
Huang Huang, Gang Quan, Jeffrey Fan, *Meikang Qiu
Department of ECE, Florida International University, Miami, FL 33174

*Department of ECE, University of Kentucky, Lexington, KY 40506
E-mail: hhuan001, gaquan, fanj@fiu.edu, *mqiu@engr.uky.edu

Abstract

We study the problem on how to maximize the throughput for a
periodic real-time system under the given peak temperature con-
straint. We assume that different tasks in our system may have
different power and thermal characteristics. Two algorithms are
presented in this paper. The first one is built upon processors that
can be either in active or sleep mode. By judiciously selecting
tasks with different thermal characteristics as well as alternat-
ing the processor active/sleep mode, our approach can improve
the throughput upon the existing techniques by 21% in average.
We further extend this approach for processors with dynamic volt-
age/frequency scaling (DVFS) capability. Our experiments show
that an improvement of 24% can be achieved when compared with
the existing methods.

Categories and Subject Descriptors

D.4.7[Operating Systems]: Organization and Design–Real-
time systems and embedded systems

General Terms

Algorithms, Performance

Keywords

Thermal aware real-time scheduling, Dynamic voltage/frequency
scaling, Task sequencing

1. Introduction

The continued scaling of semiconductor technology has resulted
in the exponential increase of power density in the IC circuit, and
as a result, the rapidly elevated temperature. High temperature not
only increases the packaging/cooling cost, but also shortens the
life span of the computing system and degrades its performance,
robustness, and reliability [12, 15]. In addition, high chip tempera-
ture dramatically increases the leakage power, which is becoming

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2011, June 5-10, 2011, San Diego, California, USA.
Copyright 2011 ACM ACM 978-1-4503-0636-2/11/06 ...$10.00.

a major component of the overall power consumption in the deep
sub-micron domain. High power consumption leads to high tem-
perature, and high temperature in turn increases the leakage power
and thus the overall power consumption. Evidently thermal aware-
ness is becoming a more and more critical issue and researchers
have incorporated the thermal issues into almost every abstraction
level in the design of electronic computing systems [13].

We are interested in the problem of employing the scheduling
technique to maximize the throughput for a real-time system under
the peak temperature constraint. There are a few existing works
(e.g. [8, 3, 6, 16, 17]) that are closely related to our research.
Specifically, Liu and Qiu [8] proposed a hybrid approach based
on job sequencing and DVFS for nondeterministic applications.
Chantem et al. [3] proposed to run real-time tasks by frequently
switching between the two speeds which are neighboring to the
constant speed whose stable temperature is the given peak temper-
ature. Zhang and Chatha [16] presented a pseudo-polynomial time
speed assigning algorithm based on the dynamic programming ap-
proach followed by a scheme to minimize the total execution la-
tency. To guarantee the peak temperature constraint, this approach
requires the the ending temperature of each iteration not to exceed
the starting temperature which can be very pessimistic. In addi-
tion, the two approaches above assume that all tasks have the same
power characteristics, i.e. they consume the same amount of power
as long as they run at the same processor speed, which might not
be true in practice. As shown in [6], the power and thus the thermal
characteristics for different real-time tasks can be significantly dif-
ferent. With this fact in mind, Jayaseelan and Mitra [6] proposed
to construct the task execution sequence to minimize the peak tem-
perature. Zhang and Chatha [17] further developed several new
algorithms to maximize the throughput of a real-time system by
sequencing the task executions for processors with and without dy-
namic voltage/frequency scaling (DVFS) capability.

In this paper, we propose two novel approaches to maximize the
throughput for a periodic real-time system under the given peak
temperature constraint, one for processor with simple active and
sleep mode and the other for more complicated processors with
DVFS capability. There are several distinct differences between
our approaches and the existing works. First, while several exist-
ing techniques (e.g. [3, 6, 17]) take the leakage/temperature de-
pendency into consideration, they assume that the leakage changes
only with temperature. In fact, leakage power changes not only
with temperature but also supply voltage [7]. As evidenced in [5],
the leakage model ignoring the effect of supply voltage can lead
to results deviated far away from the actual values and thus pro-
duce potentially inaccurate solutions. Second, both the existing ap-
proaches [6] and [17] assume that the task sequencing and the pro-
cessor mode change can only occur at the task boundary. In con-
trast, we employ the same principle as implied in the m-oscillating
approach [4] to sequence tasks and change processor modes within
the task execution. Our experimental results, based on parameters
drawn from the 65nm technology, show that our methods consis-
tently outperform the existing approaches [17] by over 21% in av-
erage.

The rest of this paper is organized as follows. Section 2 intro-

Throughput Maximization for Periodic Real-Time
Systems Under the Maximal Temperature Constraint

363

21.5

duces the system models followed by the motivational examples
in Section 3. Our proposed scheduling algorithms are discussed
in Section 4. Experimental results are presented in Section 5 and
Section 6 concludes this paper.

2. Preliminaries

In this section, we briefly introduce the system models used
in this paper, including the task model, processor and its ther-
mal/power model, followed by the problem definition at the end.

Thermal Model: The thermal model used in this paper is sim-
ilar to the one that has been used in the similar researches (e.g. [8,
4, 17, 3]) that RC dT (t)

dt = RP(t)+ (T (t)−Tamb), where T (t) and
Tamb are the chip temperature and ambient temperature respec-
tively. P(t) denotes the power consumption at time t, and R, C
are the chip thermal resistance and thermal capacitance respec-
tively. We can scale T such that Tamb is zero and then we have
dT (t)

dt = aP(t)−bT (t), where a = 1/C and b = 1/RC.
The Processor: We assume that the processor has one sleep

mode and N active modes. Each active mode is characterized by a
supply voltage/frequency pair (vk, fk). A task can only be executed
when the processor operates in active mode. We assume that the
processor can be switched from one mode to another at any time.
However, such a switching will cause a timing penalty of tsw during
which no computation can take place.

Real-Time Tasks: The task model considered in the paper is
a periodic task set consisting of independent heterogeneous tasks.
The heterogeneous nature of the tasks are manifested in the fact
that the power consumptions of different tasks vary significantly
even running under the same speed level and at the same temper-
ature. This is because the power consumptions are strongly de-
pending on the circuit activity factor [10] and the usage pattern of
different functional units when executing different tasks. Specifi-
cally, we introduce a parameter µ, called activity factor, to capture
the different switching factors of different tasks. For a given task,
the activity factor µ (ranging in (0,1]) defines how intensively the
functional units have been used. For common benchmark tasks,
the activity factors can be obtained by using any architectural level
power analysis tools such as Wattch [2]).

Power Model: With the activity factor, the dynamic power con-
sumption of the processor when executing task τi at the kth speed
levels can be formulated as Pdyn(i,k) = µiC2v3

k , where vk is the
supply voltage level, C2 is a constant. As leakage current changes
super linearly with temperature [9], the leakage power of the pro-
cessor when executing the task τi can be effectively estimated as
Pleak(i,k) = µi(C0(k)vk +C1(k)T vk), where C0(k) and C1(k) are
curve fitting constants. Therefore, the overall power consumption
when executing task τi at the kth speed level can be modeled as

P(i,k) = µi(C0(k)vk +C1(k) ·T vk +C2v3
k). (1)

Accordingly, the temperature dynamics when executing task τi can
be formulated as

dT (t)
dt

= A(i,k)−B(i,k)T (t) (2)

where A(i,k) = aµi(C0(k)vk +C2v3
k) and B(i,k) = b− aµiC1(k)vk

(we use Bs for B(sleep)). Hence, for a given time interval [t0, te],
if the initial temperature is T0, by solving equation (2), the ending
temperature after executing task τi can be formulated as below:

Te =
A(i,k)
B(i,k)

+(T0−
A(i,k)
B(i,k)

)e−B(i,k)(te−t0)

= Tss(i,k)+(T0−Tss(i,k))e−B(i,k)(te−t0). (3)

where Tss(i,k) is the steady state temperature of the task τi at the
kth speed level. For a given task, if Tss(i,k) > Tmax (the maximal
temperature limit), we call it a hot task, or cool task otherwise.
Apparently, for the sleep mode, we have Tss = Tamb.

Based on the models introduced above, the throughput of a real-
time system can be maximized when the latency for executing the

Figure 1. Motivation: Reduce Latency by
Sleep Time Distribution

Figure 2. Motivation: Reduce Latency by Task
Switching

task in one period is minimized. Our research problem can be
formulated as follows.

PROBLEM 1. Given a tasks set Γ = {τ1(t1,µ1),τ2(t2,µ2), ...
,τn(tn,µn)}, where ti and µi are the execution time and activity
factor of task τi respectively, develop a feasible schedule such that
the latency to execute one iteration of Γ is minimized under the
thermal steady state while ensuring the satisfaction of the peak
temperature constraint Tmax.

3. Motivational Examples

Consider a task τ with execution time t of 500ms and steady
state temperature Tss of 115oC. Let Tmax = 100oC. Assume that
the processor has already reached this threshold before task τ starts
to run. Then the temperature constraint will definitely be violated
if the execution of τ starts immediately.

To avoid temperature exceeding Tmax, we can turn the proces-
sor to sleep mode and let the processor cool down, as illustrated
in Figure 1(a). Based on a processor and power model detailed
later in Section 5, the processor has to stay in the sleep mode for
418ms to make sure its temperature dropped to a safe temperature.
With this safe temperature, if we continue to execute τ, the peak
temperature constraint, i.e. Tmax, will not be violated.

Alternatively, as shown is Figure 1(b), we can divide the exe-
cution of τ equally into 5 sections and distribute the sleep mode
before each of them. In this case, only 12.6ms is required for the
processor to stay in the sleep mode to cool down to the safe tem-
perature (e.g.94.8oC) for each sub-interval. Consequently, the pro-
cessor only needs to spend a total of 12.6×5 = 63ms in the sleep
mode to ensure the maximal temperature constraint. Shorter idle
time implies that the latency of the tasks can be reduced and there-
fore improving the system throughput. This example indicates that
it is more effectively to insert multiple idle intervals inside the task
than only at the task boundary to improve the throughput under the
peak temperature constraint.

Now consider another example as shown in Figure 2 with a
cool task τ1 (Tss = 68oC) and a hot task τ2 (Tss = 115oC). Assume
both tasks have the same execution time (400ms) at its peak perfor-
mance. Similarly, we still assume that both the initial temperature

364

21.5

and the peak temperature constraint are set as 100oC. To reduce
the execution latency without violating the peak temperature con-
straint, one approach is to run the cool task τ1 first followed by the
hot task. However, in this example, running the cool task alone
cannot bring the temperature low enough such that τ2 can immedi-
ately start to run without exceeding the peak temperature. There-
fore, a sleep period of 73.4ms has to be inserted before τ2 to further
cool down the processor which results in a total latency of 873.4ms
as shown in Figure 2(a).

In contrast, another approach is to divide the execution of τ1
and τ2 into 4 sub-intervals and run them alternatively. The sched-
ule and the corresponding temperature curve are shown in Fig-
ure 2(b). Note that, both τ1 and τ2 are successfully executed un-
der the peak temperature without inserting any idle interval at all.
Moreover, the temperature at the end of the execution is reduced to
96.1oC . This saved temperature budget (i.e.3.9oC) could be uti-
lized to further improve the throughput [17] if the processor has a
more complicated DVFS mechanism.

The two examples clearly indicate that, by splitting tasks with
different power/thermal characteristics into multiple sections and
execute them alternatively, the throughput can be significantly im-
proved. Several questions immediately rise. First, how effective
this approach can be, especially when considering the switching
overhead for alternating the task executions? Second, how can we
choose the optimal section that a task needs to be split to achieve
the best performance, i.e. throughput? We answer these questions
in the next section.

4. Our Approach

In this section, we discuss our approach in detail and present
our scheduling algorithms. We first consider the processor with
only one active mode, i.e. N = 1 and assume all tasks are hot
tasks with respect to the given peak temperature constraint. We
then consider the task set consisting of both hot and cool tasks. Fi-
nally, we introduce our approach for processor with multiple active
modes, i.e. N > 1.

4.1 Sleep Mode Distribution for Hot Tasks

We begin our discussion by assuming that the processor has
only one active mode and one sleep mode. We further assume that
all tasks in Γ have Tss > Tmax (i.e. “hot” tasks). Since Γ is periodic
and it is shown [3, 17] that the throughput of Γ is maximized when
the temperature at the end of each period equals Tmax, we can con-
veniently make the initial temperature of Γ to be the same as the
ending temperature of each iteration, and set them to be Tmax.

Since all tasks are hot tasks, starting at Tmax, we can only bring
down the temperature by inserting idle intervals. The question
is how long we should insert the interval. The shorter the total
idle interval, the smaller the overall latency and thus the larger the
throughput. To quantify the effectiveness of different choices, we
use a metric called the idle ratio (Θ) which is defined as the ratio
between the time that the processor stays in sleep mode and the
active mode within one period. It is not difficult to see that the
smaller the Θ, the larger the throughput.

From the first motivational example above, we can see that the
length of overall idle interval can be reduced by splitting each task
into multiple—i.e. m(m > 1)—sections, and inserting the idle in-
terval in between. In fact, we found that, when the switching over-
head is negligible, the larger the m is, the smaller the overall idle
interval time is needed. The observation is formulated in the fol-
lowing theorem.

THEOREM 1. Given a task τi, a processor with only one active
and one sleep mode, the maximal temperature constraint Tmax, as-
sume that Tss(i) > Tmax. Let Θ(m) represent the idle ratio for the
feasible schedule when τi is evenly split into m sections. Then the
idle ratio Θ is a monotonically decreasing function of m.

Proof: Assume that when m = 1, to cool down the processor,
ts seconds of sleep period has to be added before τi. To find ts,

Figure 3. Sleep Time Distribution

we first need to find the safe temperature Tsa f e(i) which can be
calculated as

Tsa f e(i) = Tss(i)−
Tss(i)−Tmax

e−B(i)ti
, (4)

Thus, we have

ts =−
1
Bs
· ln(

Tsa f e(i)
Tmax

). (5)

Therefore

Θ(1) =−Bsti · ln
Tss(i)(e−B(i)ti −1)−Tmax

Tmaxe−B(i)ti
. (6)

Replace ti with ti/m in equation (6), we can formulate the idle
ratio Θ as a function of m as

Θ(m) =−Bs
ti
m
· ln K̂2

K̂1
, (7)

where K̂1 = Tmaxe−
B(i)ti

m and K̂2 = Tss(i)(e−
B(i)ti

m −1)−Tmax. Since
both Θ(m) and Bsti

m are positive numbers, we have K̂1 > K̂2 > 0.
With the above result, it is not difficult to show that the first

order derivative of Θ(m), i.e. dΘ(m)
dm < 0. Therefore Θ(m) mono-

tonically decreases with m. 2
Theorem 1 implies that the smaller we divide a task, the shorter

the idle interval is needed. However, since

lim
m−>inf

Θ(m) =
B(i,k)

Bs

Tss(i,k)−Tmax

Tmax
, (8)

the impact of dividing the task becomes saturated as m increases.
Furthermore, as m→ inf, the context switching overhead cannot be
ignored anymore, no matter how smaller it can be. The question
then becomes how to determine the optimal “m” for each hot task.

Assuming the overhead for each context switching is tsw, we
develop a heuristic to search for the optimal value of m as illus-
trated in Figure 3. Starting from Tmax, the corresponding ending
temperature of the sleep period can be obtained from equation (3),

T ′e = Tamb +(Tmax−Tamb)e
−Bstsw . (9)

Based on T ′e , the duration of the subsequent active mode is thus

t ′a =−
1

B(i)
ln(

Tmax−Tss(i)
T ′e −Tss(i)

). (10)

Accordingly, we have mopt = b ti
t ′a
c (using floor function to make

sure mopt is an integer). Once mopt is available, the duration of
each active sub-interval can be readily determined, i.e. ti

mopt
. The

ending temperature of the corresponding sleep period can also be
obtained as

Te = Tss(i)−
Tss(i)−Tmax

e
−B(i) ti

mopt

(11)

Finally , the minimized sleep time per sub-interval topt
s can be

solved from equation (5) by replacing Tsa f e(i) with Te in equa-
tion (11)

topt
s =− 1

Bs
ln(

Tss(i)(e
−B(i) ti

mopt −1)

e
−B(i) ti

mopt

−1) (12)

365

21.5

Although the sleep distribution method is targeted for single task,
it is applicable to a task set consisting of multiple hot tasks, since
the optimization procedure can be conducted on each individual
task separately.

4.2 Improving Throughput by Task Switch-
ing

In this subsection, we extend our discussion to the task set
consisting of both hot and cool tasks. Consider only two tasks,
one hot task and one cool task for a given Tmax. Recall that as
implied by the second motivational example, dividing both tasks
into m(m > 1) sections, and alternating the execution of both tasks
helps to improve the throughput. In fact, a similar theorem as The-
orem 1 can be established for a task set consisting both hot and
cool tasks as follows.

THEOREM 2. Let Γ = {τi(ti,µi),τ j(t j,µ j)} with τi, a cool task
(i.e. Tss(i)≤ Tmax) and τ j , a hot task (i.e. Tss(j)≥ Tmax). Assume
both τi and τ j are equally divided into m sections and alternatively
executed (with τi first). Let T ′j (i, j,m) represent the temperature
when completing the first subsection of τ j . Then T ′j (i, j,m) mono-
tonically decreases with m.

Proof: Given the initial temperature Tmax, based on equation (3),
the ending temperature of task τi after i

m seconds of execution can
be expressed as

T ′i (i, j,m) = Tss(i)+(Tmax−Tss(i))e−B(i) ti
m . (13)

Similarly, the ending temperature of task τ j after j
m seconds can

be formulated as

T ′j (i, j,m) = Tss(j)+T ′i (i, j,m)−Tss(j))e−B(j)
t j
m , . (14)

After replace T ′i (i, j,m) using equation (13), we have

T ′j (i, j,m)=TiniK̂3+Tss(i,k)(e−B(j)
t j
m −K̂3)+Tss(j,k)(1−e−B(j)

t j
m)

(15)
where K̂3 = e−B(i) ti

m−B(j)
t j
m and Tini is the starting temperature of

the schedule which is Tmax in this case. Then, we can prove the

conclusion by showing that
dT ′j (i, j,m)

dm < 0. 2
Now the problem becomes how to judiciously choose the ap-

propriate m to maximize the throughput, especially under the as-
sumption that the context switching overhead is not negligible.
Theorem 2 implies that given a cool/hot tasks pair, one can always
try to find a feasible schedule by increasing m as it always reduces
the T ′j (i, j,m). Thus, the optimal m can be found by sequentially
search from 1 to +inf (among positive integers). The searching
is stopped when we have T ′j (i, j,m) ≤ Tmax. However, the to-
tal amount of switching time associated with m task switching is
m · tsw. If the original sleep period is tcu, we must have m · tsw < tcu
in order to further improve the latency. Therefore, we set the up-
per bound for m that mmax = b tcu

tsw
c. If the ending temperature at

m = mmax still cannot meet the temperature constraint, the task
switching scheme fails. Thus, we first test if T ′j (i, j,mmax)< Tmax,
the searching process will only start if the result is true. Our simu-
lation results show that T ′j (i, j,m) decreases drastically at the first
several steps (small m), usually the optimal m can be obtained
within 5 iterations.

We are now ready to present our algorithm, i.e. Algorithm 1, for
a task set consisting of more than two tasks. Our algorithm works
as follows: First, the tasks are classified into cool tasks and hot
tasks based on their power/thermal characteristics and the given
peak temperature constraint. Then, we put cool tasks in a queue Qc
and sort them in the increasing order of their ending temperature
(assuming the execution starts at temperature Tmax). The hot tasks
are put in Qh and sorted in the increasing order of their safe tem-
peratures. The output of the algorithm is the final schedule Q f . For
instance, the Nth element in Q f is denoted as Q f (N) = {τi,τ j,m}

Algorithm 1 Improving Throughput by Task Switching
1: Input: Γ = {τ1,τ2, ...τn}, Tmax
2: Output: Q f ; (the optimal task paring and the associate num-

ber of switching)
3: Initialization: classify all tasks into cool/hot tasks based on Tss
4: Find Tsa f e for all hot tasks
5: Sort cool tasks into Qc in increasing order of Tend
6: Sort hot tasks into Qh in increasing order of Tsa f e
7: Tini = Tmax
8: Q f = empty
9: for i=1:length(Qc)

10: for j=1:length(Qh)
11: Find the upper bound of cooling time tcu from eq.5
12: Find the upper bound of m: mmax = b tcu

tsw
c

13: if (T ′j (i, j,mmax))≤ Tmax
14: Find mopt by sequential search from m = 1
15: Move {Qc(i),Qh(j),mopt} to the end of Q f
16: Update initial temperature: Tini = Tend(i, j,mopt)
17: endif
18: endfor
19: endfor
20: if (Qc is not empty)
21: Move tasks in Qc to the end of Q f by decreasing order of Tss
22: Update the initial temperature
23: if (Qh is not empty)
24: Move tasks in Qh to the end of Q f by sleep distribution
25: Return: Q f

which specify the index of the two tasks being paired (τi and τ j) as
well as the optimal number of task switching (m).

Starting from the initial temperature Tmax, the task at the begin-
ning of Qh attempts to pair with the head task in Qc. If this task
pair is feasible, the mopt can be obtained by a sequential search.
Then this task switching schedule specified by tuple {Qc(i),Qh(j),
mopt} is added to the beginning of Q f . After that, the ending tem-
perature of {Qc(i),Qh(j),mopt} needs to be set as the initial tem-
perature of the next attempted task pairing.

To find the ending temperature, we derived a closed-form for-
mula based on [11], that if there exists m times of task switch-
ing between τi and τ j , the ending temperature of the schedule can

be formulated as Tend(i, j,m) = Tini +
(T ′j (i, j,m)−Tini)·(1−K̂4)

1−K̂3
, where

K̂4 = e−B(i)ti−B(j)t j .
Based on the above equation, the ending temperature after mopt

time task switching can be obtained by replacing m with mopt
However, if the task pairing fails, it is still possible to make

a feasible combination with jth (i 6= j) cool task. Because the
temperature profiles depend not only on the Tss of the two task
but also on the duration of the tasks. Therefore, the hot task is left
in the Qh until the end of the iteration to get chance to be matched
with all cool tasks. Finally, after the double-loop task pairing, if
there are still tasks left in Qc/Qh, the cool tasks are simply attached
to the end of Q f followed by the hot tasks executed with sleep time
distribution method introduced in Section 4.1.

4.3 Improving Throughput by DVFS

In the previous discussion, we assume that the processor has
only one active mode. In this subsection, we adopt a more com-
plex processor model, i.e. the processor with N(N > 1) different
active modes, and the processor can change its working mode dy-
namically. Employing DVFS is a double-edged sword in terms
of throughput maximization. On one hand, reducing the supply
voltage slows down the task execution and reduces the throughput.
On the other hand, reducing the supply voltage helps to reduce the
power consumption and thus the thermal pressure. How to make
an appropriate tradeoff needs careful analysis.

Consider the pros and cons of DVFS in throughput maximiza-
tion, we utilize DVFS only under certain scenario. Specifically,

366

21.5

(a) Latency Reduction by Increasing m

(b) Ending Temperature Reduction by Task Switching

Figure 4. Theorem Validation

for a give task set, we first employ Algorithm 1, assuming the pro-
cessor work at its highest speed. DVFS mechanism is only used
when there are hot tasks left in the Qh, and we try to scale down
the supply voltages of those tasks.

Given a hot task τi, if the execution time at the highest speed
level k is ti(k), then the corresponding execution time at (k− l)th
mode is calculated by ti(k− l) = fk

fk−l
ti(k), where fk and fk−l are

the working frequencies associated with Vdd level k and k− l re-
spectively. From equation (5), the required sleep time of task τi
under supply voltage levels k− l can be obtained and expressed as

ts(i,k− l) =− 1
Bs

ln(
Tss(i,k− l)(e

−B(i,k−l) fk
fk−l

ti(k)−1)

e
−B(i,k−l) fk

fk−l
ti(k)

−1) (16)

then the total latency of τi at speed level k− l is formulated as
t(i,k− l) = ts(i,k− l)+ fk

fk−l
ti(k). Here we calculate the latency for

a given task under all supply voltage levels by increasing l from 1
to k− 1. And the speed level that leads to the minimized latency
will be selected as the optimal speed kopt .

After we find the kopt for all hot tasks left in Qh, the pairing
routine (line 9-19 in algorithm 1) is called again for a final round of
attempted pairing between tasks in Qh and Qc. Now, the hot tasks
(if speed is scaled) might have a better chance to be combined with
the tasks left in Qc (if not empty) due to the reduced steady state
temperature. Finally, if Qh and Qc are still not empty, line 20-24
in Algorithm 1 is executed to attach these tasks at the end of Q f
with minimum sleep time. The detailed algorithm is omitted due
to page limit.

(a) Processor without DVFS

(b) Processor with DVFS

Figure 5. Simulation Results: Latency Com-
parisons

5. Experimental Results

In this section, we validate the theorems and show the perfor-
mance of the proposed approach through a set of simulations. We
adopted the processor model similar to the one in [11]. The mode
switching overhead is assumed to be 5ms [14]. The thermal model
is obtained from [1]. We let the ambient temperature and the max-
imal temperature limit to be 25oC and 100oC [17] respectively un-
less otherwise specified.

5.1 Theorem Validation

To validate the conclusions made in Theorem 1, we run a hot
task τ1 (ti = 300ms, Tss = 138oC @Vdd = 1.2v). The idle ratio Θ

as well as the total sleep time is plotted in Figure 4(a) while we
increase m from 1 to mmax. The result conforms to the conclusion
in Theorem 1 that Θ monotonically decreases with m. When m= 1
the schedule is identical to the one proposed in [17] that 322ms
sleep time is required to cool down the processor before τ1 starts
to running (thus Θ= 1.07). As m increases, the total sleep time and
thus the idle ratio are minimized when m = mmax = 21. The final
latency is 310ms compared with 622ms by the approach in [17], a
50% reduction is achieved.

We next validate Theorem 2 by running a cool task τ2 (Tss =
77oC) followed by a hot task τ3 (Tss = 112oC) without introduc-
ing the sleep interval in between. The execution time of both tasks
are 500ms. By using the proposed task switching method, the end-
ing temperature of the first hot task sub-interval is plotted in Fig-
ure 4(b) as m increases from 1 to mmax. Again, the results agree
with Theorem 2 that T ′j (i, j,m) is a monotonically decreasing with
m. From Figure 4(b) we can also see that T ′j (i, j,m) drops dras-
tically when m < 5 and becomes relatively stable when m is fur-
ther increased. It implies that, in this particular case, mopt can
be found within 4 rounds of evaluation (since Tmax = 100oC and
T ′j (i, j,4)< 100oC).

5.2 Latency Minimization

In this subsection, we evaluate the performance of the proposed
method in terms of latency minimization. We created 10 represen-

367

21.5

tative task sets each of which is composed of 20 randomly gener-
ated tasks with execution time (at the highest speed level) and util-
ity factor µ uniformly distributed within [100,1000ms] and [0.4,1]
respectively. Based on our thermal model, the steady state temper-
ature of these tasks are ranging in between 62oC and 145oC. For
each task set, we specify the ratio of the number of the cool tasks
versus the total number of tasks (i.e. 20), and vary this ratio from
0 to 0.9 with 0.1 increment.

For processor without DVFS, we compare our approach with
SEQs proposed in [17]. In this case, we set the processor to the
highest available speed level. We recorded the total latency achieved
by both methods and plotted in Figure 5(a). We also provide the
actual time that the processor spends in task execution as refer-
ences. As shown in Figure 5(a) the proposed method consistently
outperforms SEQs in all 10 task sets. Compared with SEQs, on
average our method improves the latency by 24% (up to 35%) and
reduces the idle time by 64% (up to 79%). For DVFS enabled pro-
cessor, the same task sets are scheduled by the proposed approach
and SEQd [17]. As shown in Figure 5(a), clearly, the proposed
method still achieves better performance. Specifically, compared
with SEQd , our method reduces the latency and idle time by on
average 21% and 69% respectively.

From Figure 5(a) and 5(b) we also notice that the performance
of the proposed approach is relatively stable compared with SEQs/
SEQd . This is because the proposed approach can rely on sleep
time distribution to reduce the latency even without cool tasks

5.3 Feasibility Improvement

We next investigate the performance of the proposed method in
terms of feasibility improvement for a processor without DVFS.
Recall that a task is defined as infeasible if the required safe tem-
perature is below ambient temperature. We used the same parame-
ters to randomly generate task sets without specifying the number
of cool tasks in each task set, instead, we set the ambient tempera-
ture as the variable and vary it from 25oC to 65oC with the step size
of 10oC. Under each ambient temperature condition, we generated
10 task sets each including 100 tasks. The averaged feasibility
ratio (number of feasible task divided by 100) achieved by the pro-
posed method and SEQs are recorded and plotted in Figure 6. The
proposed method completes all tasks without infeasible task and
thus improves the feasibility ratio by 21% on average compared
with SEQs.

6. Conclusions

We study the problem on how to maximize the throughput for
a periodic real-time system under the given peak temperature con-
straint. We incorporate the interdependency between the leakage,
temperature and supply voltage into analysis and assume that dif-
ferent tasks in our system may have different power and thermal
characteristics. Two algorithms are presented in this paper. The
first one is built upon processors that can either be in active or sleep
mode. By judiciously selecting tasks with different thermal char-
acteristics as well as alternating the processor active/sleep mode,
our approach can improve the throughput upon the existing tech-
niques by 21% in average. We further extend this approach for
processors with dynamic voltage/frequency scaling (DVFS) capa-
bility. Our experiments show that an improvement of 24% can be
achieved when compared with the existing approaches.

Acknowledgment

This work is supported in part by NSF under projects CNS-
0969013, CNS-0917021, CNS-1018108, NSFC 61071061 and the
University of Kentucky Start Up Fund.

Figure 6. Simulation Results:Feasibility Com-
parisons

References

[1] Hotspot 4.2 temperature modeling tool. University of Virgina,
page http://lava.cs.virginia.edu/HotSpot, 2009.

[2] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: a frame-
work for architectural-level power analysis and optimiza-
tions. In ISCA, pages 83–94, 2000.

[3] T. Chantem, X. S. Hu, and R. Dick. Online work maximiza-
tion under a peak temperature constraint. In ISLPED, pages
105–110, 2009.

[4] V. Chaturvedi, H. Huang, and G. Quan. Leakage aware
scheduling on maximal temperature minimization for peri-
odic hard real-time systems. In ICESS, 2010.

[5] H. Huang, G. Quan, and J. Fan. Leakage temperature depen-
dency modeling in system level analysis. In ISQED, pages
447–452, 2010.

[6] R. Jayaseelan and T. Mitra. Temperature aware task sequenc-
ing and voltage scaling. In ICCAD, pages 618 – 623, 2008.

[7] W. Liao, L. He, and K. Lepak. Temperature and supply volt-
age aware performance and power modeling at microarchi-
tecture level. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 24(7):1042 – 1053, 2005.

[8] S. Liu, M. Qiu, W. Gao, X.-J. Tang, and B. Guo. Hybrid
of job sequencing and DVFS for peak temperature reduction
with nondeterministic applications. In ICESS, pages 1780–
1787, 2010.

[9] Y. Liu, R. P. Dick, L. Shang, and H. Yang. Accurate
temperature-dependent integrated circuit leakage power es-
timation is easy. In DATE, pages 1526–1531, 2007.

[10] Y. Liu, H. Yang, R. P. Dick, H. Wang, and L. Shang. Ther-
mal vs energy optimization for DVFS-enabled processors in
embedded systems. In ISQED, pages 204–209, 2007.

[11] G. Quan and Y. Zhang. Leakage aware feasibility analy-
sis for temperature-constrained hard real-time periodic tasks.
ECRTS, pages 207–216, 2009.

[12] M. Santarini. Thermal integrity: A must for low-power ic
digital design. EDN, pages 37–42, 2005.

[13] K. Skadron, M. Stan, W. Huang, S. Velusamy, K. Sankara-
narayanan, and D. Tarjan. Temperature-aware microarchi-
tecture. ICSA, pages 2–13, 2003.

[14] C.-Y. Yang, J.-J. Chen, L. Thiele, and T.-W. Kuo.
Energy-efficient real-time task scheduling with temperature-
dependent leakage. In DATE, pages 9–14, 2010.

[15] L.-T. Yeh and R. C. Chu. Thermal Management of Microelec-
tronic Equipment: Heat Transfer Theory, Analysis Methods,
and Design Practices. ASME Press, New York, NY, 2002.

[16] S. Zhang and K. S. Chatha. Approximation algorithm for
the temperature-aware scheduling problem. In ICCAD, pages
281–288, 2007.

[17] S. Zhang and K. S. Chatha. Thermal aware task sequencing
on embedded processors. In DAC, pages 585 – 590, 2010.

368

21.5

