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Abstract—In this paper, we study the problem of partitioned
scheduling of periodic real-time tasks with the capability of
tolerating transient faults on multi-core platforms under Rate
Monotonic Scheduling (RMS) policy. In our approach, we exploit
the implicit relations among periods and recovery costs among
tasks and develop a novel metric, called “compatibility index”, to
quantify how “compatible” a task set is when they are allocated
on the same core. We theoretically analyze its properties for
improving the system schedulability. Based on this metric, we
propose two task partitioning schemes to partition hard real-time
tasks with fault-tolerance requirements on multi-core platforms.
Simulation results demonstrate that our proposed approaches can
significantly enhance the performance of existing techniques.

Keywords—fault-tolerance, task partition, rate monotonic
scheduling, real-time

I. INTRODUCTION

To keep pace with the demands for increasing processor

performance, silicon vendors no longer concentrate wholly on

increasing the clock frequency of a single-core platform, as

this approach leads to excessive power consumption and heat

dissipation [1]. Instead, multi-core platforms have attracted

more attentions and become mainstream in the industrial

market. Since 2007, many chip manufactures, such as AMD

and Intel, have been releasing their new multi-core chips into

market with increased number of cores, e.g Intel Xeon Series

[2]. It is shown in [3] that computer chips with hundreds

of even thousands of cores are being tested or produced.

Conceivably, multi-core platform will be the primary choice

for real-time system design in the future, and as a result,

many research efforts have been made to address real-time

constraints on multi-core platforms [4], [5], [6], [7].

Multi-core real-time scheduling can be broadly classified

into two categories, namely Partitioned scheduling and Global
scheduling [4]. In partitioned multi-core scheduling, each task

is allocated to a core and all of its jobs have to be executed

on that core. On the other hand, for global scheduling, the

jobs of a task can possibly be executed on any other cores.

In this paper, we focus on the partitioned approach due to its

low overhead and the reason that the well-known scheduling

methods for single-core platforms, e.g. the rate monotonic

scheduling (RMS) scheme, [8] can be readily applied.

While we enjoy the benefits of high performance computing

in the era of multi-core processors, the reliability of modern

computing system has degraded substantially. The prolifer-

ation of multi-core processor production is made possible

thanks to the rapid advancements of semi-conductor tech-

nologies, in particular, the transistor miniaturization and mass

transistor integration. However, their adverse effects on system

reliability have increasingly become a concern and need to be

addressed appropriately.

First, the dramatically decreased feature size of transistors

has elevated the radiation-induced fault rates up to several

orders of magnitude [9]. Second, the mass integration of

transistors increases the power density and temperature on

chip considerably, which leads to the acceleration of wear-

out of a chip [10], [11]. As many real-time systems are

safety-critical in nature, e.g. automobiles and airplanes, the

reliability of such systems has been raised to a first-class

design requirement. Traditional multi-core scheduling without

explicitly considering run-time failures is no longer sufficient

any more.

In this paper, we are interested in studying the problem of

partitioning hard real-time tasks on multi-core platforms while

guaranteeing the fault-tolerance requirements under the RMS

scheme. We choose RMS as our underlying scheduling method

as it is optimal for single-core scenario [8] and the primary

choice for industrial applications today. In considering the task

partitioning, one common method is to transform this problem

to a standard bin-packing problem, and popular heuristics

such as First-fit (FF), Best-fit (FF), and Worst-fit (WF) can

be readily applied. In these approaches, tasks are allocated

based solely on their utilizations. Fan et al. [12], [7] takes

the periods relationship among tasks into considerations when

making partitioning decisions and can significantly improve

system utilization. However, as we show later in the paper,

allocating harmonic tasks together may not always be a good

choice in face of fault-tolerance requirements. As such, we

develop a novel metric to quantify how “compatible” tasks are

when they are allocated to the same processing core. Based

on this metric, we develop two partitioning approaches that

can take advantages of periods and recovery costs of tasks

to attain higher system utilization. We further extend our

partition approaches to systems with multiple checkpointing

schemes. According to our simulation results, our approach

can significantly outperform other related approaches. In what

follows, we first discuss some existing works that are related
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to our research.
The rest of the paper is organized as follows. We first

discuss the existing works that are related to our research

in Section II. Section III introduces the preliminaries and

notations used throughout this paper. Section IV studies the

schedulability of rate-monotonic fault-tolerant tasks. In section

V, we propose a novel metric to quantify how “compatible”

a task set is in terms of system schedulability. Two task

partitioning techniques are presented in Section VI. In Section

VII, we extend our partitioning algorithms to incorporate the

checkpointing feature to further enhance system schedulability.

Simulation studies are conducted in Section VIII. Finally, we

conclude our paper in Section IX.

II. RELATED WORK

Searching for the optimal task partitioning is essentially a

design space exploration problem. The key to the success of a

partitioned algorithm is to efficiently and accurately evaluate

a design alternative, i.e. a task allocation. A task allocation is

considered to be feasible if the timing constraints of all tasks

can be guaranteed under the influence of faults. To determine

if such a condition can be met, a number of fault-tolerant

schedulability analysis techniques are proposed.
Pandya et al. [13] developed an utilization bound of 0.5 for

hard real-time tasks scheduled under RMS policy on single-

core platforms when at most one failure can occur. It is a

sufficient condition to test the schedulability of tasks under

the influence of a failure. However, 0.5 is far from being a

tight bound of the system utilization, and the constraint that

the system can only experience one failure is too stringent.

Burns et al. [14] extended the traditional Worst Case Response

Time Analysis (WCRT) for fixed-priority tasks to incorporate

run-time faults. A necessary and sufficient schedulability test

was derived. However, they considered failure as a special

sporadic task that each failure is separated by a minimum inter-

arrival time. This assumption severely limits the applicability

of this approach. Zhang et al. [15] relaxed the constraints

regarding the fault pattern and proposed an exact timing

analysis based on the WCRT for fixed-priority tasks subject

to a maximum number of faults. While the exact timing

analysis can achieve high accuracy in feasibility analysis, it is

computationally prohibitive and is not suitable for design space

explorations. These aforementioned approaches are either too

computationally expensive or too pessimistic and are deemed

to be unsuitable for design space explorations.
Task partition is well-known as a NP-complete problem

[4]. Therefore, developing effective and efficient heuristics to

achieve sub-optimal results is usually a practical approach. A

plethora of papers have been published on partitioned multi-

core scheduling of fixed-priority periodic tasks.
Andersson et al. [16] showed that the maximum utilization

a fixed-priority multi-core scheduling can achieve on each

core is no more than 50%. AlEnawy et al. [6] studied

the schedulability and energy performance for periodic tasks

scheduled on a homogeneous multiprocessor platform with

different allocation methods, e.g. Best-Fit, Worst-Fit and First-

Fit, and speed assignments. They concluded that the over-

all performance of Best-Fit dominates the other well-known

heuristics in terms of schedulability. Task partitioning under

multiple resource constraints was studied in [17], and efficient

heuristics were proposed to improve system schedulability

considering resource assignment. Fan [7] et al. exploited

the fact that harmonic tasks (tasks that have periods being

integer multiples of each other) can achieve higher system

utilization and developed a metric to quantify how harmonic

a task set is. Based on this metric, they proposed an partition

approach by grouping the most harmonic tasks together and

showed that it can significantly outperform traditional bin-

packing approaches. Unfortunately, these approaches are fault-

oblivious.

There are only a few papers which are closely related

to our research. Pop et al. [18] investigated the problem of

guaranteeing the schedulability and reliability of tasks with

precedence constraints on a heterogenous multi-core plat-

form. They used the combination of checkpointing and active

replication to deal with the fault-tolerance problem. A meta-

heuristic approach, i.e. Tabu search was adopted to search for

the best task allocation and fault-tolerance policy for each task.

However, this approach is computational inhibitive and it is not

scalable with increasing number of tasks and cores. Guo et al.

[19] developed a standby-sparing technique to tolerate faults

by replicating task schedules on spare cores. This approach

requires extra processing cores and the aim is to save energy

rather than to improve system schedulability. Han et al. [20]

presented a method to determine the number of checkpoints

for each real-time task when making the tradeoffs between

checkpointing overhead (including both timing and energy)

and recovery cost. Our research focuses on improving the

system feasibility by judiciously partitioning tasks, and later

in this paper, we discuss how this approach can be integrated

into our approach for tasks with multiple checkpoints.

In what follows, we first introduce some preliminaries

crucial to this paper and use an example to motivate our

research. Then we formulate our research problem formally.

III. PRELIMINARIES

In this section, we introduce some basic concepts and

notations used throughout this paper.

A. Application and system model

The application under investigation is modeled as a periodic

task set Γ with n tasks, i.e. Γ = {τ1,τ2, ...,τn}. Each task

τi is associated with a tuple (Ci,Di,Ti) where Ci, Di and Ti
denote the worst case execution time, relative deadline and

minimum inter-arrival time (period) of τi, respectively. We

consider implicit-deadline tasks, i.e. D = T in this paper. Each

task can release an infinite number of jobs. We assume that Γ
is sorted by non-decreasing period order, i.e. for ∀τi,τ j ∈ Γ,

Ti ≤ Tj if i < j. We use ui =
Ci
Ti

to denote the utilization of

task τi. The total utilization of task set Γ is represented by

U(Γ) = ∑
τi∈Γ

Ci

Ti
. (1)
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We consider a multi-core platform that consists of M
homogenous preemptive cores, i.e. P = {P1,P2, ...,PM}. The

system average utilization is denoted as

Uavg =
U(Γ)

M
(2)

Partitioned scheduling is adopted in this paper and the tasks

assigned to each core are scheduled according to RMS. We

let ΓPj denote the set of tasks assigned to core Pj.

B. Fault-tolerance/reliability requirement

In this paper, we focus our efforts on tolerating transient/soft

errors that do not cause permanent damage to a processing

core. Transient/soft errors are the predominant type of failures

in modern computing systems [21]. In particular, we consider

that the system is subject to a maximum of K faults during one

operation cycle of the system (its length is the least common

multiple (LCM) of all task periods and is denoted by L). We

adopt this K-fault model for the following three reasons: 1)

it is a widely accepted fault model and well studied in the

literature [22], [23], [?], [15]; 2) it is more general in a sense

that it does not assume any particular fault pattern; 3) it can

be readily translated to the statistical reliability requirement,

as explained in [23].

To deal with the fault, we first consider the option to re-

execute the entire task once a fault is detected at the end of

the execution. Then the worst case recovery time for τi under

a single failure is denoted as

Fi = max
j=1,...,i

Cj. (3)

The max() function is used since a lower priority job of task

τi can be preempted by job(s) from any higher priority task

τ j, j ∈ [1, i−1]. Therefore, the worst-case delay it may suffer

due to a failure is the longest re-execution of a job among all

higher-priority tasks and τi itself.

C. Problem formulation

With the system models defined above, we formally formu-

late our research problem as follows.

Problem 1. Given a task set Γ scheduled under RMS on
a multi-core platform P , develop efficient and effective task
partitioning methods such that all tasks in Γ can meet their
deadlines when no more than K faults occur.

D. Motivation example

Problem 1 is a traditional NP-complete problem even with-

out the fault-tolerance requirements. To understand the unique

challenges of Problem 1, we first present a motivate example.

Consider a 2-core platform and a task set consists of 5 tasks,

the task parameters are shown in Table I. Assume that in order

to satisfy the reliability requirement of the task set, the task

set needs to tolerate 1 fault in the worst case scenario. It is

a well-known fact that, when real-time tasks are scheduled

according to RMS, allocating the harmonic tasks to the same

processor can achieve the maximum utilization of 1. As shown

in [7], algorithm HAPS takes advantage of this fact and, by

TABLE I
EXAMPLE I: A TASK SET WITH FIVE REAL-TIME PERIODIC TASKS

ARRANGED IN DECREASING PRIORITY ON A 2-CORE PROCESSOR WITH K
=1

τi Ci Ti ui

1 3.5 10 0.35

2 3.1 10 0.31

3 6 19 0.32

4 3 19 0.16

5 4 19 0.21

Fig. 1. Task partition based on HAPS. Task τ2 misses deadline under the
worst case.

grouping harmonic tasks together, it can significantly improve

the system schedulability. Note that the sub task set {τ3,τ4,τ5}
and {τ1,τ2} are perfect harmonic. Therefore, one intuitive

approach is to assign {τ3,τ4,τ5} to one core and {τ1,τ2} to a

different core, as shown in Figure 1.

As shown in Figure 1(a), processing core 1 is fully utilized

when the worst case, i.e. a fault strikes τ3, occurs. Still, all

tasks can meet their deadlines. However, as shown in Figure

1(b), if a fault strikes τ1, τ2 will miss its deadline.

Fig. 2. An alternative partition, all tasks are schedulable under the worst
case.

23



An alternative partition is to assign tasks τ1 and τ3 to core-2

and the rest to core-1. As shown in Figure 2, even though τ1

and τ3 are not entirely harmonic, neither are τ2, τ4 and τ5, it

can be readily verified that with this partition, all tasks can

meet their deadlines under the worst case as shown in Figure

2.

The above motivation example implies that, while harmonic

task sets can achieve high system utilization, making parti-

tion decisions without considering fault-tolerance requirements

may undermine the schedulability of a system. In what fol-

lows, we first conduct the feasibility analysis for real-time

tasks with fault-tolerance requirements and see how we can

enhance the real-time system schedulability by partitioning

tasks appropriately.

IV. FAULT-TOLERANT SCHEDULABILITY ANALYSIS FOR

FIXED-PRIORITY TASK SETS

While it is a common sense that harmonic task sets can

better utilize processor resource, as indicated in our motiva-

tion example above, grouping harmonic tasks together does

not necessarily always lead to the best solution when fault-

tolerance requirement is considered. To uncover the funda-

mental reason for this problem, we start with the feasibility

analysis for tasks with fault-tolerance requirements since the

key to a successful partitioning algorithm is to evaluate a

partition result effectively in a efficient manner. One advantage

of partitioning algorithms over global algorithms is that well-

established single-core scheduling methods (e.g. RMS) can be

readily adopted in partitioned settings. In what follows, we first

introduce an existing method with pseudo-polynomial running

timing for determining the schedulability of RMS-scheduled

real-time tasks under the influence of transient faults. Then, we

present a much more efficient schedulability test by exploiting

the implicit harmonic relations between task periods.

For a task set Γ with K-fault-tolerance requirement, its

feasibility can be determined using the traditional exact worst

case timing analysis. Specifically, the following theorem is

established in [22] for this purpose.

Theorem 1. A task τi ∈ Γ is schedulable if and only if there
exists a scheduling point t ∈ [0,Ti], such that

Ci +
i−1

∑
j=1

� t
Tj
� ·Cj +K ·Fi ≤ t, (4)

where t is defined in the set {tx|tx = n · Tj,n ∈ [1,� Ti
Tj
�], j ∈

[1, i]}. Therefore, a task set Γ is schedulable if ∀τi,τi ∈ Γ is
schedulable.

Note that, while the exact worst case response time analysis

in Theorem 1 helps to identify the exact schedulability of a

given real-time task set, it does not provide any guidance,

except for being applied in traditional heuristics such as bin-

packing methods, on which tasks should be grouped together

and assigned to the same core to improve the system schedula-

bility. In addition, since the complexity of this test is pseudo-

polynomial, it is not suitable for design space explorations

when designing large and complex systems.

As a harmonic task set is schedulable if its total utilization

is no more than 1 [24], the computational complexity for

schedulability checking is greatly reduced. Similarly, for a

harmonic task set with K-fault-tolerance requirement, the

feasibility condition can also be greatly simplified as shown

in the following lemma and theorem.

Lemma 1. Given a harmonic task set Γ, a task τi is schedu-
lable with no more than K fault occurrences if and only if the
following condition is met,

Ci +
i−1

∑
j=1

� Ti

Tj
� ·Cj +K ·Fi ≤ Ti (5)

Proof: We prove this lemma in two steps.

Sufficient condition:if equation (5) is met, then τi must be

schedulable according to Theorem 1.

Necessary condition: if task τi is schedulable, there must

exist a scheduling point t such that equation (4) is satisfied.

Furthermore, according to the definition of scheduling points,

t must be some arrival time(s) of higher priority task(s). As

a result, Ti must be some integer multiple of t, we denote it

by Ti = a · t where a is an arbitrary integer. Moreover, Ti can

be divided by any period Tj, j ∈ [1, i]. Therefore, we have the

following property,

Ci +
i−1

∑
j=1

� Ti

Tj
� ·Cj +K ·Fi =Ci +

i−1

∑
j=1

Ti

Tj
·Cj +K ·Fi

≤ a ·Ci +a ·
i−1

∑
j=1

� t
Tj
� ·Cj +a ·K ·Fi

≤ a · t = Ti.

In other words, if task τi is feasible, then equation (5) must

be met. Thus far, this lemma is proved.

Theorem 2. A harmonic task set Γ is schedulable with no
more than K fault occurrences if and only if the following
condition holds,

max
i=1,...,n

(Ue f f ,i +UFi)≤ 1 (6)

where Ue f f ,i = ∑i
j=1 u j and UFi = K · Fi

Ti
denotes the effective

utilization and the recovery utilization of task τi, respectively.

The proof of this Theorem 2 can be readily obtained from

Lemma 1 and is therefore omitted. Thus far, we develop an

efficient and effective schedulability tests for harmonic task

sets. However, it is a very stringent constraint for tasks to

be strictly harmonic. Therefore, we relax this constraint and

extend our method to more general task sets in this section.

For a given task set Γ, a corresponding transformed harmonic

task set Γ′i is defined as follows.

Definition 1. Given a task set Γ = {τ1, ...,τi, ...,τn} where
τi = (Ci,Ti) is the base task, then

Γ′i = {τ′1,i, ...,τi, ...,τ′n,i} (7)

is a transformed harmonic task set with τ′j,i =(C′j,i,T ′j,i),∀ j 
= i
where C′j,i =Cj and T ′j,i is the largest possible period that is
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less than Tj and can form a harmonic relationship with all
the other task periods. For two arbitrary tasks, i.e. τ′j,i and
τ′k,i and j < k, the period T ′j,i divides T ′k,i (denoted as T ′j,i|T ′k,i).
The utilization of task τ′j,i is denoted as u′j,i =

C′j,i
T ′j,i

.

In this paper, we adopt the DCT algorithm [24] to construct

harmonic task sets from an arbitrary task set Γ. Note that our

algorithms proposed in this paper are not restricted to any

transformation method. To make this paper self-contained, we

reiterate the steps of the DCT algorithm as below,

• sort task set Γ with non-decreasing period;

• using each τi ∈ Γ, transform Γ to Γ′i

T ′j,i =

⎧⎪⎨
⎪⎩

T ′j+1,i/(�T ′j+1,i/Tj�), if j < i
Tj, if j = i
T ′j−1,i · �Tj/T ′j−1,i�, if j > i

(8)

Under DCT, task execution times and task orderings remain

the same, but task periods become smaller. Therefore we can

determine the schedulability of task set Γ from that of its

transformed harmonic task sets, which is formulated in the

theorem below.

Theorem 3. Given a task set Γ with n tasks and its trans-
formed harmonic task set through DCT, i.e. Γ′i,1 ≤ i ≤ n, if
there exists i, such that Γ′i is schedulable with the maximum
of K fault-occurrences, then Γ is also schedulable with the
maximum of K fault-occurrences.

Theorem 3 can be readily proved noting that periods for

tasks in the transformed task set is no larger than that in the

original task set. A straightforward implementation of Theo-

rem 2 has a computational complexity of O(n). Therefore, the

computational complexity to check the schedulability based

on Theorem 3 is O(n2), which is usually much smaller than

that of Theorem 1.

V. COMPATIBILITY INDEX AND ITS PROPERTIES

The feasibility analysis results presented above clearly re-

veal the reason why allocating harmonic tasks to the same

core can in fact lead to inferior solutions. Note that, from

equation (6), the schedulability of a harmonic task set with

fault-tolerance requirement depends not only on the task set

utilization itself but also recovery utilization as well. There-

fore, to partition tasks with fault-tolerance requirements, we

need to consider not only if tasks are harmonic but also if

they are “compatible”. To this end, we design a new metric to

quantify the compatibility of tasks to be allocated to the same

processing core.

Definition 2. Given an arbitrary task set Γ and its trans-
formed harmonic task set Γ′i as defined in Definition 1, then
the compatibility index of task τ j , τ j ∈ Γ measured under
configuration Γ′i is defined as

COMP(τ j,Γ′i) = ΔHj,i +ΔEFj,i, (9)

where ΔHj,i = u′j,i − u j and ΔEFj,i = K · Fj−Cj
T ′j,i

denote the

harmonic distance of task τ j to its counterpart in Γ′i and the

extra recovery utilization task τ j has to endure considering
all the higher-priority tasks in Γ.

In what follows, we study the impacts of each factor

exclusively. A harmonic distance ΔHj,i [7] quantifies how

much utilization of a task τ j needs to be increased in order

to transform a task set Γ to a harmonic task set Γ′i. In other

words, it measures how harmonic the task τ j is with respect to

all the remaining tasks in Γ. The less the harmonic distance

for each task is, the better the system schedulability is. We

formally formulate this property in the following theorem.

Theorem 4. Consider a task set Γ and its two transformed
harmonic task set Γ′p and Γ′q (using τp and τq as base tasks,
respectively), where ΔEFi,p = ΔEFi,q and ΔHi,p ≤ ΔHi,q, for
∀τi. The task set Γ′p must be schedulable if Γ′q is schedulable.

Proof: If the task set Γ′q is schedulable, then for each task

τ′i,q ∈ Γ′q, the following condition must be satisfied according

to Theorem 2,

Ci

T ′i,q
+

i−1

∑
j=1

Cj

T ′j,q
+K · Fi

T ′i,q
≤ 1. (10)

Since ΔEFi,p = ΔEFi,q and ΔHi,p ≤ ΔHi,q, ∀τi, we have

u′i,p ≤ u′i,q ⇐⇒ T ′i,p ≥ T ′i,q. (11)

Then equation (10) can also be satisfied with a larger period

T ′i,p, which means that task set Γ′p is schedulable.

The extra recovery utilization represents the extra recovery

overheads that task τ j needs to tolerate when it is subject to

preemptions from all higher-priority tasks in Γ. A task is more

likely to be schedulable when there is less extra recovery over-

head. Therefore, with less extra recovery overhead for each

task, the system can potentially achieve better schedulability.

We summarize this property in Theorem 5.

Theorem 5. Given two harmonic task sets Γ1 and Γ2 with
identical number of tasks, let τ j,1 and τ j,2 be their jth task
in Γ1 and Γ2, respectively. Assume that ∀ j, u j,1 = u j,2 and
ΔEFj,1 ≤ ΔEFj,2. If Γ2 is schedulable, then Γ1 must also be
schedulable.

Proof: If the task set Γ2 is schedulable, then for each task

τ j,2 ∈ Γ2, the following condition must be satisfied according

to Theorem 2,

u j,2 +
j−1

∑
i=1

ui,2 +K · Fj,2

Tj,2
≤ 1. (12)

Since u j,1 = u j,2, and ΔEFj,1 ≤ ΔEFj,2, we have

ΔEFj,1−ΔEFj,2 = K · Fj,1−Cj,1

Tj,1

−K · Fj,2−Cj,2

Tj,2

= K · Fj,1

Tj,1
−K · Fj,2

Tj,2
−K · (u j,1−u j,2)

= K · Fj,1

Tj,1
−K · Fj,2

Tj,2
≤ 0.
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Therefore, for each task τ j,1 ∈ Γ1, the following condition is

met,

u j,1 +
j−1

∑
i=1

ui,1 +K · Fj,1

Tj,1
≤ 1. (13)

In other words, Γ1 is schedulable. Thus far, this theorem is

proved.

The above two theorems show that both of the factors in

compatibility index, i.e. harmonic distance and extra recovery

utilization, can play significant roles in reflecting the schedula-

bility of a task set. We consider both factors equally important,

and we define the compatibility index of a task set as follows.

Definition 3. The compatibility index of a task set Γ con-
sisting of n tasks is defined as

COMPT S(Γ) = min
i=1,...,n

n

∑
j=1

COMP(τ j,Γ′i), (14)

where COMP(τ j,Γ′i) is formulated in Definition 2. The less
the value COMPT S(Γ) is, the more compatible Γ is.

This metric measures not only the harmonicity of a task

set but also the fault-compatibility among all tasks. Let us

use the example in Section III-D to illustrate the efficacy

of this metric. We have COMPT S({τ1,τ2}) = 0.04 where

COMPT S({τ1,τ3}) = 0.018. Then τ1 and τ3 are deemed to

be more compatible, though their periods are not strictly

harmonic.

VI. FAULT-TOLERANT TASK PARTITIONING

In light of Section V, task sets with lower “compatibility

index” (more compatible) are more likely to be schedulable

under the influence of transient faults.

We are now ready to present our multi-core partition

algorithm “Compatibility Aware Task Partition (CATP)” in

Algorithm 1.

Algorithm 1 CATP(Γ, P , K)

Require:
Γ - task set with n tasks, P - multi-core platform with m

cores, K- number of faults.

1: sort tasks in non-increasing utilization order;

2: for i = 1 to n do
3: p index = 0; c min =+∞;

4: for j = 1 to M do
5: if τi can be assigned to Pj then
6: if COMPT S({τi,ΓPj})< c min then p index = j
7: end if
8: end for
9: if core index == 0 then return“FAILURE”;

10: else τi → Pp index ;

11: end for
12: return “SUCCESS” and partition results;

The task set Γ is first arranged in non-increasing utilization

fashion (Line 1). The algorithm allocates one task at a time.

Within each step, it tentatively assigns the current task to each

core and measures how compatible the task is with the existing

tasks on the core (Lines 3-8). If the current task can not be

allocated to any of the cores, the algorithm reports that a

feasible allocation can not be found (Line 9). Otherwise, the

task is assigned to the core with the minimum compatibility

value (Line 10). The partition result is returned if all tasks can

be successfully allocated.

Algorithm 1 is simple yet effective. It is a greedy approach

as it intends to find the best candidate core in each step when

assigning a task. However, the limitation of assigning task

one at time comes at the ignorance of the fact that a task to

be assigned in later stage may not be packed with the most

compatible tasks due to schedulability constraints.

Let us revisit Example 1. By running Algorithm CATP, a

feasible partition can be found with tasks τ1, τ4, τ5 assigned

to core-1 and tasks τ2 and τ3 to core-2. If we add another

task τ6 with parameters C6 = 2.6 and T6 = 19, it can be

verified that τ6 can not be allocated to neither of the core,

which results in a FAILURE. With a careful examination, we

can see that the most compatible tasks are τ1 and τ3 with a

COMPT S({τ1,τ3}) = 0.018, if we first group these two tasks

together and assign them to core-1, the rest of the tasks with

a COMPT S({τ2,τ4,τ5,τ6}) = 0.053 to core-2, all tasks are

schedulable under the worst case.

Next, we present our “Group-wise Compatibility Aware

Task Partition (G-CATP)” method in Algorithm 2.

Algorithm 2 G-CATP(Γ,K)

Require:
Γ - task set with n tasks, P - multi-core platform with m

cores, K- number of faults.

1: sort tasks in non-decreasing period order;

2: while isNOTempty(Γ) AND isNOTempty(P ) do
3: Γopt = /0;

4: for i = 1 to |Γ| do
5: Transform Γ into Γ′i with base task τi;

6: Find a subset Γ′sub from task set Γ′i (corresponding to

Γsub from Γ) such that

1. Γ′sub is schedulable;

2. U(Γ′sub) is maximized;

3. COMPT S(Γ′sub) is minimized.

7: if U(Γsub)>U(Γopt) then Γopt = Γsub;

8: end for
9: if U(Γopt) == /0, then return “FAILURE”;

10: else Γ = Γ−Γopt ; Γopt → an empty core;

11: end while
12: if isNOTempty(Γ) then return “FAILURE”;

13: else return “SUCCESS” and partition results

Different from Algorithm 1, in each step, Algorithm 2

assigns a group of tasks together to a core. Under each

harmonic transformation, determining the most compatible

subset of tasks while simultaneously guaranteeing all three

conditions at Line 6 is not a trivial task. A brute-force

exhaustive search is apparently computationally inhibitive and

impractical. Therefore, we use the heuristic as follows. With a
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given base task τi, we first assign τ′i to Γ′sub. Then, we scan all

the remaining tasks in Γ′i and find the task that results in the

minimum increase of COMPT S(Γ′sub) if it is assigned to Γ′sub.

We repeat the process until no more tasks can be added to Γ′sub.

After a group of tasks with the largest total original utilization

(utilizations before harmonic transformation) are determined

(Lines 3-8), they will be assigned to the first available core and

removed from Γ (Line 10). The algorithm reports “SUCCESS”

if all tasks can be assigned but otherwise report “FAILURE”.

Next, we extend our partitioning algorithms to incorporate

the checkpointing feature to further enhance system schedula-

bility.

VII. TASK SET WITH CHECKPOINTING

Till now, we assume that an entire job is re-executed once

a fault is detected. As shown in [20], checkpointing with roll-

back recovery is a very efficient technique to reduce recovery

overhead and improve system schedulability. To our best

knowledge, there is no work that targets on improving system

schedulability for fixed-priority tasks on multi-core platforms

based on exploring the combination of task partitioning and

checkpointing. Different task partitions can result in different

checkpointing configurations. Moreover, without the knowl-

edge of task partitioning, a predefined checkpointing scheme

will most likely lead to poor schedulability performances.

Therefore, it is not a trivial problem to search for the best com-

bination of checkpointing and task allocation. In what follows,

we endeavor to develop efficient and effective heuristics with

the joint consideration of checkpointing and task allocation

in order to maximize system schedulability. Specifically, we

extend our partitioning algorithms, i.e. CATP and G-CATP, to

incorporate the checkpointing scheme. We first introduce some

basics on checkpointing for ease of presentation.

Under checkpoint scheme, instead of rolling back to the

beginning of the execution of a job, the last saved checkpoint

is retrieved and the job is executed thereafter. For a task τi
with mi number of checkpoints, the length of a re-execution

segment is Ci
mi+1 . Therefore, the worst case recovery time for

a job of τi is modified to

Fi = max
j=1,...,i

(
Ci

mi +1
). (15)

Additionally, as inserting checkpoints incurs overhead, the

worst case exsection time of τi with mi checkpoints (its

overhead is denoted by oi) is denoted as

Ci(mi) =Ci +mi ·oi. (16)

With the new execution time and recovery for each task τ j ∈
Γ, the two factors, i.e. harmonic distance and extra recovery

overhead, in the compatibility index defined in Definition 2

are modified accordingly to

ΔHj,i =
Cj(m j)

T ′j,i
− Cj(m j)

Tj,i
(17)

and

ΔEFj,i = K ·
Fj− Cj

m j+1

T ′j,i
, (18)

respectively.

To find a feasible checkpoint scheme for a set of fixed-

priority tasks, we adopt the method ECHK in [20]. ECHK

iteratively inserts checkpoints to the task which has a higher or

equal priority than the first unschedulable task and the largest

recovery overhead. The algorithm ECHK returns either the

checkpointing configuration if a feasible one can be found or

a failure status indicating that the task set is unschedulable.

Then, algorithm CATP can be directly extended to integrate

the checkpointing scheme. Tasks are assigned one at a time,

and a task-to-core mapping is considered feasible only when

there exists a feasible checkpointing configuration for the task

set (including the to-be-assigned task) on that core. Given

a checkpointing scheme, the corresponding updated task-set

compatibility index can be readily obtained. Among all the

feasible cores (mappings), the one with the least task-set

compatibility index is selected. This process is repeated until

all tasks are assigned or no core can accommodate any more

tasks. We denote this algorithm as CATP-CHK. CATP-CHK

essentially utilizes “compatibility index” to evaluate the fitness

of task allocation and checkpointing, as “compatibility index”

has been shown to be very effective in reflecting system

schedulability.

Similarly, we modify algorithm G-CATP to incorporate the

checkpointing scheme. Different from CATP, G-CATP tries

to find the most compatible group of tasks with the largest

total utilization in each step. However, this problem with

the integration of checkpointing becomes more complicated,

as different checkpointing configurations can lead to large

variations of the “compatibility index” of a task set. Therefore,

developing efficient and effective heuristics to solve this prob-

lem is practical. Following the same procedures in Algorithm

2, we search the most compatible group of tasks under each

harmonic transformation, and the group is initialized with only

the base task, i.e. the task used for harmonic transformation.

The rationale of choosing the base task as the first task in the

group is that the group will have the least amount of task-set

“compatibility index”, i.e. 0, at the beginning. Then, we add

tasks to the group one at a time. A task can be combined into

the group only when ECHK returns a feasible checkpointing

configuration. Among all the tasks that can be assigned to

the group, the task which leads to the minimum increase of

“compatibility index” is selected. This process repeats until no

more tasks can be added to the group without jeopardizing its

schedulability. We denote this algorithm as G-CATP-CHK.

In the following section, we use extensive simulations to

demonstrate the effectiveness of our proposed algorithms.

VIII. SIMULATION RESULTS

In this section, we use simulations to evaluate the per-

formance of our proposed partition algorithms. Specifically,

we first study the impacts of different parameters, i.e. the

number of tasks and cores, system average utilization, and the

maximum number of faults on system schedulability. Then,

we investigate the effectiveness of incorporating checkpointing

scheme to improve system schedulability.
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Fig. 3. 32 tasks on 4-core platform, K=2.

As explained in [4], a widely adopted metric to evaluate a

partition algorithm is the acceptance ratio. First, a number of

synthetic task sets are generated, and the acceptance ratio is

calculated as the number of successfully partitioned task sets

divided by the total number of task sets as shown in equation

(19).

acceptance ratio =
The number of schedulable task sets

The total number of tasks sets
,

(19)

Four algorithms are evaluated in this section, namely, G-CATP,

CATP, HAPS and Best-Fit Decreasing (BFD). The first two

are proposed and explained in Section VI. The details of the

algorithm HAPS is elaborated in [7], where the algorithm uses

the harmonic distance (equation (9,14) without considering the

term extra recovery utilizaiton) as the guideline when tasks

are partitioned. HAPS has been shown to be quite effective

in improving system utilization for fault-oblivious systems.

BFD orders the tasks in a non-increasing utilization fashion

and assigns a task to the core with the minimum remaining

utilization.

The experimental setup is listed in details as follows. Task

sets were generated according to the algorithm UUniFast

in [25]. UUniFast is an algorithm designed for single-core

platform. In order to generate a task set with a total utilization,

i.e. Utotal larger than 1, we need to execute this algorithm M
times with the target utilization of Utotal

M during each run. We

discarded the test cases where an individual task utilization

exceeds 1
K+1 since a task with a larger utilization than this

can not even be scheduled by itself under the worst case

scenario, i.e. K faults occur. The period of each task τi, i.e.

Ti was randomly generated in the range of [10,1000], and its

execution time Ci was calculated as ui ·Ti.

A. Experiment 1, acceptance ratio vs. system average utiliza-
tion.

In this set of experiments, we study the relationships be-

tween system average utilization and acceptance ratio. We

fixed the the number of tasks and varied the system av-

erage utilization in the range [0.5,1] with a step of 0.05.

We considered a 4-core platform with 32 real-time tasks. A

maximum number of 2 faults was assumed in order to satisfy

the system reliability constraint. For each utilization value, we

Fig. 4. 64 tasks on 8-core platform, K=2.

generated 1000 task sets and the acceptance ratio was recorded

in Figure 3. As we can see, the acceptance ratios for all four

algorithms drop as the system average utilization increases.

This is reasonable since task sets with high utilizations are

difficult to be scheduled, especially when fault-tolerance is

considered. BFD has the worst performance since it does not

take the characteristics of tasks (e.g. harmonicity or compat-

ibility) into consideration. With a system utilization of 0.5,

BFD can only achieve an acceptance ratio less than 20%. In

the remaining experiments, we excluded BFD for comparison

unless otherwise specified. Both of our proposed algorithms

outperforms HAPS, due to the fact that our algorithms utilize

a more accurate metric to capture how compatible tasks are

during the partition process. In general, CATP has a better

performance than HAPS. For example, with a system average

utilization of 0.55, CATP has an acceptance ratio of 80%

while HAPS only achieves 52%, which is an approximate

60% improvements. G−CAT P has the best performance as it

tries to search for the most compatible group of tasks in each

step. For instance, when the system average utilization is 0.65,

G−CAT P still achieves an acceptance ratio of 41%, while

CAT P and HAPS only have an acceptance ratio less than 20%.

In average, CATP obtains a 24% improvement over HAPS, and

G−CAT P manages to get a further 40% enhancement over

CATP.

Next, we evaluated these algorithms on a 8-core platform

with 64 tasks. Additionally, a maximum of 2 faults was

assumed and the system average utilization was varied in

the range [0.5,1] with a step of 0.05. The superiority of our

proposed algorithms over HAPS is illustrated in Figure 4, 1000

task sets were generated for each point on the x−axis.

As the number of cores and tasks increase, all three

algorithms exhibit higher acceptance ratio. This is because

with a higher number of tasks, each task is likely to be

associated with a smaller utilization given a fixed system

average utilization and they are easier to be scheduled. CATP

still exhibits significant improvement over HAPS. When the

system average utilization is 0.6, HAPS has an acceptance

ratios of 30%, while CATP achieves twice the value, i.e. 60%.

G-CATP still has the dominated performance among all three

algorithms. In average, CATP attains a 48% improvement in

performance over HAPS whereas G-CATP further enhances
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Fig. 5. 32 tasks on 4-core platform, system average utilization is 0.5.

CATP by an approximate 45%. Both our algorithms tend to

have better performances for systems with more tasks and

cores, since they aggressively find the most compatible tasks

in each step.

B. Experiment 2, acceptance ratio vs. the number of faults.

In this section, we investigate the relationships between

acceptance ratio and the number of faults that a system needs

to tolerate. We fixed the system average utilization as 0.5 with

a 4-core platform consisting of 32 tasks. We varied the number

of faults from 1 to 4, i.e. K ∈ [1,4]. The result is shown in

Figure 5, 1000 task sets were generated for each configuration.

As the number of fault increases, the acceptance ratio

decreases dramatically for all three algorithms. However, both

of our algorithms, i.e. CATP and G-CATP outperform the

algorithm HAPS. When K = 2, HAPS has an acceptance

ratio of 70% while CATP and G-CATP can achieve 92% and

95%, respectively. Our G-CATP algorithm still exhibits the

best performance, it manages to achieve 40% acceptance ratio

while CATP and HAPS only have an acceptance ratio less

than 20% when K = 3.

The experimental results clearly demonstrate the effective-

ness of our proposed algorithms in terms of improving system

schedulability under failures. By grouping compatible tasks

and assigning them to the same core, we significantly enhance

system utilization and leave more space for the remaining

tasks.

C. Experiment 3, acceptance ratio vs. checkpointing

In this section, we study the effects of checkpointing on

system schedulability. Since there is no existing work in the

literature that solves the exact same problem, we first extend

the BFD to incorporate the checkpointing feature. The tasks

are sorted in non-increasing order of utilization, the algorithm

allocates one task at a time and use algorithm ECHK [20] to

search for a feasible checkpointing scheme for this task and

tasks on each candidate core. Among all feasible cores (a core

is considered feasible if there exists a feasible checkpointing

configuration among the tasks on the core and the task to

be allocated), the task is assigned to the core with the least

remanning utilization. BFD reports “FAILURE” is a task can

not be assigned. We denote this algorithm as BFD-CHK. The

Fig. 6. 32 tasks on 4-core platform, checkpoint overhead is 5 percent of
execution time, K=2.

performances of BFD-CHK and our two algorithm CATP-

CHK and G-CATP-CHK were evaluated.

We considered 32 tasks on a 4-core platform. The maximum

number of faults, i.e. K, was set to 2 and the checkpointing

overhead was assumed to be 5% of the worst case execution

time for each task. System average utilization was varied from

0.5 to 1 with a step of 0.05. 1000 task sets were generated for

each test case and the acceptance ratios were plot in Figure 6.

Compared with Figure 3, the acceptance ratios are increased

significantly. For instance, CATP-CHK and G-CATP-CHK and

can still achieve 60% and 70% acceptance ratios under a

relatively high system average utilization of 0.8 (zero under

CATP and G-CATP), respectively. This is due to the fact that

checkpointing can considerably reduce the recovery overhead

of each task and enhance the system schedulability under

faults. As can be seen, our algorithms substantially outperform

BFD-CHK. With a utilization of 0.5, CATP-CHK and G-

CATP-CHK both achieve an acceptance ratio of 100% whereas

BFD-CHK only achieves 40%. Among all three algorithms, G-

CATP-CHK still exhibits the best performance since it always

tries to search for the most compatible tasks in each step.

When system average utilization is 0.85, G-CATP-CHK has

an acceptance ratio about 40%, while that of CATP-CHK is

less than 10%. Once again, the simulation results demonstrate

that compatibility index is an accurate metric to quantify

how “compatible” a task set is and can guide task partitioning

correctly.

IX. CONCLUSION AND FUTURE DIRECTIONS

As the computing paradigm shifts toward multi-core plat-

forms, the need for effective and efficient multi-core schedul-

ing is ever-growing. Also, facing the unprecedented reliability

challenges brought forth by relentless transistor miniaturiza-

tions and mass integrations of transistors into a single chip,

traditional multi-core scheduling without explicitly consider-

ing system reliability is becoming obsolete. In this paper, we

first present an efficient test to evaluate the schedulability of

tasks scheduled according to rate-monotonic method under

faults. Then, we develop a novel metric to quantify the

“compatibility” among tasks, which is a direct indication of

system schedulability. In light of this metric, we develop two

partitioning approaches CATP and G-CATP. While algorithm
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CATP assigns one task at a time to the most compatible core,

G-CATP searches for the most compatible group of tasks in

each step and assigns them to one core. We further extend our

algorithms to incorporate the checkpointing scheme to further

improve system utilization. Simulation results have shown that

our proposed algorithms can achieve substantial improvements

over other related approaches.

Adopting the concept of “compatibility index” for var-

ious fault-tolerant real-time task models and studying the

corresponding partitioning problem on multi-core platforms

are very interesting research directions. For example, when

considering constrained-deadline tasks (Di ≤ Ti,∀i) instead

of implicit-deadline tasks (Di = Ti,∀i), RMS is not optimal

anymore. What’s worse, the harmonic distance and the extra
recovery utilization that are defined solely based task execution

times and periods may become inaccurate to quantify how

“compatible” a set of task is. Adding the third dimension,

i.e. deadline, to “compatibility index” and judiciously make

partitioning decisions are not trivial problems and require

careful investigation.

Another interesting direction is to extend the approaches

in this paper to heterogenous multi-core platforms. Different

from homogenous multi-core platform, the execution profile

for each task may vary widely from core to core. To improve

task set schedulability, one intuitive approach is to assign

“heavy tasks” to fast cores. However, a task may take less

execution time on one core but is more compatible with

the tasks on the other core. How to make tradeoffs between

execution speed and compatibility is worth careful studying.
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