
Copyright © 2012 American Scientific Publishers
All rights reserved
Printed in the United States of America

Journal of
Low Power Electronics
Vol. 8, 378–393, 2012

Leakage Aware Scheduling on Maximum Temperature

Minimization for Periodic Hard Real-Time Systems

Huang Huang∗, Vivek Chaturvedi, Guanglei Liu, and Gang Quan
Department of Electrical and Computer Engineering, Florida International University, Miami, FL, 33174, USA

(Received: 28 January 2012; Accepted: 8 June 2012)

Over the years, the chip power density has been increased exponentially due to the increasingly
complicated circuit architecture as well as the continuous miniaturization of the transistor feature
size. High power consumption has directly translated to high chip temperature which adversely
affects the system performance/reliability and increases the cooling/packaging costs. Moreover,
high chip temperature also elevates the leakage power consumption, which further augments the
overall power consumption and thus the operating temperature. In this paper, we incorporate the
leakage/temperature dependency as well as the nonnegligible transition overhead into analysis and
present a novel real-time speed scheduling algorithm, namely M-Oscillating, that can reduce the
peak temperature of a system when executing a hard real-time periodic task set. We analytically
prove the correctness of the proposed algorithm based on a processor model that can effectively
account for the leakage/temperature relationship. We validate the effectiveness of the proposed
algorithm by comparing it with the existing work on two platforms. The first platform is a C/Matlab
based chip-level thermal/power simulator, and the second platform is a more practical one built
based on a desktop computer running SPEC CPU2000 benchmark programs. The experimental
results obtained from both platforms demonstrate the superiority of the proposed M-Oscillating
scheme over the existing approach in peak temperature reduction and feasibility improvement.

Keywords: Peak Temperature Reduction, Real-Time Systems, Scheduling, Leakage,
Thermal Aware.

1. INTRODUCTION

The human’s pursuing of high performance computing sys-

tems has driven the semiconductor technology into the

deep sub-micron era. The increasingly complicated circuit

architecture together with the continuous shrinking of tran-

sistor feature size has resulted in an exponential increase

of power density. The escalated power consumption of IC

circuits has directly translated to an elevated temperature

which not only raises the packaging/cooling costs, but also

degrades the performance/reliablity of the computing sys-

tem and shortens its life span.34�40 Moreover, due to the

strong leakage/temperature dependency, the soaring chip

temperature drastically increases the leakage power, which

is becoming a major contributor of the overall power con-

sumption in the deep sub-micron domain. According to

Ref. 23, the leakage power can increase by 38% when chip

temperature rising from 65 �C to 110 �C. High power con-

sumption leads to high temperature which in turn, hikes

∗Author to whom correspondence should be addressed.

Email: hhuan001@fiu.edu

up the leakage power and thus the overall power consump-

tion. Consequently, a thermal aware design technique will

become ineffective if the interdependency between leak-

age and temperature is not properly addressed in the deep

sub-micron domain.

Previous researches have studied the tempera-

ture/leakage interdependency in depth. Based on the

circuit-level analysis, a complex relationship between the

leakage and temperature is established by Refs. [23, 43],

where the leakage current is formulated as

Ileak = Is · �� ·T 2 · e���·Vdd+��/T �+� · e��·Vdd+��� (1)

where Is is the leakage current at certain reference

temperature and supply voltage, T is the operating tem-

perature, Vdd is the supply voltage, ����������� are

empirically determined technology constants. By using

these relations, many practical power and thermal anal-

ysis tools were developed, for example the “HotSpot,”2

which was developed to simulate and study the proces-

sor thermal phenomena at the architectural-level. Though

Eq. (1) is suitable for developing tools like “HotSpot,” it

378 J. Low Power Electron. 2012, Vol. 8, No. 4 1546-1998/2012/8/378/016 doi:10.1166/jolpe.2012.1200

Huang et al. Leakage Aware Scheduling on Maximum Temperature Minimization for Periodic Hard Real-Time Systems

is fairly complexto be used for system-level analysis, such

as real-time feasibility analysis or scheduling technique

development.

In this paper, we investigate how to apply the real-time

scheduling techniques to solve the peak temperature mini-

mization problem. We present a novel real-time scheduling

technique, i.e., the M-Oscillating algorithm, that oscillates

the high and low processor speeds to minimize the peak

temperature when executing a periodic task set. We have

formally proved the effectiveness of the M-Oscillating
algorithm based on a processor power model that can cap-

ture the leakage/temperature dependency with reasonable

accuracy, and at the same time, is simple enough and thus

suitable for the system-level analysis. Moreover, we extend

the ideal M-Oscillating algorithm into non-ideal scenar-

ios by incorporating a more realistic non-negligible tran-

sition overhead model into the algorithm. To evaluate the

effectiveness of the proposed algorithm, we compare our

approach with an existing scheduling scheme on two dif-

ferent platforms. The first platform is a simulation plat-

form built based on a theoretic chip-level thermal model

and a linear leakage/temperature dependency model. To

make our thermal analysis more concrete, we develop a

more practical hardware platform based on a desktop com-

puter running the Linux OS. The run-time temperature

can be captured by reading the on-chip thermal sensor

when executing various benchmark programs, i.e., SPEC

CPU2000 benchmark.1 The experimental results obtained

from both platforms confirm the superiority of the pro-

posed M-Oscillating over existing scheduling methods in

terms of peak temperature minimization and feasibility

improvement. Moreover, our work clearly shows that a

more rigorous and analytical system level analysis of

leakage/temperature relationship is not only possible but

necessary.

The rest of the paper is organized as follows. Section 2

discusses the related work. The system models we used

in this paper are described in Section 3. The pro-

posed M-Oscillating scheduling algorithm is introduced

in Section 4. Section 5 introduces the non-negligible

transition overhead model and extends the proposed

M-Oscillating scheduling into the non-ideal scenarios.

Experimental results obtained from both the chip-level

C/Matlab simulator and the real platform are presented in

Section 6. Finally, Section 7 concludes the paper.

2. RELATED WORK

In this paper, we study the problem on how to apply

the real-time scheduling technique to minimize the peak

temperature when executing a period hard real-time task

set. As related work, there are a number of papers pub-

lished on either minimizing the overall energy consump-

tion (e.g., Refs. [5, 6, 11, 17, 21, 38]) or maximizing the

system throughput (e.g., Refs. [8, 15, 16, 19, 31, 35, 36, 42])

under the maximum temperature/energy constraint. Specif-

ically, Bao et al.6 proposed to distribute the idle interval

wisely when scheduling a task graph such that the temper-

ature of the processor can be effectively “cooled down”

and thus reduce the leakage power consumption. In this

approach, the leakage power is modeled using a piece-

wise linear function of temperature under different supply

voltage levels. Yang et al.38 proposed a quadratic leakage

model to simplify the leakage/temperature dependency.

Based on this model, they proposed a “pattern-based”

scheduling approach to periodically switch the processor

between the active and dormant modes and reduce the

energy. Huang and Quan17 derived a closed-form energy

calculation equation based on which they proposed an

energy minimization scheduling method by extending the

concept of M-Oscillating approach in Ref. [9]. Wang

et al.35�36 studied the maximum delay when scheduling

periodic tasks based on a two-speed scheduling policy,

i.e., using the highest processor speed to run the tasks until

the temperature reaches the acceptable maximum temper-

ature, and then using an equilibrium processor speed to

maintain the temperature. In contrast, by separating the

silicon die and the package in the RC thermal model, Rao

et al. 31 analytically derived an exponential speed throt-

tling curve to maintain the processor die temperature at

the given upper bound value once reached. Chantem et al.8

proposed to run real-time tasks by frequently switching

between the two speeds which are neighboring to a con-

stant speed whose stable temperature is the given peak

temperature. Hanumaiah et al.16 proposed a zero-slack pol-

icy to maximize the performance of a multi-core platform.

The binary search is used to find the optimal speeds and

voltage levels. A simplified Hotspot-like thermal model is

derived to reduce the computation time so that the algo-

rithm can be effectively implemented during run-time. By

exploiting the frequency scaling together with the task

migration, Hanumaiah et al.15 further proposed an on-

line algorithm to maximize the throughput of a multi-core

real-time system under a given thermal constraint. Zhang

and Chatha42 developed several algorithms to maximize

the throughput of a real-time system by sequencing the

execution of a task set consisting of tasks with hetero-

geneous power/thermal characteristics for processors with

and without dynamic voltage/frequency scaling (DVFS)

capability.

There are extensive work published recently on how

to optimize the operational temperature by using real-

time scheduling techniques. Specifically, in Refs. [4, 10],

the researchers aimed to identify the upper bound

of the maximum temperature. Some others (e.g.,

Refs. [3, 4, 7, 13, 32, 39]) intended to minimize the peak

temperature or to guarantee the given maximum tempera-

ture constraints when scheduling a task set or a single copy

of a task graph. In Ref. [24], a thermal-aware schedul-

ing algorithm with stochastic workloads is presented to

J. Low Power Electron. 8, 378–393, 2012 379

Leakage Aware Scheduling on Maximum Temperature Minimization for Periodic Hard Real-Time Systems Huang et al.

effectively avoids thermal emergencies by reducing peak

temperature. Kumar et al.22 derived a stop-and-go algo-

rithm to schedule a task graph with just enough idle period

so that the peak temperature is minimized while ensuring

the makespan constraint. Jayaseelan et al.20 studied how

to appropriately order the execution sequence of a task

set consisting of tasks with different thermal profiles to

minimize the peak temperature. Ahmed et al.3 investigated

how to minimize the peak temperature when running a

sporadic task system scheduled according to EDF. They

assume that the processor can work only in two running

modes: active and idle modes, and they proposed to run

tasks by periodically setting the processor to active mode

and idle mode. Our research differs from these work not

only by real-time task models, but more importantly, the

leakage/temperature dependency formulations.

As we discussed in Section 1, the leakage/temperature

dependency plays an important role in the study of thermal

aware scheduling problem. Therefore, the techniques (such

as those in 4) assuming no or constant leakage power con-

sumption become ineffective. Some other researchers (e.g.,

Ref. [5, 41]) applied Eq. (1) directly to capture the leak-

age/temperature dependency for the scheduling analysis.

There are also a number of other approaches that formulate

the temperature-constrained problem as a convex optimiza-

tion problem.7�26�27 Even though the leakage/temperature

dependency (Eq. (1)) may be incorporated into the convex

optimization formulation,26 its computational complexity

is very high. Therefore, these approaches can only work

at a system level when the design solution space is small.

Efforts have been made to simplify the leak-

age/temperature dependency model. Liu et al.25 showed

that using linear models is an effective way for accu-

rate leakage estimation over the operating temperature

ranges in real-time ICs. A number of researches (such as

Refs. [8, 12, 14] adopt a simple temperature/leakage depen-

dency model that assumes the leakage current changes

linearly only with temperature. However, leakage power

changes not only with temperature but also supply voltage

as well (i.e., Eq. (1)). As evidenced in Ref. [18], the leak-

age model ignoring the effect of supply voltage can lead

to results deviated far away from the actual values. Quan

et al.29 introduced a leakage/temperature model that is

more practical. According to their model, a processor has

different running modes, and leakage varies at different

rates with temperature when running at different modes.

Based on this model, they presented several conditions

to verify the feasibility of a given real-time schedule.

However, how to develop a feasible and effective schedule

for a given periodic task set under the maximum tempera-

ture constraint remains the problem. In what follows, we

develop a novel scheduling technique that can effectively

reduce the maximum temperature when considering the

interdependency between the leakage, temperature and the

supply voltage levels.

3. PRELIMINARIES

The real-time system we considered in this paper consists

of a number of real-time tasks with the same period (such

as the MPEG decoder). We can thus simplify this model by

assuming that the real-time system has only one periodic

task. The period of the task is denoted as p and its worst-

case workload is c. We further assume that the deadline

of the task equals its period.

We use the RC thermal model that has been widely used

in similar research (e.g., Refs. [8, 12, 17, 29]). Specifically,

assuming a fixed ambient temperature (Tamb), let T �t� be

the temperature at time t, then we have

RC
dT �t�

dt
+T �t�−RP�t�= Tamb (2)

where P�t� denotes the power consumption (in Watt) at

time t, and R, C denote the thermal resistance (in oC/W)

and thermal capacitance (in J /oC). We can then scale T
such that Tamb is zero and get

dT �t�

dt
= aP�t�−bT �t� (3)

where a= 1/C and b = 1/RC.

The processor considered in this paper is assumed to be

able to run in n different modes, with each mode char-

acterized by �vi� fi�, i = 0�1� 	 	 	 � n− 1. where vi is the

supply voltage and fi is the working frequency in mode i.
We assume that vi < vj , if i < j . We also assume that the

processor speed is in proportion to the supply voltage. In

what follows, we use processor speed and supply voltage

interchangeably.

Given a supply voltage level v, the power consumption

is composed of dynamic power Pdyn and leakage power

Pleak, i.e., P = Pdyn+Pleak. According to Ref. [23], the leak-

age power consumption can be effectively estimated as,

Pleak = Ngate · Ileak ·v (4)

where Ngate represents the number of gate, v is the voltage

level, and Ileak can be formulated by using Eq. (1). As

leakage current changes super linearly with temperature,25

we can simplify Pleak and define the leakage power when

the processor running in mode k as

Pleak�k�= C0�k�vk+C1�k�Tvk (5)

where C0�k� and C1�k� are constants. As we can see from

Eq. (5), the leakage power depends on both the supply

voltage and the temperature.

The dynamic power consumption is independent of the

temperature and can be formulated as Pdyn = C2v

k�
 > 0�.

We choose
 = 330 in this paper.a Hence the total power

consumption at processor mode k is

P�k�= C0�k�vk+C1�k� ·Tvk+C2v
3
k (6)

aChoosing other values will not change the conclusions in this paper.

380 J. Low Power Electron. 8, 378–393, 2012

Huang et al. Leakage Aware Scheduling on Maximum Temperature Minimization for Periodic Hard Real-Time Systems

Based on Eqs. (3) and (6), when the processor running in

mode k, the temperature dynamics can be formulated as

dT �t�

dt
= A�k�−BT �t� (7)

where

A�k�= a�C0�k�vk+C2v
3
k� (8)

B�k�= b−aC1�k�vk (9)

Given an interval �t0� te�, let the starting temperature be

T0, by solving Eq. (7), the ending temperature can be for-

mulated as below:

Te =
A�k�

B�k�
+ �T0 −

A�k�

B�k�
�e−B�k��te−t0�

= G�k�+ �T0 −G�k��e−B�k��te−t0� (10)

where

G�k�= A�k�

B�k�
(11)

In what follows, we use Ak, Bk and Gk to denote A�k�,
B�k� and G�k�, respectively when there is no confusion.

Equations (6) to (10) form the basis of our system level

thermal analysis with leakage/termpature interdependency

taken into account.

To ease our presentation, we define a typical two-speed

schedule, which will be used and referenced in the follow-

ing discussions.

Fig. 1. Different two-speed schedules.

Definition 3.1 A two-speed schedule Ŝ�S1� S2� within an
interval �t0� tp� is a feasible schedule that uses speed S2

during interval �x1� x2��t0 ≤ x1 < x2 ≤ tp�, and S1 for the
rest of the interval �t0� tp�, or vice versa.

Figure 1 shows a few variations of the two-speed sched-

ules, based on which we formulate several important

theorems.

Theorem 3.2 Given a hard real-time periodic task ,
the maximal temperature when the processor reaches its
thermal steady state does not depend upon the initial
temperature.

proof. Let us consider a two-speed schedule shown in

Figure 2(A), where S2 and S1 denotes the high speed and

low speed, respectively. t1 and t2 are the duration of S1

and S2 in the first period.

Based on Eq. (10), the temperature at t = x and t = tp
can be formulated as

Tx =G2 + �T0 −G2�e
−Bt2� Ttp =G1 + �Tx −G1�e

−Bt1

From Ref. [29], the maximal temperature at the steady

state can be formulated as

Tmax = max�T �
x � T �

tp �

where,

T �
x = G2�1− e−Bt2�

1− e−Bt2
=G2 (12)

J. Low Power Electron. 8, 378–393, 2012 381

Leakage Aware Scheduling on Maximum Temperature Minimization for Periodic Hard Real-Time Systems Huang et al.

Fig. 2. Two-speed schedules within a given period p.

T �
tp = G1�1− e−Bt1�+G2�1− e−Bt2�e−Bt1

1− e−B�t1+t2�
(13)

As can be seen from Eqs. (12) and (13), no matter the

maximal temperature occurs at t = x or t = tp, it does not

depend upon the initial temperature T0. Similar conclusion

can be drawn by using other two-speed schedules. �

Based on Theorem 3.2, we can show that the peak tem-

peratures of any two-speed schedule at the thermal steady

state are the same.

Fig. 3. Stable temperature for two-speed schedule.

Theorem 3.3 Given a real-time periodic task and two
processor speeds, the maximal temperatures at the thermal
steady state with any two-speed schedules using the same
speed levels and interval lengths are the same.

Proof. Consider a periodic two-speed schedule as shown

in Figure 3(A). From Ref. [29], we can calculate the steady

state temperature or the peak temperature as:

Tmax =
G2�1− e−Bt2�+G1�1− e−Bt1�e−Bt2�

1−K
(14)

382 J. Low Power Electron. 8, 378–393, 2012

Huang et al. Leakage Aware Scheduling on Maximum Temperature Minimization for Periodic Hard Real-Time Systems

where

K = e−B�t1+t2�

From Figure 3(B), we can see that the periodic

two-speed schedule is the same as the one shown in

Figure 3(A) but with an initial temperature Ta. Similarly

all other periodic two-speed schedules can be considered

as the one shown in Figure 3(A) with an initial shift.

Therefore, they all have the identical peak temperature but

different initial temperature. Since we have already shown

in Theorem 3.2 that the steady state temperature does not

depend on the starting temperature, therefore, the conclu-

sion in Theorem 3.3 is also proved. �

4. PEAK TEMPERATURE MINIMIZATION

In this section, we present a novel scheduling approach

that can effectively reduce the peak temperature when

scheduling a periodic task set. Since high power consump-

tion directly translates to high temperature, one intuitive

idea is to employ existing power minimization scheduling

techniques to solve the peak temperature minimization

problem. However, thermal-aware scheduling problems

have distinct characteristics in comparison with the power-

aware scheduling problem as illustrated below.

Consider a simple two-speed schedule, as illustrated in

Figure 4, that can finish a real-time job at its deadline.

Note that, the dynamic energy consumption by the two-

speed schedule remains constant as long as the length of

each individual speed level keeps unchanged, i.e., t1 and

t2 are constants. However, the temperature at t = 1 varies

with the value of x. The following theorem captures this

relationship.

Theorem 4.1 Given a two-speed schedule as shown in
Figure 4, and letting S2 > S1, if for any S2 > S1, we
have G2 > G1 and B1�B2 > 0 (with Gk, Bk defined in
Eqs. (11) and (9), respectively), then the temperature at
t = 1, i.e., Te, is a monotonically increasing function of x.

Proof. Based on Eq. (10), let Ti and Ta be the temperature

at time instants i and a, respectively. For simplicity, let the

Fig. 4. A two-speed schedule that uses speed s1 for t1 time units and

speed s2 for t2 time units. t1 + t2 = 1.

starting temperature be zero, then we have

Ti =G1�1− e−B1x�

Ta =G2 + �Ti−G2�e
−B2t2

(15)

and the ending temperature is:

Te =G1 + �Ta−G1�e
−B1�t1−x� (16)

Replacing Ta with Eq. (15) we get,

Te =G1�1− e−�B1t1+B2t2��+ �G2 −G1��1− e−B2t2�e−B1�t1−x�

(17)

Therefore,

d�Te�

dx
= d

dx
�G1�1− e−�B1t1+B2t2��

+ �G2 −G1��1− e−B2t2�e−B1�t1−x��

= �G2 −G1��1− e−B2t2�B1e
−B1�t1−x� (18)

From Eq. (18), it is not difficult to see that if G2 > G1

and B1�B2 > 0, the first order derivative, i.e., d�Te�/dx,

is always greater than zero which indicates that Te is a

monotonically increasing function of x. �

For the two-speed schedule illustrated in Figure 5,

we have similar conclusion which is summarized in

Theorem 4.2.

Theorem 4.2 Given a two-speed schedule as shown in
Figure 5, and letting S2 > S1, if for any S2 > S1, we have
G2 >G1 and Bk > 0 (with Gk, Bk defined in Eq. (11) and
(9), respectively), then the temperature at t = 1, i.e., Te, is
a monotonically decreasing function of x.

Proof. Based on Eq. (10), let Ti and Ta be the temperature

at points i and a, respectively. For simplicity let the starting

temperature be zero, we have

Ti =G2�1− e−B2x�

Ta =G1 + �Ti−G1�e
−B1t2

(19)

the ending temperature is given by:

Te =G2 + �Ta−G2�e
−B2�t1−x� (20)

Fig. 5. A two-speed schedule that uses speed S2 for t1 time units and

speed s1 for t2 time units. t1 + t2 = 1.

J. Low Power Electron. 8, 378–393, 2012 383

Leakage Aware Scheduling on Maximum Temperature Minimization for Periodic Hard Real-Time Systems Huang et al.

Again, replacing Ta with Eq. (19) and simplifying we have,

Te =G2�1− e−�B2t1+B1t2��− �G2 −G1��1− e−B1t2�e−B2�t1−x�

(21)

Therefore,

d�Te�

dx
= d

dx
�G2�1− e−�B2t1+B1t2��

− �G2 −G1��1− e−B1t2�e−B2�t1−x��

= −�G2 −G1��1− e−B1t2�B2e
−B2�t1−x� (22)

if G2 >G1 and Bk > 0, we have d�Te�/dx always less than

zero and thus Te monotonically decreases with x. �

Theorems 4.1 and 4.2 indicate that the temperature at

the end of a schedule depends on the locations where dif-

ferent running modes are applied. They help to reduce the

temperature at the end of a schedule, but do not neces-

sarily reduce the maximum temperature within the entire

interval. In addition, Theorems 4.1 and 4.2 are applied for

a single job rather than a periodic task set. In what fol-

lows, we introduce a novel scheduling algorithm, i.e., the

M-Oscillating algorithm, to minimize the peak temperature

for a periodic hard real-time task. We assume that when a

processor runs a periodic task, the temperature will not run

away and eventually reach a steady state. The temperature

steady state is defined as follows.

Definition 4.3 When running a periodic task with period
p, the temperature of a processor is called to be stable if
for a given threshold, i.e., 0 < �� 1,

�T ��n+1�p�−T �np��< �� (23)

where n≥ 0� n ∈ Z, and T �t� is the temperature at t.

Our M-Oscillating algorithm works as follows: given a

two-speed schedule, we divide the high speed interval and

the low speed interval evenly into m sections and run the

processor with the low speed and high speed alternatively.

Apparently, an M-Oscillating schedule will complete the

same workload as the original two-speed schedule in one

period and thus guarantee the deadline. At the same time,

the maximum temperature can be significantly reduced as

stated in the following theorem.

Theorem 4.4 Let S�t� be a two-speed schedule and
S̃�m� t� be the corresponding M-Oscillating schedule. Also
let Tmax�S� represent the maximum temperature that a pro-
cessor can reach when running schedule S. If for any v2 >
v1, we have G2 >G1 and Bi > 0� i = 1�2, then
• Tmax�S̃�m� t��≤ Tmax�S�t��,
• Tmax�S̃�n� t��≤ Tmax�S̃�m� t�� if m≤ n.

Proof. From the conclusion presented in Theorem 3.3, we

know that when the processor reaches the thermal steady

state, the peak temperature achieved by any two-speed

schedule is the same. Therefore, to prove this theorem,

we consider a step-up schedule i.e., the case shown in

Figure 6.

For S̃�m� t� shown in Figure 6, base on Eq. (10), the

temperature at t = x and t = y can be formulated as

Tx =G1�1− e−B1t1/m�� Ty =G2 + �Tx −G2�e
−B2t2/m

From 29, when the temperature reaches the thermal steady

state, we have

Tmax�S̃�m� t��= T �
y = Ty +

Ty

1−Ky

Ky

where

Ky = e−��B1t1+B2t2��/m

Expand T �
y , we have

T �
y = �G2 −G1�

1− e−�B2t2�/m

1− e−�B1t1+B2t2�/m
+G1

Let B2t2 =m�m+1�p and B1t1 =m�m+1�q, p�q > 0 and

let

f �m�= 1− e−mp

1− e−m�p+q�

Then,

Tmax�S̃�m� t�� = �G2 −G1�f �m+1�+G1

Tmax�S̃�m+1� t�� = �G2 −G1�f �m�+G1

To show that f �m+1� > f �m�, we only need to note that

f �m�= 1− e−p

1− e−�p+q�
·

∑m−1
i=0 e−ip∑m−1

i=0 e−i�p+q�

Also,∑m−1
i=0 e−ip∑m−1

i=0 e−i�p+q�
<

∑m
i=0 e

−ip∑m
i=0 e

−i�p+q�

⇐= e−m�p+q� ·
m−1∑
i=0

e−ip < e−mp ·
m−1∑
i=0

e−i�p+q�

⇐= e−mq ·
m−1∑
i=0

e−ip <
m−1∑
i=0

e−i�p+q�

⇐=
m−1∑
i=0

e−ip <
m−1∑
i=0

e−ip · e�m−i�q

Fig. 6. A two-speed schedule and its corresponding m-oscillation

schedule.

384 J. Low Power Electron. 8, 378–393, 2012

Huang et al. Leakage Aware Scheduling on Maximum Temperature Minimization for Periodic Hard Real-Time Systems

Since i ≤ m, e�m−i�q ≥ 1, we have f �m+ 1� > f �m�, and

therefore

Tmax�S̃�m� t�� > Tmax�S̃�m+1� t�� � (24)

Theorem 4.4 implies that, by dividing the high speed

interval and the low speed interval each into m equal

sections and running them alternatively, an M-Oscillating
schedule can always reduce the maximum temperature

when a processor reaches its thermal steady state. The

larger the m is, the lower the maximum temperature

becomes.

Note that the conclusion in Theorem 4.4 and its

proof are contingent upon two important assumptions,

i.e., (i) G2 >G1 for any v2 > v1 and (ii) Bi > 0� i = 1�2.

It is difficult, however, to analytically validate these two

assumptions since the temperature invariants C0 and C1 in

Eqs. (9) and (11) depend on the technology parameters.

In addition, C0 and C1 are obtained through curve-fitting

rather than from a closed analytical formula. In Section 6,

we validate these assumptions empirically. Moreover, it is

worth mentioning that Theorem 4.4 ignores the voltage

transition overhead which can be very significant in cer-

tain scenarios. When the overhead is non-negligible, con-

ceivably, there exists an optimal value of m to balance

the impact of the transition overhead and the potential

of M-Oscillating algorithm in peak temperature reduction.

How to identify this optimal value by incorporating transi-

tional model such as that proposed in Ref. [8] is an interest-

ing problem and will be discussed in the following section.

5. THE M-OSCILLATING CONSIDERING
TRANSITION OVERHEAD

In this section, we introduce how to incorporate the non-

negligible transition overhead into the M-Oscillating tech-

nique. In the real world scenario, when the processor speed

switches, there is a short time interval (on the order of hun-

dreds of microseconds8) during which the clock is halted.

As a result, the amount of time the processor spends on

useful computation is reduced. To compensate the perfor-

mance loss during clock halting, one intuitive way is to

increase the high or low processor speeds. However, this

is not always feasible (e.g., when the high speed is the

maximum processor speed). Furthermore, it increases the

dynamic energy consumption and makes the tradeoff anal-

ysis more complicated. In our case, we simply change

the duration of high and low speed subject to the work-

load constraint, i.e., extend the high speed interval and

reduce the low speed interval. This sets an upper bound

of m, beyond which the predefined workload cannot be

completed.

We assume that the clock will be halted for a short inter-

val during each speed transition. In contrast to the ideal

two-speed schedule shown in Figure 6, the non-ideal two-

speed schedule is plotted in Figure 7(A). Apparently, in

the non-ideal scenario, a performance loss of �S1 +S2� ·
is imposed due to one speed transition. Thus, in order to

counteract this performance loss, one have to extend the

high speed interval while reduce the low speed interval

by the same time frame � as shown in Figure 7(B). The

amount of time � taken from low speed can be calcu-

lated as

�= �S1 +S2� ·
S2 −S1

(25)

From Eq. (25), one can easily notice that � is a posi-

tive number. Therefore, the number of transition m cannot

be arbitrarily increased since the low speed duration t1 in

the ideal two speed schedule has to be sufficiently large

to accommodate m speed transitions. Then, the maximum

allowable m can be calculated by letting m · ��+ � ≤ t1.

Thus,

m≤ t1
�+

Evidently, the term t1/��+� is not necessarily an integer.

Therefore, in order to ensure the workload constraint, we

set the upper bound of m as

mMax = � t1
�+

�

(A)

(B)

(C)

Fig. 7. Non-ideal two-speed schedule and its corresponding M-
Oscillating schedule.

J. Low Power Electron. 8, 378–393, 2012 385

Leakage Aware Scheduling on Maximum Temperature Minimization for Periodic Hard Real-Time Systems Huang et al.

Based on Eq. (25), the modified non-ideal two-speed

schedule can be found and the reduced low speed interval

t′1 and extended high speed interval t′2 are calculated by

t′1 = t1 − −�

t′2 = t2 − +�

By adopting the similar concept, we can find the cor-

responding non-ideal M-Oscillating schedule for a given

ideal two-speed schedule. The procedure is shown the

Lemma 5.1.

Lemma 5.1 Given an ideal two speed schedule with low
speed S1 and high speed S2 running for t1 and t2, respec-
tively, for any value of m from 1 to mMax, the correspond-
ing non-ideal M-Oscillating schedule can guarantee the
same workload if the adjusted low speed sub-interval tm1
and high speed sub-interval tm2 are calculated by Eqs. (26)
and (27).

tm1 = t1
m

− −� (26)

tm2 = t2
m

− +� (27)

Now the problem becomes how to identify the opti-

mal value of m that leads to the lowest peak temperature.

Consider the example illustrated in Figure 7(C). Based

on Ref. [29], when the temperature reaches the thermal

steady state, the maximal temperature of a non-ideal M-
Oscillating schedule T NI

max�S̃�m� t�� can be expressed as

T NI
max�S̃�m� t��= T �

y′ = Ty′ +
Ty′

1−Ky′
Ky′ (28)

where Ty′ can be expressed as a function of m based on

Eq. (10) and can be calculated iteratively once the temper-

ature of previous speed transition points, i.e., Ta, Tx′ and

Tb, are available. Specifically,

Ty′ =G2 + �Tb −G2�e
−B2t

m
2

Tb =G0 + �Tx′ −G0�e
−B0

Tx′ =G1 + �Ta−G1�e
−B1t

m
1

Ta =G0 + �1− e−B0 �

(29)

where tm1 and tm2 are obtained from Eqs. (26) and (27).

And Ky′ can be computed by

Ky′ = e−�B1tm
1 +B2tm

2 +2B0�� (30)

where � is defined in Eq. (25).

Once the formula of the maximal temperature is avail-

able, one straightforward way to find optimum m is to set

the first order derivative of Eq. (28) equal to zero and solve

for m. However, this method can be challenging not only

because the complexity of the equation, but also for the

discrete nature of Eq. (28), since the solution of the opti-

mum m is not necessarily an integer. Instead, we adopt a

searching algorithm28 that can locate optimum m in linear

time based on Eq. (28).

The algorithm is summarized in Algorithm 1. Initially,

the interval of uncertainty is set between 1 and the upper

bound of m. We choose two points, i.e., Lb and Ub in step

4 and 5, respectively, that equally divide the initial inter-

val to evaluate the function T NI
max�S̃�Lb� t�� such that after

each iteration the interval of uncertainty can be reduced

by at least one third. Thus, new interval of uncertainty
bound L and R are updated and new evaluation points are

calculated during each iteration. The loop will stop until

the interval of uncertainty is small enough to locate single

integer value which is the optimum value of m.

Algorithm 1 Searching for optimum m
1: Input: the upper bound of m: mMax;

2: Initialize uncertainty interval: L= 1, R=mMax;

3: while (1) do
4: Lb = �L+1/3× �R−L��;

5: Ub = �L+2/3× �R−L��;

6: if T NI
max�S̃�Lb� t�� < T NI

max�S̃�Ub� t��; then
7: L= L;

8: R= Ub;

9: else if T NI
max�S̃�Lb� t�� < T NI

max�S̃�Ub� t��; then
10: L= Lb;

11: R= R;

12: else if T NI
max�S̃�Lb� t��== T NI

max�S̃�Ub� t��; then
13: L= L;

14: R= Ub;

15: end if
16: if R−L≤ 2 then
17: Break;

18: end if
19: end while

6. EMPIRICAL STUDIES

In this section, we use experiments to test the effectiveness

of the proposed M-Oscillating technique. Two platforms

were developed for this purpose. The first one was imple-

mented in C/Matlab based on a chip-level power/thermal

model we introduced in Section 3 while the second one

was developed based on a real desktop PC platform.

6.1. Experimental Results from Chip Level Simulator

In this subsection, we discuss several experiments that we

have performed on a simulation environment that uses sys-

tem models discussed in Section 3. First, we validated the

processor model as well as the assumptions upon which

386 J. Low Power Electron. 8, 378–393, 2012

Huang et al. Leakage Aware Scheduling on Maximum Temperature Minimization for Periodic Hard Real-Time Systems

the algorithms are developed. We then evaluated the per-

formance of both ideal and non-ideal M-Oscillating by

comparing it with an existing work, i.e., the two-speed

scheduling method 36, in terms of the feasibility and peak

temperature.

6.1.1. Verification of the Processor Model and
Assumptions

To verify the processor model and assumptions made in

Theorems 4.1 to 4.4, we built our processor models based

on the work by Ref. [23] using the 65 nm technology from

the UC Berkeley’s BSIM device model. Specifically, we

used Eq. (1) to compute the leakage currents for temper-

ature from 40 �C to 110 �C with a step size of 5 �C, and

supply voltage from 0.60 Volt to 1.30 Volt with a step

size of 0.05 V. These results were used to determine the

temperature invariants C0�k� and C1�k� in Eq. (5) through

curve-fitting.

We set the frequency for each mode according to the

formula23

f = 1

delay
= �v−vt�

�

vT �
×4	2824×1014 (31)

with � = 1	19, � = 1	2, vt = 0	3, and T was set to the

highest temperature as 100 �C, and we also normalized

the frequency with the highest equal to 1.0. To obtain the

leakage power consumption, we set Ngate in Eq. (4) to be

106. The dynamic power consumption (and thus constant

C2) was determined based on experimental results reported

in Ref. [23] on a common benchmark gcc. For thermal

constants, we considered two different options, the first

one is the conventional air cooling with Rth = 0	8 K/W,

Cth = 340 J/K34 and the second one is the water spray-

cooling with Rth = 0	067 K/W, Cth = 340 J/K.33 The ambi-

ent temperature was set to 25 �C.

Figure 8 compares the estimated leakage power con-

sumptions by using two different leakage/dependency

models (namely, Models 1 and 2) with the “actual leak-
age,” which is calculated based on Eq. (1). Model 1 is the

leakage/temperature model used in this paper that assumes

the leakage varies with both temperature and supply volt-

age. Model 2, used in Refs. [8, 12, 14], assumes that the

leakage changes with the temperature linearly but not with

the supply voltage. As we can see from Figure 8, the lin-

ear approximated leakage power consumptions obtained

by Model 1 match very closely to that calculated based

on Eq. (1), with the maximum relative error no more than

5.5%. On the other hand, when using Model 2, the leakage

approximation errors can be very significant: the actual

leakage power consumption can be as high as 4.5 times

or as low as 29% of the estimated results, depends on the

applied supply voltage level.18

We have also examined the assumptions made in

Theorems 4.1 to 4.4. Figure 9 and Figure 10 plot the char-

acteristics of function Gk and Bk under different supply

Fig. 8. Linear approximation of leakage power consumptions.

voltages and thermal constants. As illustrated in these two

figures, we can clearly see that, under both representative

cooling options (i.e., Rth = 0	8 J/�C and Rth = 0	067 J/�C),

function Gk is a positive and monotonically increasing

function of the supply voltage, and function Bk is also a

positive function for the given settings. These results vali-

date assumptions made in Theorems 4.1 to 4.4.

6.1.2. Performance Evaluation

We next study the performance of M-Oscillating schedule

by comparing with the existing approach with and without

transition overhead consideration. The proactive schedul-

ing method introduced in Ref. 12 intends to minimize the

task response time under the given maximum tempera-

ture constraint. However, it is developed based on a pro-

cessor model with continuously changeable speed, and to

extend the proposed scheduling technique to a more prac-

tical processor model (i.e., with discrete supply voltages)

as we used in this paper is far from a trivial and straight-

forward effort. Therefore, we compare our approach with

a more general one, i.e., the reactive two-speed schedul-

ing approach introduced in Ref. [36]. The reactive two-

speed schedule36 works as follows. For a given maximum

temperature constraint, the processor works at the highest

speed until it reaches the maximum temperature. Then, it

runs at an equilibrium speed to maintain the temperature.

First, we want to investigate the feasibility of the

two scheduling policies, i.e., the M-Oscillating schedule

and the reactive two-speed schedule, without transition-

overhead being considered, under the same maximum

temperature constraint and workload. Note that for a

given maximum temperature and a processor with discrete

speeds, the equilibrium speed is not necessarily one of the

available speeds. We therefore fixed the equilibrium speed

to one of the available speeds of the processor, and then

used the stable temperature as the maximum temperature

J. Low Power Electron. 8, 378–393, 2012 387

Leakage Aware Scheduling on Maximum Temperature Minimization for Periodic Hard Real-Time Systems Huang et al.

Fig. 9. Function G�v� with different temperatures and thermal

resistances.

constraint to test both scheduling policies. This experimen-

tal setting is clearly favorable to the reactive two-speed

scheduling approach.

We randomly generated real-time tasks with period of

2000 seconds and workload evenly distributed within the

range of [0, 100%], with 100% indicating that the proces-

sor has to run at the maximum speed all the time (i.e.,

100%) to complete the workload. We divided the task

workload into 10 equal intervals, i.e., 0–10%, 10–20%

and so on, and 100 random tasks were generated within

each interval. We assume that the processor has five active

modes i.e., from 0.9 V to 1.3 V, with step size of 0.1 V

and one shut-down mode. The equilibrium voltages were

set to be 0.9 V and 1.0 V, and the corresponding max-

imum temperature, calculated using Eq. (7), were set as

the maximum temperature constraint. Table I lists the val-

ues of the equilibrium voltages and their corresponding

maximum temperatures. For M-Oscillating schedule, we

first calculated the constant speed that can guarantee the

workload. Then, the two neighboring speeds were used to

Fig. 10. Function B�v� with different temperatures and thermal

resistances.

construct our M-Oscillating schedule algorithm described

in Section 4.

Figure 11 presents the feasibility differences between

reactive two-speed scheduling and M-Oscillating schedule

with m = 1, 2, 5, 10 and 15. When the randomly gener-

ated workload is very low, all schedules are feasible; and

when the workload is high, none of the can successfully

schedule the task. Therefore Figure 11 only depicts the

workload regions where differences exist in terms of feasi-

bility among different scheduling choices. From Figure 11,

we can see that M-Oscillating schedule shows higher fea-

sibility as compared to reactive two-speed schedule. The

larger the m is, the higher the feasibility can be.

Table I. The equilibrium speeds and the corresponding maximum

temperatures.

VEquil�V � Tmax�
�C)

0.90 41.9

1.0 49.3

388 J. Low Power Electron. 8, 378–393, 2012

Huang et al. Leakage Aware Scheduling on Maximum Temperature Minimization for Periodic Hard Real-Time Systems

Fig. 11. Feasibility comparison between the M-Oscillating scheme and

the reactive two-speed scheme under different maximum temperature

constraints.

At the equilibrium voltage of 0.9 V, the feasibility

achieved by the reactive two-speed scheduling policy is

very close to the M-Oscillating scheduling algorithm.

However, when m is increased to 15, the feasibility

improves, (e.g., 25% when m = 1 and 39% when m =
15). At the equilibrium voltage 1.0 V, we can observe the

feasibility improvement of about 10%, by M-Oscillating
schedule algorithm to the two-speed scheduling algorithm.

Even though a task can be feasibly scheduled, a higher

peak temperature is not desirable. We therefore collected

the maximum temperatures of all feasible tasks under dif-

ferent scheduling policies and compared their averaged

maximum temperatures as shown in Figure 12. Figure 12

demonstrates that the M-Oscillating schedule algorithm is

very effective in reducing the peak temperature. Note that

at the equilibrium voltage of 0.9 V, the average maximum

temperature of reactive two-speed schedule is 41.7 �C, and

is reduced to 37.6 �C when m = 1 for the M-Oscillating
scheduling algorithm. It is further reduced to 31.5 �C for

m = 15. At equilibrium voltage 1.0 V, the average maxi-

mum temperatures is reduced by 11.3 �C.

We next performed the same performance evaluation

experiments as discussed above, but with transition over-

head being considered. We assume that the transition

overhead are 0.01, 0.1 and 1.0 second, respectively. All

the other settings were similar to the previous experi-

ments. Figure 13 presents the feasibility results for the

reactive two-speed and the M-Oscillating schedule with

m= 1, 2, 5, 10 and 15, for different transition overheads.

In Figure 13, when the overhead time = 0.01 s, the fea-

sibility results are almost similar to the results that we

obtained without considering transition overhead. When

the overhead time = 0.1 s, the feasibility for every sched-

ule decreases, but the trend of feasibility remains the same

Fig. 12. Average maximum temperature comparison between the

M-Oscillating scheme and the reactive two-speed scheme.

i.e. the larger the m, the higher the feasibility is. How-

ever, when the overhead time = 1.0 s, the M-Oscillating
schedule fails to follow the trend. The feasibility increases

from m= 1 to 5, but for higher values, it start to decrease.

For instance, when m= 1 the feasibility is 24% and when

m = 5 the feasibility increases to 26%. But as we further

increase the value of m, the feasibility starts to decrease

due to the excessive transition overhead. To further ver-

ify this behavior, the equilibrium voltage and temperature

constraint were set to 1.0 V and 49.3 �C, respectively. In

Figure 14, we can see that the feasibility trend is the same

as observed in Figure 13. The feasibility increases up-to

84% for m= 2 and it decreases to 54% when m= 15.

We also collected the maximum temperatures of all fea-

sible tasks under different scheduling policies, by assum-

ing that the transition overhead time is 1 s. From Figure 15,

we observe that even after considering the transition over-

head, the M-Oscillating algorithm is very effective in

reducing the peak temperature. At the equilibrium voltage

of 0.9 V, the average maximum temperature of reactive

two-speed schedule is 41.7 �C, and is reduced to 37.8 �C

Fig. 13. Feasibility comparison between the M-Oscillating scheme and

the reactive two-speed scheme under different Transition-overhead at

Maximal temperature constraint 41.9 �C.

J. Low Power Electron. 8, 378–393, 2012 389

Leakage Aware Scheduling on Maximum Temperature Minimization for Periodic Hard Real-Time Systems Huang et al.

Fig. 14. Feasibility comparison between the M-Oscillating scheme and

the reactive two-speed scheme under different Transition-overhead at

Maximal temperature constraint 49.3 �C.

when m = 1 for the M-Oscillating scheduling algorithm.

It is further reduced to 31.6 �C for m = 15. At equilib-

rium voltage 1.0 V, the average maximum temperatures is

reduced by 11 �C.

6.2. Experimental Results from Real
Hardware Platform

To study the effectiveness of the M-Oscillating schedul-

ing algorithm, we tested it under a more practical sce-

nario. In this subsection, we first introduce the setup of our

hardware platform. We then compare the M-Oscillating
scheduling algorithm with the reactive two-speed schedule

on this platform.

6.2.1. Testbed

Our hardware platform is built based on a Dell Preci-

sion T1500 Desktop workstation with an Intel i5 750

Fig. 15. Average maximum temperature comparison between the M-
Oscillating scheme and the reactive two-speed scheme including

Transition-overhead.

Fig. 16. Overall structure of hardware platform.

quad core microprocessor running Linux operating sys-

tem with kernel version of 2.6.23. The overall structure

of our platform is shown in Figure 16. The i5 micro-

processor is integrated with the DVFS capability and can

adjust the working frequency of each individual core. The

fan speed is set to a fixed value to guarantee the cooling

constant unchanged during the experiments. The proces-

sor temperature information were collected from the on-

chip Digital Thermal Sensor (DTS). A system hardware

monitoring tool Lm-sensors has been used to monitor the

frequency, the fan speed, and the die temperature during

run-time.

To implement the DVFS, we adopted the CPUfreq kernel

package which is a Linux kernel subsystem that provides an

interface between the user level frequency-controlling pol-

icy and the underlying frequency-controlling mechanisms.

The DVFS transition overhead is approximately 20 �s

which is acceptable for most computing systems.37

Fig. 17. Different temperature curves of M-Oscillating with different m.

390 J. Low Power Electron. 8, 378–393, 2012

Huang et al. Leakage Aware Scheduling on Maximum Temperature Minimization for Periodic Hard Real-Time Systems

Fig. 18. Peak temperature of the M-Oscillating with different number of m.

The run-time temperature information is obtained based

on the on-chip digital thermal sensors which store the

temperature information in the Model Specific Register
(MSR). The resolution of our on-chip thermal sensor is

1 �C, and the time for operating system to reflect a change

of 1 �C is around 1 second and thus our temperature sam-

pling period is set to 1 second.

6.2.2. Performance Evaluation

We first want to verify that when the transition overhead

is not negligible, there exists a minimal peak tempera-

ture of the M-Oscillating schedule when different m is

applied (i.e., the non-ideal scenario). We used the SPEC

CPU2000 benchmark suite in our experiments to get the

credible and comparable experiment results. We selected

benchmarks gzip� vpr�gcc�mcf �bzip2 from integer opera-

tion and win�mgrid�applu�mesa and galgel from floating

operation. Each set of experiment is executed at the same

initial temperature. The experimental results from differ-

ent benchmark programs are very close in terms of the

relationship between peak temperature and the number of

speed transition m. Therefore, we only show the exper-

iment result from benchmark galgel. We can see from

Figure 18 that initially when m is small, the peak temper-

ature drops as we increase the m. Then, as we continue

to increase m, the peak temperature starts to rise which

conforms to our theoretical conclusion.

We next studied if the M-Oscillating schedule can out-

perform the existing reactive two-speed schedule36 in the

practical test platform we developed. We assume the real-

time task is to run benchmark galgel alone. The execu-

tion time was obtained by running galgel at the highest

speed. To study the algorithm performance under differ-

ent workload densities, we set the ratio of execution time

and deadline to be varied from 50% to 100%. The peak

temperature limit is set to 57 �C which is the steady state

temperature of running galgel at 2.5 GHz. Table II lists the

experimental results by the M-Oscillating algorithm and

the reactive two-speed scheduling method. Note that the

M-Oscillating algorithm can always meet the deadline. It

fails when the temperature constraint is violated. On the

other hand, the reactive two-speed schedule can always

meet the temperature constraints. It fails when it cannot

complete the workload by the deadline.

From Table II, we can see that the reactive two-speed

schedule reaches and maintains the peak temperature under

each test case. However, it fails 3 in 11 test cases. On

the other hand, the M-Oscillating algorithm fails only one

time among the total 11 test cases. The only one scenario

that the M-Oscillating fails to guarantee the peak tempera-

ture constraint is when the workload density equals 100%

which leaves no slack for us to apply the M-Oscillating
approach. At the same time, we can see that M-Oscillating

Table II. Feasibility comparison of two schedules.

Reactive two-speed M-Oscillating

Density Deadline Feasible? Peak temp. Feasible? Peak temp.

100% 301.779s N 57 �C N 59 �C
95% 317.662s N 57 �C Y 57 �C
90% 335.310s N 57 �C Y 56 �C
85% 355.034s Y 57 �C Y 54 �C
80% 377.224s Y 57 �C Y 52 �C
75% 402.372s Y 57 �C Y 50 �C
70% 431.113s Y 57 �C Y 49 �C
65% 464.275s Y 57 �C Y 47 �C
60% 502.965s Y 57 �C Y 46 �C
55% 548.689s Y 57 �C Y 45 �C
50% 603.558s Y 57 �C Y 44 �C

J. Low Power Electron. 8, 378–393, 2012 391

Leakage Aware Scheduling on Maximum Temperature Minimization for Periodic Hard Real-Time Systems Huang et al.

algorithm can feasibly schedule the “task” with much

lower peak temperature, as much as 13 �C lower than

the reactive two-speed. Table II demonstrates clearly that

M-Oscillating algorithm can outperform the reactive two-

speed schedule.

7. CONCLUSIONS

With the continuous scaling of IC technology, the interde-

pendency of temperature and leakage exacerbates not only

the power/energy minimization problem but also the ther-

mal management problem. In this paper, we incorporate

the leakage/temperature dependency and non-negligible

transition overhead into the real-time scheduling analysis

that aims at minimizing the peak temperature. We develop

a new scheduling technique, i.e., the M-Oscillating, that

can effectively reduce the peak temperature when execut-

ing a hard real-time periodic task set. We validate the

effectiveness of the proposed algorithm by comparing with

an existing approach on two platforms, i.e., a software

simulation platform and a more practical desktop plat-

form. The experimental results obtained from both plat-

forms demonstrate that the proposed M-Oscillating scheme

can greatly outperform the existing approaches in terms of

peak temperature reduction and feasibility improvement.

References

1. Spec2000 benchmarks, http://www.spec.org.

2. Hotspot 4.2 temperature modeling tool, University of Virgina, page

http://lava.cs.virginia.edu/HotSpot (2009).
3. M. Ahmed, N. Fisher, S. Wang, and P. Hettiarachchi, Minimizing

peak temperature in embedded real-time systems via thermal-aware

periodic resources. Sustainable Computing: Informatics and Systems
(SCIS) 1, 226 (2011).

4. N. Bansal, T. Kimbrel, and K. Pruhs, Speed scaling to manage

energy and temperature. Journal of the ACM 54, 1 (2007).
5. M. Bao, A. Andrei, P. Eles, and Z. Peng, On-line thermal aware

dynamic voltage scaling for energy optimization with frequency/

temperature dependency consideration, DAC (2009), pp. 490–495.

6. M. Bao, A. Andrei, P. Eles, and Z. Peng, Temperature-aware idle

time distribution for energy optimization with dynamic voltage scal-

ing, DATE (2010), pp. 21–27.

7. T. Chantem, R. P. Dick, and X. S. Hu, Temperature-aware scheduling

and assignment for hard real-time applications on mpsocs, DATE

(2008), pp. 288–293.

8. T. Chantem, X. S. Hu, and R. Dick, Online work maximization under

a peak temperature constraint, ISLPED (2009), pp. 105–110.

9. V. Chaturvedi, H. Huang, and G. Quan, Leakage aware scheduling

on maximal temperature minimization for periodic hard real-time

systems, ICESS (2010), pp 1802–1809.

10. J. Chen, C. Hung, and T. Kuo, On the minimization fo the instan-

taneous temperature for periodic real-time tasks, RTAS (2007),
pp. 236–248.

11. J.-J. Chen, H.-R. Hsu, and T.-W. Kuo, Leakage-aware energy-

efficient scheduling of real-time tasks in multiprocessor systems,

RTAS (2006), pp. 408–417.

12. J.-J. Chen, S. Wang, and L. Thiele, Proactive speed scheduling

for real-time tasks under thermal constraints, RTAS (2009), Vol. 0,

pp. 141–150.

13. A. Cohen, F. Finkelstein, A. Mendelson, R. Ronen, and D. Rudoy,

On estimating optimal performance of cpu dynamic thermal man-

agement. IEEE Computer Architecture Letter 2, 6 (2003).
14. N. Fisher, J.-J. Chen, S. Wang, and L. Thiele, Thermal-aware

global real-time scheduling on multicore systems, RTAS (2009),
pp. 131–140.

15. V. Hanumaiah, R. Rao, S. Vrudhula, and K. S. Chatha, Through-

put optimal task allocation under thermal constraints for multi-core

processors, Proceedings of the 46th Annual Design Automa-
tion Conference, DAC ’09, ACM, New York, NY, USA (2009),
pp. 776–781.

16. V. Hanumaiah, S. Vrudhula, and K. Chatha, Maximizing perfor-

mance of thermally constrained multi-core processors by dynamic

voltage and frequency control, Computer-Aided Design—Digest
of Technical Papers, IEEE/ACM International Conference on,

November (2009), pp. 310–313.

17. H. Huang and G. Quan, Leakage aware energy minimization for

real-time systems under the maximum temperature constraint, DATE

(2011), pp. 1–6.

18. H. Huang, G. Quan, and J. Fan, Leakage temperature dependency

modeling in system level analysis, ISQED (2010), pp. 447–452.

19. H. Huang, G. Quan, J. Fan, and M. Qiu, Throughput maximization

for periodic real-time systems under the maximal temperature con-

straint, DAC (2011), pp. 363–368.

20. R. Jayaseelan and T. Mitra, Temperature aware task sequencing and

voltage scaling, ICCAD (2008), pp. 618–623.

21. R. Jejurikar, C. Pereira, and R. Gupta, Dynamic slack reclama-

tion with procrastination scheduling in real-time embedded systems,

DAC (2005), pp. 111–116.

22. P. Kumar and L. Thiele, Thermally optimal stop-go schedul-

ing of task graphs with real-time constraints, ASP-DAC (2011),
pp. 123–128.

23. W. Liao, L. He, and K. Lepak, Temperature and supply voltage aware

performance and power modeling at microarchitecture level. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems 24, 1042 (2005).

24. S. Liu and M. Qiu, Thermal aware scheduling for peak temperature

reduction with stochastic workloads, RTAS(WiP) (2010), pp. 53–56.

25. Y. Liu, R. P. Dick, L. Shang, and H. Yang, Accurate temperature-

dependent integrated circuit leakage power estimation is easy, DATE

(2007), pp. 1526–1531.

26. Y. Liu, H. Yang, R. P. Dick, H. Wang, and L. Shang, Thermal vs

energy optimization for dvfs-enabled processors in embedded sys-

tems, ISQED (2007), pp. 204–209.

27. S. Murali, A. Mutapcic, D. Atienza, R. Gupta, S. Boyd, and

G. D. Micheli, Temperature-aware processor frequency assign-

ment for mpsocs using convex optimization, CODES+ISSS (2007),
pp. 111–116.

28. R. W. Pike, Optimization for Engineering Systems, Van Nostrand

Reinhold Company (2001), ISBN: 0442275811.

29. G. Quan and Y. Zhang, Leakage aware feasibility analysis for

temperature-constrained hard real-time periodic tasks, ECRTS

(2009), pp. 207–216.

30. J. Rabaey, A. Chandrakasan, and B. Nikolic, Digital Integrated Cir-

cuits: A Design Perspective, 2nd edn., Prentice Hall Electronics and

VLSI Series, Pearson Education, Upper Saddle River, NJ (2003).
31. R. Rao and S. Vrudhula, Performance optimal processor throttling

under thermal constraints, Proceedings of the 2007 International
Conference on Compilers, Architecture, and Synthesis for Embedded
Systems, CASES ’07 (2007), pp. 257–266.

32. R. Rao, S. Vrudhula, C. Chakrabarti, and N. Chang, An optimal ana-

lytical solution for processor speed control with thermal constraints,

ISLPED (2006), pp. 292–297.

33. M. Shaw, J. R. Waldrop, S. Chandrasekaran, B. Kagalwala, X. Jing,

E. Brown, V. Dhir, and M. Fabbeo, Enhanced thermal management

by direct water spray of high-voltage, high power devices in a three-

phase, ITHERM (2002), pp. 1007–1014.

392 J. Low Power Electron. 8, 378–393, 2012

Huang et al. Leakage Aware Scheduling on Maximum Temperature Minimization for Periodic Hard Real-Time Systems

34. K. Skadron, M. Stan, W. Huang, S. Velusamy, K. Sankaranarayanan,

and D. Tarjan, Temperature-aware microarchitecture, ICSA (2003),
pp. 2–13.

35. S. Wang and R. Bettati, Delay analysis in temperature-constrained

hard real-time systems with general task arrivals, RTSS (2006),
pp. 323–334.

36. S. Wang and R. Bettati, Reactive speed control in temperature-

constrained real-time systems, ECRTS (2006), pp. 161–170.

37. X. Wang, K. Ma, and Y. Wang, Adaptive power control with online

model estimation for chip multiprocessors. Parallel and Distributed
Systems, IEEE Transactions on 22, 1681 (2011).

38. C.-Y. Yang, J.-J. Chen, L. Thiele, and T.-W. Kuo, Energy-

efficient real-time task scheduling with temperature-dependent leak-

age, DATE (2010), pp. 9–14.

39. J. Yang, X. Zhou, M. Chrobak, Y. Zhang, and L. Jin, Dynamic ther-

mal management through task scheduling. International Symposium

on Performance Analysis of Systems and Software (2008),
pp. 191–201.

40. L.-T. Yeh and R. C. Chu, Thermal Management of Microelectronic

Equipment: Heat Transfer Theory, Analysis Methods, and Design

Practices, ASME Press, New York, NY (2002).

41. L. Yuan and G. Qu, ALT-DVS: Dynamic voltage scaling with

awareness of leakage and temperature for real-time systems, Adap-
tive Hardware and Systems, NASA/ESA Conference on (2007),
pp. 660–670.

42. S. Zhang and K. S. Chatha, Thermal aware task sequencing on

embedded processors, DAC (2010), pp. 585–590.

43. Y. Zhang, D. Parikh, K. Sankaranarayanan, K. Skadron, and M. Stan,

Hotleakage: A temperature-aware model of subthreshold and gate

leakage for architects. University of Virginia Dept. of Computer Sci-
ence Technical Report (2003).

Huang Huang
Huang Huang received his B.S. degree in electrical engineering from Northwest University, Xi’an, China in 2007 and the Ph.D. degree
from Florida International University, Miami, FL, in 2012. His research interests include power and thermal-aware scheduling for
real-time computing systems, advanced computer architecture and low-power and power-aware design for VLSI.

Vivek Chaturvedi
Vivek Chaturvedi received the M.S. degree from the Department of Electrical Engineering, Syracuse University, Syracuse, NY, in 2008.
He is currently working towards the Ph.D. degree at the Electrical and Computer Engineering Department, Florida International Uni-
versity, Miami. During his studies at Syracuse University, he also worked as an Engineering Intern with the Micro-Electronics Group
in SUN Microsystems, Burlington, MA. His research interests include real-time systems, operating systems, scheduling techniques, and
computer architecture.

Guanglei Liu
Guanglei Liu received his bachelor degree from the Department of Electrical Engineering, Harbin University, Harbin, China, in 2006.
He is currently working towards the Ph.D. degree at the Electrical and Computer Engineering Department, Florida International
University, Miami. His research interests include Thermal/power aware computing and embedded realtime operating system design.

Gang Quan
Gang Quan is currently an Associate Professor with the Electrical and Computer Engineering Department, Florida International
University (FIU), Miami. He received the B.S. degree from the Tsinghua University, Beijing, China, the M.S. degree from the Chinese
Academy of Sciences, Beijing, and the Ph.D. degree from the University of Notre Dame, Notre Dame, IN. Before joining FIU, he was
an assistant professor at the Department of Computer Science and Engineering, University of South Carolina. His research interests
includes real-time system, power/thermal aware design, embedded system design, advanced computer architecture and reconfigurable
computing. Professor Quan received the NSF CAREER award in 2006 and the Best Paper Award from the Design Automation
Conference (DAC).

J. Low Power Electron. 8, 378–393, 2012 393

