperature. In [Coskun et al. 2009], Coskun et al. proposed a thermal-aware scheduling
method called Adapt3D that takes the thermal history into account to reduce the number of hot spot
occurrences. Most of these works do not consider the leakage/temperature dependency in the analysis.
They either ignore the leakage power consumption or simply treat it as constant.

There are some closely related works that have considered the leakage/temperature dependency when
dealing with throughput maximization problems, e.g. [Chantem et al. 2009; Zhang and Chatha 2007,
2010]. Specifically, Chantem et al. [Chantem et al. 2009] proposed to run real-time tasks by frequently
switching between the two speeds which are neighboring to a constant speed. This work targets only at
the scenario when the processor reaches its thermal steady state. Zhang and Chatha [Zhang and Chatha
2007] presented a pseudo-polynomial time speed assignment algorithm based on the dynamic program-
ming approach, followed by a scheme to minimize the total execution latency. To guarantee the peak
temperature constraint, this approach requires the ending temperature of each period not exceeding the
starting temperature, which can be very pessimistic. In addition, the two approaches above assume that
all tasks have the same power characteristics, i.e. they consume the same amount of power as long as
they run at the same processor speed, which might not be true in real world. As shown in [Jayaseelan
and Mitra 2008], the power and thus the thermal characteristics of different real-time tasks can be signif-
icantly different. With this fact in mind, Jayaseelan and Mitra [Jayaseelan and Mitra 2008] proposed to
construct the task execution sequence to minimize the peak temperature. Zhang and Chatha [Zhang and
Chatha 2010] further developed several algorithms to maximize the throughput of a real-time system by
sequencing the task execution for processors with and without DVFS capability. Both works ([Jayaseelan
and Mitra 2008] and [Zhang and Chatha 2010]) assume that the processor can only change its speed at
boundaries of task execution.

In this paper, we address the single-processor throughput maximization problem by considering both
the leakage/temperature and leakage/supply voltage dependencies. Different from [Chantem et al. 2009]
and [Zhang and Chatha 2007], we assume that different tasks have different power/thermal profiles, which
are more practical in real world applications. In addition, by employing more complex intra task schedul-
ing policies, our methods can greatly improve the throughput performance than those proposed in [Zhang
and Chatha 2010]. In what follows, we first introduce the system models we used in this paper. Then, we
present our scheduling algorithms for processors with and without DVFS feature, respectively.

3. PRELIMINARIES
In this section, we briefly introduce our system models, including the task model, processor and its ther-
mal/power model, followed by the problem definition at the end.

Thermal Model: The thermal model used in this paper is similar to the one that has been used in
closely related works (e.g. [Liu et al. 2010a; Chaturvedi, Huang, and Quan Chaturvedi et al.; Zhang and
Chatha 2010; Chantem et al. 2009]) that

RC
dT (t)

dt
= RP(t)− (T (t)−Tamb), (1)

where T (t) and Tamb are the chip temperature and ambient temperature, respectively. P(t) denotes the
power consumption at time t. And R, C are the chip thermal resistance and thermal capacitance, respec-
tively. We can scale T (t) such that Tamb is zero (i.e. by replacing T (t)− Tamb with T (t)) and then we
have
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dT (t)
dt

= aP(t)−bT (t), (2)

where a = 1/C and b = 1/RC.
The Processor: We assume that the processor has one sleep mode and N active modes. Each active

mode is characterized by a supply voltage/frequency pair (vk, fk). A task can only be executed when
a processor operates in the active mode. We assume that a processor can be switched from one mode
to another at any time. However, such a switching can cause a timing penalty of tsw, during which no
computation can take place.

Real-Time Tasks: The task model considered in the paper is a periodic task set consisting of indepen-
dent heterogeneous tasks. The heterogeneous nature of the tasks are manifested in a way that the power
consumptions of different tasks vary significantly even running with the same speed level and at the same
temperature. This is because the power consumptions are strongly depending on the circuit activity [Liu
et al. 2007] and the usage pattern of different functional units when executing different tasks. Specifically,
we introduce a parameter µ, called activity factor, to capture the different switching factors of different
tasks. For a given task, the activity factor µ (ranging in (0,1]) defines how intensively functional units
are being used. For common benchmark tasks, the activity factors can be obtained by using architectural-
level power analysis tools such as Wattch [Brooks et al. 2000]. Similarly, we also define the leakage factor
ξ, which can be used as the scaling factor of the leakage power of a processor when different tasks are
executed.

Power Model: The dynamic power consumption is independent to the temperature and can be formu-
lated as Pdyn ∝ Cload f v2, where Cload is the equivalent load capacitance, f is the clock frequency and v is
the supply voltage. Assuming the working frequency is in proportion to the supply voltage and with the
activity factor taken into consideration, the dynamic power consumption of a processor when executing
the task τi at the kth speed levels can be formulated as

Pdyn(i,k) = µiC2v3
k , (3)

where vk is the supply voltage level, C2 is a constant and µi is the activity factor of task τi.
The leakage power is temperature dependent and can be calculated as Pleak =Ngate ·Ileak ·vk, where Ngate

represents the number of gates and Ileak is the leakage current, which can be formulated by a non-linear
exponential equation as [Liao et al. 2005]

Ileak = Is · (A ·T 2 · e((α·Vdd+β)/T )+B · e(γ·Vdd+δ)), (4)

where Is is the leakage current at certain reference temperature and supply voltage, T is the operating
temperature, Vdd is the supply voltage, A ,B,α,β,γ,δ are empirically determined technology constants.
As leakage current changes super linearly with temperature [Liu and Yang 2010], the leakage power of
the processor when executing the task τi can be effectively estimated as

Pleak(i,k) = ξi(C0(k)vk +C1(k)T vk), (5)

where ξi is the leakage factor, C0(k) and C1(k) are curve fitting constants. Therefore, the overall power
consumption of a processor when executing the task τi at the kth speed level can be modeled as

P(i,k) = ξi(C0(k)vk +C1(k) ·T vk)+µiC2v3
k . (6)

Accordingly, the temperature dynamic when executing task τi can be formulated as

dT (t)
dt

= A(i,k)−B(i,k)T (t), (7)

where A(i,k) = a(ξiC0(k)vk + µC2v3
k) and B(i,k) = b− aξiC1(k)vk (we use Bs for B(sleep), a and b are

defined in equation (2)). Hence, for a given time interval [t0, te], if the initial temperature is T0, by solving
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Fig. 1. (a) If a hot task starts running from the peak temperature limit, i.e. Tmax = 100oC, one has to insert 418ms of idle period to
cool down the processor to a safe temperature which results in a total latency of 918ms. (b) By evenly splitting the task execution
into 5 sections (100ms each) and inserting sleep period before each section, only 12.6× 5 = 63ms of idle period is required to
guarantee the same peak temperature limit, which results in 563ms of total latency.

Fig. 2. (a) Given a cool task τ1 and a hot task τ2, one can run the cool task to cool down the temperature from Tmax, then only
73.4ms of idle interval needs to be inserted before the hot task. (b) If we divide cool task τ1 and hot task τ2 each into 4 sections and
run them alternatively, the sleep period can be totally eliminated while ensuring the same peak temperature constraint.

equation (7), the ending temperature of executing task τi can be formulated as below:

Te =
A(i,k)
B(i,k)

+(T0−
A(i,k)
B(i,k)

)e−B(i,k)(te−t0)

= Tss(i,k)+(T0−Tss(i,k))e−B(i,k)(te−t0), (8)

where Tss(i,k) is the steady state temperature of the task τi at the kth speed level. For a given task, if
Tss(i,k)> Tmax (the maximal temperature limit), we call it a hot task, or cool task, otherwise. Apparently,
for the sleep mode, we have Tss = Tamb.

Based on the models introduced above, the throughput of a real-time system can be maximized when
the latency of executing a task in one period is minimized. Our research problem can be formulated as
follows.

PROBLEM 1. Given a task set Γ = {τ1(t1,µ1,ξ1),τ2(t2,µ2,ξ2), ...,τn(tn,µn,ξn)}, where ti, µi and ξi
are the execution time, activity factor and the leakage factor of task τi, respectively, develop a feasible
schedule such that the latency of executing one iteration of Γ is minimized under the thermal steady state
while ensuring a given peak temperature constraint Tmax.

4. MOTIVATIONAL EXAMPLES
Consider a task τ with an execution time t of 500ms and a steady state temperature Tss of 115oC. By
letting Tmax = 100oC and assuming that the processor has already reached Tmax before task τ starts to run,
then the temperature constraint will definitely be violated if the execution of τ starts immediately.

To prevent the temperature from exceeding Tmax, we can turn the processor into sleep mode and let
the processor to cool down, as illustrated in Figure 1(a). Based on a processor and power model detailed
later in Section 6, the processor has to stay in the sleep mode for 418ms to make sure the temperature
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is dropped to the safe temperature. With this safe temperature, if we continue to execute τ, the peak
temperature constraint, i.e. Tmax, will not be violated.

Alternatively, as shown in Figure 1(b), we can divide the execution of τ equally into 5 sections and
distribute the sleep mode before each of them. In this case, only 12.6ms is required for the processor to stay
in the sleep mode to cool down to the safe temperature (i.e. 94.8oC) for each sub-interval. Consequently,
the processor only needs to spend a total of 12.6× 5 = 63ms in the sleep mode to ensure the maximal
temperature constraint. Shorter idle time implies that the latency of the tasks can be reduced and therefore
helps to improve the system throughput. This example demonstrates that it is more effective to insert
multiple idle intervals inside the task than only at task boundaries to improve the throughput under the
same peak temperature constraint.

Now consider another example as shown in Figure 2 with a cool task τ1 (Tss = 68oC) and a hot task
τ2 (Tss = 115oC). Assume that both tasks have the same execution time (400ms) at its peak performance.
Similarly, we still assume that both the initial temperature and the peak temperature constraint are 100oC.
To reduce the execution latency without violating the peak temperature constraint, one approach is to run
the cool task τ1 first followed by the hot task. However, in this example, running the cool task alone cannot
lower down the temperature enough such that τ2 can immediately start to run without exceeding the peak
temperature. Therefore, a sleep period of 73.4ms has to be inserted before τ2 to further cool down the
processor, which results in a total latency of 873.4ms as shown in Figure 2(a).

In contrast, another approach is to equally divide the execution of τ1 and τ2 each into 4 sub-intervals and
run them alternatively. The schedule and the corresponding temperature curve are shown in Figure 2(b).
Note that, both τ1 and τ2 are successfully executed under the peak temperature without inserting any idle
interval at all. Moreover, the ending temperature is reduced to 96.1oC . This saved temperature budget
(i.e. 3.9oC) could be utilized to further improve the throughput of the ensuing tasks.

It is worth mentioning that in the above examples as well as the following discussions, the mode
switching overhead is only considered in the timing analysis whereas omitted in the thermal analysis
for simplicity. The reason is that the tsw is sufficiently small so that the temperature variation during tsw
is negligible. Moreover, during the mode switching the processor clock is halted that no workload can be
executed. Thus, in fact the chip temperature during tsw is slightly decreasing, if not ignored. Therefore,
if one method can guarantee the temperature constraint without considering the temperature variation in
tsw, it is bound to be feasible if we incorporate tsw into the thermal analysis.

The two examples clearly indicate that, by splitting tasks with different power/thermal characteristics
into multiple sections and execute them alternatively, the throughput can be significantly improved. Sev-
eral questions immediately rise. First, how effective this approach can be, especially when considering
the switching overhead for alternating the task executions? Second, how can we appropriately choose
the number of sections that a task needs to be split to achieve the best performance, i.e. throughput? We
address these problems in the following sections.

5. OUR APPROACH
In this section, we discuss our approach in detail and present our scheduling algorithms. We first consider
a processor with only one active mode, i.e. N = 1, and assume that all tasks are hot tasks with respect
to a given peak temperature constraint. We then consider a task set consisting of both hot and cool tasks.
Finally, we introduce our approach for processors with multiple active modes, i.e. N > 1.

5.1. Sleep Mode Distribution for Hot Tasks
We begin our discussion by assuming that a processor has only one active mode and one sleep mode.
We further assume that all tasks in Γ have Tss > Tmax (i.e. “hot” tasks). When Tss ≤ Tmax, the problem
becomes trivial because no temperature limit violation can occur. Since Γ is a periodic task set and it has
been shown [Chantem et al. 2009; Zhang and Chatha 2010] that the throughput of Γ is maximized when
the ending temperature of each period equals Tmax, we can conveniently make the initial temperature of Γ

equal to the ending temperature of each iteration, and set them to Tmax.
Since all tasks are hot tasks, starting at Tmax, we can only lower down the temperature by inserting idle

intervals. The question is how long we should insert the interval. The shorter the total length of all idle
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intervals is, the smaller the overall latency is and thus the larger the throughput can be. To quantify the
effectiveness of different choices, we introduce a metric called the idle ratio (Θ) which is defined as the
ratio between the time that a processor stays in the sleep mode and the active mode within one period. It
is not difficult to see that the smaller the Θ, the larger the throughput.

From the first motivational example above, we can see that the length of overall idle interval can be
reduced by splitting each task into multiple—i.e. m(m > 1)—sections, and inserting the idle interval in
between. In fact, we found that, when the switching overhead is negligible, the larger the m is, the shorter
the overall idle interval is needed. The observation is formulated in the following theorem.

THEOREM 5.1. Given a task τi, a processor with only one active and one sleep mode, and the maxi-
mal temperature constraint Tmax, assume that Tss(i)> Tmax (since there is only one active mode available,
for simplicity reason, we omit the parameter that represents the speed level, i.e. k, and use Tss(i), B(i)
instead of Tss(i,k), B(i,k) ). Let Θ(m) represent the idle ratio of a feasible schedule when τi is evenly split
into m sections. Assume the transition overhead is negligible. Then,

— The idle ratio Θ(m) is a monotonically decreasing function of m.
— The lower bound of the idle ratio Θmin exists as m approaching to infinity such that

lim
m−>∞

Θ(m) =
B(i)
Bs

Tss(i)−Tmax

Tmax
. (9)

Proof: Assume that when m = 1, to cool down the processor, ts seconds of sleep period has to be added
before τi. To find ts, we first need to find the safe temperature, i.e. Tsa f e(i), of the task given the peak
temperature limit Tmax. For a given hot task, the safe temperature is the one that if the starting temper-
ature is Tsa f e, the ending temperature reaches exactly at Tmax. From temperature dynamic relationship
given in equation (8), by letting the ending temperature Te equal Tmax, we can solve for T0 to obtain the
corresponding safe temperature of task i,

Tsa f e(i) = Tss(i)−
Tss(i)−Tmax

e−B(i)ti
, (10)

Once the safe temperature is available, we can calculate how long the processor needs to stay in the idle
mode to reduce the temperature from Tmax to Tsa f e(i). Again, we can use equation (8). This time, the
initial and ending temperatures are given, the sleep period ts is the length of the interval that we want to
solve for,

ts = − 1
Bs
· ln(

Tsa f e(i)
Tmax

)

= − 1
Bs
· ln(

Tss(i)− Tss(i)−Tmax

e−B(i)ti

Tmax
). (11)

Therefore, the idle ratio of the original task, i.e. when m = 1, can be expressed as

Θ(1) =
ts
ti
=− 1

Bsti
· ln(

Tss(i)− Tss(i)−Tmax

e−B(i)ti

Tmax
). (12)

If the execution of τi is evenly split into m sections, we have ti/m seconds of active period in each
section. The corresponding sa f e temperature, i.e. Tsa f e(i,m), becomes

Tsa f e(i,m) = Tss(i)−
Tss(i)−Tmax

e−B(i) ti
m

. (13)

Based on this safe temperature, we only need to insert ts(m) seconds of sleep period before each active
period that

ts(m) =− 1
Bs
· ln(

Tsa f e(i,m)

Tmax
). (14)
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Now we can formulate the idle ratio Θ as a function of m,

Θ(m) =
ts(m)

ti/m

= − m
Bsti
· ln(

Tsa f e(i,m)

Tmax
)

=
1

Bsti
· ln( Tmax

Tsa f e(i,m)
)m. (15)

To prove Theorem 5.1, we only need to show that the first order derivative of θ(m) is always less than
zero, i.e. dΘ(m)

dm < 0. Then, we have

dΘ(m)

dm
=

1
Bsti
· (

Tsa f e(i,m)

Tmax
)m

· m(
Tmax

Tsa f e(i,m)
)m−1 ·

(−1) ·Tmax ·
dTsa f e(i,m)

dm

Tsa f e(i,m)2 . (16)

On the R.H.S of equation (16), the parameter Bs, ti, m, Tmax, Tsa f e are all greater than zero, therefore the

sign of dΘ(m)
dm depends only upon the term dTsa f e(i,m)

dm . Observing equation (13), it is not difficult to see that
the function Tsa f e(i,m) is monotonically increasing with m. The physical meaning of this equation is that
with larger m (smaller active period), the required safe temperature can be higher to guarantee the same
peak temperature limit. Therefore, we have dTsa f e(i,m)

dm > 0. Hence dΘ(m)
dm < 0 and Θ(m) monotonically

decreases with m is proved.
We next find the lower bound of Θ(m). As m→ ∞, we denote the active time and sleep time in each

division as t ′i and t ′s respectively. Also, the corresponding safe temperature is T ′sa f e(i). Then, based on
equation (11) we have the following relationships,

t ′s = − 1
Bs

ln(
T ′sa f e(i)−0

Tmax−0
), (17)

t ′i = − 1
B(i)

ln(
Tmax−Tss(i)

T ′sa f e(i)−Tss(i)
). (18)

Because a shorter active time requires a higher safe temperature, thus, in the extreme case when m→∞

we have T ′sa f e(i)→ Tmax . Then, the lower bound of Θ can be calculated as

Θmin = lim
T ′sa f e→Tmax

(
1
Bs

ln(
T ′sa f e(i)

Tmax
))/(

1
B(i)

ln(
Tmax−Tss(i)

T ′sa f e(i)−Tss(i)
)). (19)

Apparently, when T ′sa f e→ Tmax, the above limit calculation involves indeterminate term ( 0
0 type). There-

fore, we apply the L’Hopital’s rule [Wikipedia 2013] to find the first derivative of the numerator and
denominator of equation (19) respectively. Then we have

Θmin = lim
T ′sa f e→Tmax

(
dt ′s

dT ′sa f e
)/(

dt ′a
dT ′sa f e

)

=
B(i)
Bs

Tss(i)−Tmax

Tmax
. (20)
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Fig. 3. The procedure to find the appropriate number of m for our sleep time distribution method by considering the non-negligible
transition overhead.

2

Theorem 5.1 implies that the smaller we divide a task, the shorter the idle interval is needed. However,
the impact of distributing idle intervals between the task execution eventually can be saturated as we
increase the number of m.

Based on the above discussion, in order to maximize the throughput of a processor, we should divide
the execution of task τi into as many sub-intervals as possible. However, since there exists a lower bound
of Θ(m), the impact of dividing the task becomes saturated as m increases. Furthermore, as m→ ∞, the
context switching overhead cannot be ignored anymore, no matter how small it can be. The question then
becomes how to determine the optimal “m” for each hot task.

Assuming the overhead for each context switching is tsw, we derive a method, i.e. Algorithm 1, to
find the optimized sleep distribution pattern. Specifically, we want to find the optimized number of sub-
intervals mopt and the sleep time in each sub-interval topt

s . The procedure is illustrated in Figure 3.
As illustrated in Figure 3, starting from Tmax, we first calculate the corresponding ending temperature

of the sleep period by equation (8),

T ′e = Tamb +(Tmax−Tamb)e−Bstsw . (21)

Based on T ′e , the duration of the subsequent active mode is thus

t ′i =−
1

B(i)
ln(

Tmax−Tss(i)
T ′e −Tss(i)

). (22)

Accordingly, we have mopt = b ti
t ′i
c (using floor function to make sure mopt is an integer). Once mopt is

available, the duration of each active sub-interval can be determined, i.e. ti
mopt

. The ending temperature of
the corresponding sleep period can also be obtained as

Te = Tss(i)−
Tss(i)−Tmax

e
−B(i) ti

mopt

. (23)

Finally, the minimized sleep time per sub-interval topt
s can be solved from equation (11) by replacing

Tsa f e(i) with Te in equation (23)

topt
s (i) =− 1

Bs
ln(

Tss(i)(e
−B(i) ti

mopt −1)

e
−B(i) ti

mopt

−1). (24)

The final schedule generated by our method will be topt
s seconds of sleep period followed by ti

mopt

seconds of task execution. Repeating this pattern by mopt times, the latency of task τi can be greatly
reduced while the peak temperature limit is guaranteed.

Although Algorithm 1 targets at a single task, it is applicable to a task set consisting of multiple hot
tasks, since the optimization procedure can be conducted on each individual task separately. For a special
case that a task set consisting of hot tasks with homogeneous power, the task set can be considered as a
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single task with the execution time texe = ∑ ti,(τi ∈ Γ). The corresponding sleep distribution pattern can
be found conveniently.

Algorithm 1 Sleep mode distribution for single hot task
1: SleepDistribution(TASK τi)
2: //Set initial value of topt

s = tsw
3: topt

s = tsw;
4: //Find the ending temperature of sleep mode
5: T ′e (tsw) = Tamb +(Tmax−Tamb)e−Bstsw ;
6: //Find the execution time of the ensuing active period
7: t ′a =− 1

B(i) ln( Tmax−Tss(i)
T ′e (tsw)−Tss(i)

);
8: //Find optimum m
9: mopt = b ti

t ′a
c;

10: //Find the minimal idle interval per division
11: topt

s =− 1
Bs
· ln( T ′e

Tmax
);

12: latency = m · topt
s + ti;

13: return (latency);

5.2. Improving Throughput by Task Switching
In this subsection, we extend our discussion to a task set consisting of both hot and cool tasks. Let us first
consider only two tasks, i.e. one hot and one cool task. Recall that, as implied by the second motivational
example, dividing both tasks into m (m > 1) sections, and alternating the execution of both tasks helps to
improve the throughput. However, this method cannot always guarantee the entire temperature curve stays
below the temperature threshold. Whether the scheme works or not depends on the power consumptions
and durations of the cool task and the hot task, respectively. Therefore, in this subsection, we develop a
systematic way to determine whether a task switching scheme can be applied to a hot/cool task pair, and
if yes, how to find the optimal number of task switching to achieve the maximum throughput.

Given a task pair, i.e. τi and τ j (Tss(i) < Tmax < Tss( j)), both τi and τ j are equally divided into m
divisions and alternatively executed (with τi first). Let the initial temperature be Tmax. The temperature is
first lowered down by running one section of the cool task, then it goes up by running one section of the
hot task. We call the temperature after running the first section of the hot task as the critical temperature,
i.e. Tc. With regard to the critical temperature, we have the following theorem.

THEOREM 5.2. Given a task pair, i.e. τi and τ j, with Tss(i) < Tmax < Tss( j), let both τi and τ j be
equally divided into m sections and alternatively executed with the initial temperature equals Tmax (with
τi first). Then, the peak temperature constraint (Tmax) can be guaranteed iff Tc ≤ Tmax.

Proof: The proof of Theorem 5.2 is straightforward. If Tc > Tmax, then apparently we have temperature
limit violation. In contrast, if Tc ≤ Tmax, we can guarantee that the entire temperature curve stays below
Tmax during the rest of the task execution. This is because if the initial temperature of the second cool task
division (Tc) is less than previous initial temperature Tmax, it results into an even lower starting temperature
for the second hot task division. By repeating this pattern, the entire temperature curve continues to
decrease from Tmax. 2

In addition, a similar theorem as Theorem 5.1 can be established for a task set consisting both hot and
cool tasks as follows.

THEOREM 5.3. Given a task pair, i.e. τi and τ j, with Tss(i) < Tmax < Tss( j), let both τi and τ j be
equally divided into m sections and alternatively executed with the initial temperature equals Tmax (with τi
first). Then the critical temperature w.r.t different m, i.e. Tc(i, j,m), is a monotonically decreasing function
of m if
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m <
B(i)ti

ln(K1
K2
· Tmax−Tss(i)

Tss( j)−Tss(i)
)
, (25)

where K1 = B(i)ti + B( j)t j and K2 = B( j)t j. Tc(i, j,m) is interpreted as the ending temperature after
running the first cool (τi) and hot (τ j) task sections, if they are divided by m sections.

Proof: To prove Theorem 5.3, we need to find the range of m that makes the first order derivative of
Tj(i, j,m) less than zero. Given an initial temperature Tmax, based on equation (8), the ending temperature
of task τi after ti

m seconds of execution can be expressed as

Ti(i, j,m) = Tss(i)+(Tmax−Tss(i))e−B(i) ti
m . (26)

Similarly, the ending temperature of task τ j after t j
m seconds can be formulated as

Tc(i, j,m) = Tss( j)+(Ti(i, j,m)−Tss( j))e−B( j)
t j
m . (27)

After replacing Ti(i, j,m) by equation (26), we have

Tc(i, j,m) = Tss( j)+(Tss(i)−Tss( j))e
−K2

m

+ (Tmax−Tss(i))e
−K1

m . (28)

Find the first order derivative of Tc(i, j,m), we get

dTc(i, j,m)

dm
=

K2

m2 · (Tss(i)−Tss( j))e
−K2

m

+
K1

m2 · (Tmax−Tss(i))e
−K1

m . (29)

Let dTc(i, j,m)
dm < 0 and solve the inequality,

dTc(i, j,m)

dm
< 0,

K1(Tmax−Tss(i))e
−K1

m < K2(Tss( j)−Tss(i))e
−K2

m ,

K1

K2
· Tmax−Tss(i)

Tss( j)−Tss(i)
< e

B(i)ti
m ,

m <
B(i)ti

ln(K1
K2
· Tmax−Tss(i)

Tss( j)−Tss(i)
)
. (30)

Hence, Theorem 5.3 proved. 2

Theorem 5.3 implies that given a cool/hot task pair, increasing m within the bound specified by equation
(30), or

m1
bound = b B(i)ti

ln(K1
K2
· Tmax−Tss(i)

Tss( j)−Tss(i)
)
c, (31)

helps to identify a feasible schedule. When m > m1
bound , the critical temperature tends to increase. More-

over, increasing m also increases the switching overhead. Therefore, the problem becomes how to judi-
ciously choose the appropriate m (m≤m1

bound) to maximize the throughput with non-negligible switching
overhead being considered.

Note that, the non-negligible switching overhead also poses a bound to the choice of m. The total
amount of switching time associated with m task switching is m · tsw. If the original idle interval required
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to cool down a hot task from Tmax to Tsa f e is tcool , we must have m · tsw < tcool in order to further reduce
the latency. Therefore, we set another bound of m that

m2
bound = b tcool

tsw
c. (32)

Then, we have the upper bound of m defined as

mmax = MIN (m1
bound , m2

bound). (33)

The optimal m can be found by sequentially search from 1 to mmax (among positive integers). The
searching is stopped as soon as we find an m so that Tc(i, j,m) ≤ Tmax. Note that, if the ending tempera-
ture at m = mmax still cannot meet the temperature constraint, the task switching scheme fails. Thus, we
first test if Tc(i, j,mmax) < Tmax, and the searching process starts only if the result is true. The hot/cool
task pairing algorithm is depicted in Algorithm 2. Our simulation results show that Tc(i, j,m) decreases
drastically at the first several steps (small m), in most cases, the optimal m can be obtained within 5
iterations.

Algorithm 2 Pairing hot/cool task
1: TaskPairing(TASK τi, TASK τ j)
2: //Find the upper bound of m
3: mmax = MIN (m1

bound , m2
bound);

4: //Find the Tc at m = mmax, check constraint
5: if (Tc(i, j,mmax))≤ Tmax
6: //Find mopt by sequential search from m = 1
7: for k = 1; k < mmax; k++
8: if (Tc(i, j,k))≤ Tmax
9: //If constraint satisfied, get m

10: mopt = k;
11: Latency = mopt · tsw + ti + t j;
12: return (Latency);
13: endif
14: endfor
15: else return 0

We present the proposed throughput maximization algorithm in Algorithm 3, for processors with one
active and one sleep mode. Our algorithm works as follows: First, the tasks are classified into cool tasks
and hot tasks based on their power/thermal characteristics and the given peak temperature constraint.
Then, we put cool tasks in a queue Qc and sort them in the decreasing order of their ending temperatures
(assuming the execution starts at temperature Tmax). The hot tasks are put in Qh and sorted in the increasing
order of their safe temperatures. Starting from the initial temperature Tmax, the task at the beginning
of Qh attempts to pair with the head task in Qc. If this task pair is feasible, the mopt can be obtained
by a sequential search. The latency of the hot/cool task pair is calculated by TaskPairing() defined in
Algorithm 2. Then, both tasks are marked as scheduled and their ending temperature after mopt switchings
needs to be updated as the new initial temperature of the next attempted pairing.

To find the ending temperature, we derived a closed-form formula based on [Quan and Chaturvedi
2010], that if there exists mopt times of task switching between τi and τ j, the ending temperature of the
schedule can be formulated as

Tend(i, j,m) = Tini +
(Tc(i, j,m)−Tini) · (1−Km

3 )

1−K3
, (34)
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Algorithm 3 Throughput maximization without DVFS
1: Input: Γ = {τ1,τ2, ...τn}
2: Initialization: classify all tasks into cool/hot tasks based on Tss;
3: Find Tend for all cool tasks;
4: Find Tsa f e for all hot tasks;
5: Sort cool tasks into Qc in decreasing order of Tend ;
6: Sort hot tasks into Qh in increasing order of Tsa f e;
7: Tini = Tmax;
8: for i=1:length(Qh)
9: for j=1:length(Qc)

10: if (tasks NOT ’scheduled’) && (pairing is feasible)
11: Latency = Latency +TaskPairing(Qc[ j], Qh[i]);
12: Mark Qc[ j] and Qh[i] as ’scheduled’;
13: Update initial temperature: Tini = Tend(i, j,mopt);
14: endif
15: endfor
16: endfor
17: for i=1:length(Qh)
18: if (Qh[i] is not ’scheduled’)
19: Latency = Latency + SleepDistribution(Qh[i]);
20: Mark Qh[i] as ’scheduled’;
21: endfor
22: for i=1:length(Qc)
23: if (Qc[i] is not ’scheduled’)
24: Latency = Latency + tQc[i];
25: Mark Qc[i] as ’scheduled’;
26: endfor
27: Return: (Latency);

where Tini is the initial temperature when the pairing between task i and j starts, and K3 = e−B(i) ti
m−B( j)

t j
m .

Based on the above equation, the ending temperature after mopt times of task switching can be obtained
by replacing m with mopt .

For a given hot task Qh[i], if the attempted task pairing fails with the pth cool task, i.e. Qc[p], it is still
possible to make a feasible combination with the qth (p 6= q) cool task, i.e. Qc[q]. Therefore, the hot task
is left in the Qh until the end of the iteration to get chance to be matched with all cool tasks. Finally, after
the attempted task pairing procedure, if there are still tasks left in Qc or Qh, the hot tasks are executed
with the SleepDistribution() introduced in Section 5.1 and the cool tasks are simply attached to the end
of the final schedule.

The computational complexity of Algorithm 3 mainly comes from pairing hot/cool tasks. Note that,
since mmax is usually very small in practice as explained before, Algorithm 2 has a complexity of O(1).
Therefore, the complexity of Algorithm 3 is O( Qh×Qc) where Qh and Qc represent the length of the hot
and cool task queue, respectively. It is worthy of mentioning that, even though we can find the optimal
m for a pair of hot/cool tasks, Algorithm 3 is a greedy algorithm in nature, since we require both the hot
and cool tasks be split into the same (i.e. m) and equal sections. Also, one hot task can only be paired
with one cool task in Algorithm 3. How to pair a hot task with multiple cool tasks and then split the tasks
accordingly is an interesting problem and will be our future work.

5.3. Improving Throughput by DVFS
In the previous discussion, we assume that the processor has only one active mode. In this subsection, we
adopt a more complex processor model, i.e. a processor with N(N > 1) different active modes, and can
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change its working mode dynamically. Employing DVFS is a double-edged sword in terms of throughput
maximization. On one hand, reducing the supply voltage slows down the task execution and reduces the
throughput. On the other hand, reducing the supply voltage helps to reduce the power consumption and
thus the thermal pressure. How to make an appropriate trade-off needs careful analysis.

Given a hot task τi, if the execution time at the highest speed level k is ti(k), then the corresponding
execution time at (k− l)th mode is calculated by

ti(k− l) =
fk

fk−l
ti(k), (35)

where fk and fk−l are the clock frequencies associated with Vdd level k and k− l, respectively. From
equation (11), the required sleep time of task τi under supply voltage levels k− l can be obtained and
expressed as

ts(i,k− l) =− 1
Bs

ln(
Tss(i,k− l)(e−B(i,k−l)·ti(k−l)−1)

e−B(i,k−l)·ti(k−l)
−1). (36)

Note that if the steady state temperature of task τi at the (k− l)th speed level is equal to or less than
Tmax, then it becomes a cool task and in this case, ts(i,k− l) = 0.

Then, the overall latency of τi at speed level k− l is formulated as

t(i,k− l) = ts(i,k− l)+ ti(k− l). (37)

Our approach to optimize the throughput by adjusting the speed level of a given task is to calculate the
overall latency of the task under all supply voltage levels. Then, the speed level that leads to the minimized
latency, i.e. kopt , will be selected. We can also take advantage of the proposed sleep distribution option to
see if we can further improve the throughput. Given a task, we apply Algorithm 4 to find the proper speed
level for latency minimization.

Algorithm 4 Find the optimal speed level for task
1: Calculate-Speed-Opt(TASK τ)
2: //Find total latency by sleep distribution at the Max.Spd
3: Latency[SpdMax−1]=SleepDistribution(τ);
4: //Optimum speed initially set as the Max.Spd
5: SpdOpt = SpdMax−1;
6: for L = SpdMax−2; L >= 0; L−−
7: if Tss > Tmax
8: Latency[L] = SleepDistribution(τ);
9: else

10: Latency[L] = t(τ,L); Eq. 37
11: endif
12: if Latency[L] < Latency[L+1]
13: SpdOpt = L;
14: endif
15: endfor
16: return (SpOpt);

In Algorithm 4, given a hot task, we first calculate the overall latency by applying our speed distribution
method proposed in Section 5.1 and the speed level is initially set to the maximum speed. Then, we reduce
the speed level one by one and check if there is improvement in terms of overall latency. Finally, the speed
level is returned after we check all available speed levels. Here, we want to emphasize that, whenever we
reduce the speed level, the corresponding steady state temperature of a given task is evaluated because a
hot task might become a cool task. If that is the case, no sleep time is needed and instead, we only need
to set the latency as the actually execution time of the task at that speed level.

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1, Publication date: June 2013.



Throughput Maximization for Periodic Real-Time Systems under the Maximal Temperature Constraint1:15

(a) Theorem 5.1 validation: The execution latency of a task is mono-
tonically decreasing as we increase the number that we divide the task,
i.e. m.

(b) Theorem 5.3 validation: The critical temperature is a monotoni-
cally decreasing function of m when m < mbound , where mbound = 7 in
this example.

Fig. 4. Theorem Validation

6. EXPERIMENTAL RESULTS
In this section, we validate the theorems and show the performance of the proposed approaches through a
set of simulations. Similar to [Quan and Zhang 2009], We built our processor model based on the work
by [Liao et al. 2005] for a processor using 65nm technology. Liao et al. developed an analytical formula
(equation (4)) that can estimate the leakage current with less than 1% error. We used the same formula
to compute the leakage currents for temperature from 25oC to 110oC with step size of 10oC, which were
used to determine curve fitting constants C0(k) and C1(k) in equation (5). The mode switching overhead
is assumed to be 5ms [Yang et al. 2010]. The thermal model is obtained from [hot 2009]. We let the
ambient temperature and the maximal temperature limit to be 25oC and 100oC [Zhang and Chatha 2010],
respectively, unless otherwise specified.
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(a) Processor without DVFS

(b) Processor with DVFS

Fig. 5. Simulation Results: Latency Comparisons for synthetic task sets of different scheduling approaches

6.1. Theorem Validation
To validate the conclusion made in Theorem 5.1, we run a hot task τ1 (ti = 300ms, Tss = 138oC @Vdd =
1.2v). The idle ratio Θ as well as the total sleep time are plotted in Figure 4(a) while we increase m from
1 to mmax. The result conforms to the conclusion in Theorem 5.1 that Θ monotonically decreases with m.
When m = 1 the schedule is identical to the one proposed in [Zhang and Chatha 2010] that 322ms sleep
time is required to cool down the processor before τ1 starts to run (thus Θ = 1.07). As m increases, the
total sleep time and thus the idle ratio are decreasing and reaches the minimal at m = mmax = 21. The final
latency is 310ms compared with 622ms by the approach in [Zhang and Chatha 2010], a 50% reduction.

We next validate Theorem 5.3 by running a cool task τ2 (Tss = 81.7oC) followed by a hot task τ3
(Tss = 115.9oC) without introducing any sleep interval in between. The execution time of the cool task
and hot task are 700ms and 400ms, respectively. By using the proposed task switching method, the critical
temperature, i.e. Tc, is plotted in Figure 4(b). We can see that as m increases from 1 to 30 (an arbitrarily
chosen large number), the critical temperature first drops sharply and then increases slowly. The upper
bound of Tc’s decreasing region is calculated by using equation (25), i.e. 7, in this case. Again, the results
conform with Theorem 5.3 that Tc is a monotonically decreasing with m when m is less then the bound.
From Figure 4(b) we can also see that Tc(2,3,m) drops drastically at the first a few steps and becomes
relatively stable when m is further increased. It implies that, in this particular case, mopt can be found
within 3 rounds of evaluation (since Tmax = 100oC and Tc(2,3,3)< 100oC ).

6.2. Latency Minimization for synthetic task sets
In this subsection, we evaluate the performance of the proposed method in terms of latency minimization.
We randomly created 10 task sets each consisting of 20 randomly generated tasks with execution time (at
the highest speed level) uniformly distributed between [100,1000ms]. For simplicity reason, we assume
that the activity factor µ is equal to its leakage factor ξ, which is evenly distributed between [0.4,1]. Based
on our thermal model, the steady state temperature of these tasks are ranging in between 62oC and 145oC.
For each task set, we specify the ratio of the number of the cool tasks versus the total number of tasks (i.e.
20), and vary this ratio from 0 to 0.9 with 0.1 increment.
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(a) Processor without DVFS

(b) Processor with DVFS

Fig. 6. Simulation Results: Latency Comparisons for real benchmarks of different scheduling approaches

For processor without DVFS, we compare our approach with a heuristic similar to the one proposed
in [Zhang and Chatha 2010], i.e. SEQs. In this case, we set the processor to the highest available speed
level. We recorded the average total latency achieved by both methods for 10 test cases and plotted in
Figure 5(a). We also provide the actual time that the processor spends in task execution as reference. As
shown in Figure 5(a), the proposed method consistently outperforms SEQs in all task sets. Compared with
SEQs, on average our method reduces the latency by 23.3% (up to 35.7%) and reduces the sleep time by
83.2%. From Figure 5(a), we can see that, in terms of overall latency, the performance of the proposed
approach is relatively stable compared with SEQs approach which is sensitive to the amount of cool tasks
available in a given task set. Since in SEQs, if the number of cool tasks are small, one has to insert large
sleep period before each hot task to reduce the temperature. Under the same circumstance, in contrast, the
proposed approach can rely on sleep distribution to reduce the latency even without cool tasks.

Then, we repeat the entire procedure for a DVFS enabled processor and compare our DVFS scheduling
approach with the one similar to SEQd [Zhang and Chatha 2010] (a DVFS approach as well). As shown
in Figure 5(a), the proposed method still achieves much better performance. Specifically, compared with
SEQd , on average, our method reduces the latency and idle time by 5.3% and 46.9%, respectively. We
notice that, given a processor with DVFS capability, the margins of the performance difference between
our approach and SEQd are significantly reduced comparing with the ones for a processor with single
active state. The reason is that, with the support of voltage scaling, the original hot tasks (at the maximal
speed) have a great chance to become cool tasks after speed reduction. As a result, for SEQd approach,
instead of inserting large chunk of sleep period, only a linear increase of execution time is incurred.

6.3. Latency Minimization for real benchmarks
In this subsection, we evaluate the performance of the proposed scheduling algorithms in terms of la-
tency minimization by using real benchmark programs. Specifically, we choose 12 different benchmark
programs from MediaBench [MediaBench 1997] and SPEC2000 benchmark suites [SPEC 2000]. The to-
tal execution cycle/time of the benchmark is individually obtained by Simplescalar [Simplescalar 2004].
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Table I. Representative task set

Task Set Benchmarks ] of HotTasks ] of CoolTasks
T1 galgel,bzip2,crafty,gap,gcc,mcf,twolf,crc,dijkstra,ffti,gsm,qsort 5 7
T2 bzip2,crafty,gap,crc,dijkstra,ffti,gsm,qsort 5 3
T3 galgel,bzip2,crafty,gap,dijkstra,ffti,gsm,qsort 4 4
T4 qsort,ffti,dijkstra,bzip2,galgel,gcc,twolf,mcf 3 5
T5 ffti,qsort,bzip2,crafty,gap,gcc,mcf,twolf 2 6
T6 crc,dijkstra,ffti,gsm,qsort 5 0

We used Wattch [Brooks et al. 2000] to get the averaged power consumption of each program and then
normalize to the highest one to get the activity factor µ of each task.

In our experiment, 6 representative task sets, i.e. T 1−T 6, were tested. Specifically, Task set T 1 includes
all 12 tasks we selected. Task set T 6 contains only hot tasks. Task set T 2−T 5 each consists of 8 tasks
with different hot/cool task ratios.

For each task set, the overall latency achieved by using the proposed methods and the approaches in
[Zhang and Chatha 2010] were collected for processors with and without DVFS capability. We normalized
the overall latency obtained by different methods to the actual execution time of each individual task set
and plotted the results in Figure 6(a) and 6(b).

From Figure 6(a) and 6(b), we can see that without surprise, the results obtained from real benchmark
programs are similar to those of synthetic benchmarks with and without considering DVFS. The pro-
posed algorithms again outperform the base line approaches, i.e. SEQs and SEQd . For non-DVFS case,
compared with SEQs, our method reduces the overall latency by 14.4% on average (up to 21% for T 6
consisting of all hot tasks). On the other hand, for processor with DVFS capability, our method achieves
3% latency reduction on average.

6.4. Feasibility Improvement
We next investigate the performance of the proposed method in terms of feasibility improvement for
a processor without DVFS. Recall that a task is defined as infeasible if the required safe temperature
is below the ambient temperature. We used the same parameters to randomly generate task sets without
specifying the number of cool tasks in each task set. Instead, we set the ambient temperature as the variable
and vary it from 25oC to 65oC with a step size of 10oC. Under each ambient temperature condition, we
generated 10 task sets each including 100 tasks. The average feasibility ratios (number of feasible tasks
divided by 100) achieved by the proposed method and SEQs are recorded and plotted in Figure 7. The
proposed method completes all tasks without infeasible task and thus improves the feasibility ratio by
21% on average compared with SEQs.

7. CONCLUSIONS
We study the problem on how to maximize the throughput of a periodic real-time system under a given
peak temperature constraint. We incorporate the interdependency between the leakage, temperature and
supply voltage into analysis and assume that different tasks in our system may have different power and
thermal characteristics. Two algorithms are presented in this paper. The first one is built upon processors
that can be either in active or sleep mode. By judiciously selecting tasks with different thermal charac-
teristics as well as alternating the processor’s active/sleep mode, the sleep period required to cool down
the processor is kept at a near optimum level and as the result, the throughput is maximized. We fur-
ther extend this approach for processors with dynamic voltage/frequency scaling (DVFS) capability. Our
experiments on large amount of synthetic as well as real benchmark programs show that the proposed
methods not only consistently outperform the existing approaches in terms of throughput maximization,
but also significantly improve the feasibility of tasks when a more stringent temperature constraint is
imposed.
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