
Energy Minimization for Fault Tolerant Scheduling of
Periodic Fixed-Priority Applications on Multiprocessor

Platforms
Qiushi Han∗, Ming Fan†, Linwei Niu‡, Gang Quan∗,

∗Department of Electrical and Computer Engineering, Florida International University, Miami, FL, 33174
‡Broadcom Corporation, 3151 Zanker Road, San Jose, CA 95134

‡Department of Mathematics and Computer Science, West Virginia State University, WV, 25112
Emails: {qhan001, gang.quan}@fiu.edu, mingfan@broadcom.com, lniu@wvstateu.edu

Abstract—While technology scaling enables the mass integration of
transistors into a single chip for performance enhancement, it also
makes processors less reliable with ever-increasing failure rates. In
this paper, we study the problem of energy minimization for scheduling
periodic fixed-priority applications on multiprocessor platforms with
fault tolerance requirements. We first introduce an efficient method to
determine the checkpointing scheme that guarantees the schedulability
of an application under the worst-case scenario, i.e. up to K faults
occur, on a single processor. Based on this method, we then present a
task allocation scheme aiming at minimizing energy consumption while
ensuring the fault tolerance requirement of the system. We evaluate
the efficiency and effectiveness of our approaches using extensive
simulation studies.

Keywords—energy-aware, fault tolerance, checkpointing, fixed-
priority, partitioning

I. INTRODUCTION

With the continuing advancements in technology scaling, mass in-
tegration of transistors into a single chip has been a primary method
to enhance computing capabilities. However, with the tremendous
increase of transistors in an IC chip, the power consumption has
increased dramatically, i.e. in an exponential order [1]. Power/energy
awareness has thus been a first-class design concern for the past
several decades, and much research has been conducted (e.g. [2]–
[5]) to minimize energy consumption while guaranteeing timing and
other performance requirements under a large variety of system and
task models. In the meantime, the relentless technology scaling has
also drastically degraded the reliability of computing systems [6]–
[8]. For example, it has been shown in [8] that the soft error rate
(SER) per chip of logic circuits increased nine orders of magnitude
when the size of transistors shrunk from 600nm to 50nm. For safety-
critical systems, e.g. aircrafts and power plants, it is imperative that
run-time faults be handled properly in a timely manner.

We are interested in the problem on how to develop real-time
systems with joint consideration of energy efficiency and fault
tolerance. We are particularly interested in the methods that can
judiciously employ the common energy-saving and fault tolerance
mechanisms, i.e. dynamic voltage and frequency scaling (DVFS)
and checkpointing, respectively, in the design of real-time systems
with high energy efficiency and reliability. DVFS dynamically
adjusts the supply voltage and working frequency of a processor to
reduce power consumption. Most of the modern processors, if not
all, are equipped with such capability [9], [10]. The checkpointing
with rollback recovery is one of the most popular approaches for

This work is supported in part by NSF under project CNS-1423137 and CNS-
1018108.

fault tolerance [11]–[13]. It consists of storing a snapshot of the
current system state and rolling back to it in case of failure.

When dealing with both energy conservation and fault tolerance,
one big challenge is how to balance the resource usage between the
two, since energy conservation strategies need additional resources
for lowering down system speed, and fault tolerance strategies need
additional resources for fault detection and recovery. A number
of techniques have been presented in the literature. For example,
Zhang et al. [13] proposed a genetic algorithm to determine the
DVFS schedule and checkpointing interval for fixed-priority tasks
aiming at minimizing fault-free energy consumption while tolerating
a predefined number of faults. This approach was later extended
by Wei et al. [12] to an online scheme that dynamically explores
slacks to further save energy consumption. Zhao et al. [14] exploited
the concept of sharing recoveries among multiple tasks to reduce
the amount of resource reservations, hence leave more space for
power management. However, all the aforementioned approaches
are restricted to uniprocessor platforms.

There are also several papers published that are closely related to
our research. Pop et al. [15] presented a constraint logic program-
ming method to develop fault-tolerant DVFS schedules for real-
time tasks with precedence constraints on distributed heterogeneous
platforms. The task allocation is assumed to be known a priori.
Fault tolerance is achieved by reserving passive backup(s) for a
task on the same processor and activating it in case of failure.
With the slacks mostly being occupied by reserved recoveries, the
space for DVFS is severely limited. Haque et al. [16] proposed a
stand-sparing technique for fixed-priority applications on a dual-
processor platform. Active replication with delayed starting time
is employed for the purpose of maintaining task reliability and
reducing energy consumption. Again, an entire task needs to be
re-executed in presence of a failure and active replication can
consume extra energy even under fault-free scenario. Pop et al.
[11] proposed a more comprehensive approach to the synthesis of
fault tolerant schedule for applications on heterogeneous distributed
systems. They used the combination of checkpointing and active
replication to deal with the fault tolerance problem. A meta-heuristic
(Tabu search) is constructed to decide the fault tolerance policy, the
placement of checkpoints and the mapping of tasks to processors,
but energy consumption is not considered in their approach. Han
et al [17] proposed an optimal checkpointing scheme for minimize
the worst case response time of an application on a single processor
and developed a task allocation scheme for energy minimization.
However, this approach is limited to frame-based task sets, hence it

830978-3-9815370-4-8/DATE15/ c©2015 EDAA

does not apply to a much more complicated fixed-priority periodic
task model.

In this paper, we study the problem of minimizing the energy con-
sumption for periodic fixed-priority hard real-time systems running
on homogeneous multiprocessor platforms while ensuring that the
systems can tolerate up to K transient faults. We adopt the widely
used DVFS and checkpointing as the energy management method
and the fault tolerance policy, respectively. We focus our efforts
on fixed-priority scheduling due to its simpler implementation and
better practicability [18] compared with dynamic priority-based
scheduling. It is well known that multiprocessor scheduling is
an NP-hard problem. Therefore, to solve our problem, we first
present an efficient and effective method, i.e. ECHK, on how to
identify a checkpointing scheme for fix-priority tasks on a single
processor to guarantee their schedulability under the worst case, i.e.
K faults occur. We theoretically prove the validity of ECHK and its
superiority to the state-of-art technique. We then propose an task
allocation scheme, i.e. TACHK, based on ECHK to minimize the
system energy consumption. Simulation results show that, we can
achieve as much as 13% and 59% energy reduction compared with
two different related approaches, respectively.

The rest of the paper is organized as follows. Section II introduces
the system models and notations used throughout this paper. We in-
troduce our efficient algorithm for obtaining a feasible checkpointing
solution for a given task set on a single processor in Section III.
We then present our energy efficient fault-tolerant task-allocation
algorithm in section IV. The effectiveness and efficiency of our
algorithms are evaluated in Section V. Finally, section VI concludes
the paper.

II. PRELIMINARIES

A. Application model

The real-time application considered in this paper consists of
n independent sporadic tasks, denoted as Γ = {τ1,τ2, ...,τn}. Each
task is characterized by a tuple (Ci, Di, Ti). Ci denotes the worst-
case execution time of a task τi, whereas Di and Ti represent its
deadline and minimum inter-arrival time (period), respectively. Each
task can generate an infinite number of instances or jobs, we use
these two terms interchangeably in this paper. The utilization of task
τi is represented as ui =

Ci
Ti

. The system utilization U is therefore
calculated as Utotal = ∑n

i=1
Ci
Ti

.

B. Fault model and checkpointing

In this paper, we assume that there are at most K transient faults
within one least common multiple (LCM) of all the task periods in
Γ but we do not make any assumptions regarding the fault pattern.
In other words, the transient faults can strike any task instance at
any time, and multiple faults may affect the same task instance.
Once a fault is detected, the task instance being affected rolls back
to the last saved checkpoint and re-executes the faulty segment. We
consider the checkpoint to be self fault-tolerant.

We assume all the jobs of the same task have the identical number
of checkpoints. Inserting one checkpoint to an instance of task τi
refers to the operation of saving its current state and condition to
memory, with its the timing and energy overhead denoted as oi and
eoi, respectively. Before inserting a checkpoint, a fault detection
is always performed to ensure the sanity of the to-be-saved state.
We use qi and eqi to denote the timing and energy overhead for
such an operation. Moreover, once a fault is detected during the

execution of an instance of task τi, it needs to rollback to the latest
checkpoint, i.e. to retrieve the latest-saved correct information. The
time and energy overhead of this operation are represented by ri
and eri, respectively.

The fault-free execution time of an instance of task τi is a function
of the number of checkpoints, and is formulated in equation (1a).
Note that, with mi checkpoints, the fault detections are performed
mi + 1 times including the one at the end of the job’s execution.
The recovery time of τi with mi checkpoints under a single failure
includes three parts, namely the time to rollback to the latest
checkpoint, the time to re-execute the faulty segment and the time
to perform a fault detection operation at the end. We denote it as
Fi(mi) and formulate it in equation (1b).

Ci(mi) =Ci +mioi +(mi +1)qi (1a)

Fi(mi) = ri +
Ci

mi +1
+qi (1b)

Since a lower priority task τi is subject to the workload interfer-
ence (including recoveries) from higher priorities tasks, the worst
case recovery time for τi is the longest recovery time among all
tasks with higher priority and τi itself. Specifically, we denote it as

MRi = max(F1,F2, ...,Fi). (2)

Regarding τ′is schedulability, adding more checkpoints to its
higher priorities tasks increases the interference caused by fault-
free workloads, which may undermine τ′is schedulability. However,
it may decrease the recovery time needed for τi, i.e. MRi, which is in
favor of τ′is schedulability. Therefore, to determine the appropriate
number of checkpoints for scheduling real-time tasks under the fault
tolerance constraint is not a trivial task.

C. Platform and energy model

We assume that there are a total number of φ processors on
a homogeneous multiprocessor platform Ψ, i.e. Ψ = {ψ1, ...,ψφ}
and there exist a set of L-level discrete speeds/frequencies for each
processor, which is denoted as FR = { f1, f2, ..., fL}. Without loss of
generality, we assume 0 ≤ fL ≤ fL−1 ≤ ...≤ f1 = 1.

We adopt the power model in [17], [19] by considering the
frequency-independent and frequency-dependent power compo-
nents. Specifically, the overall power consumption P can be for-
mulated as

P = Pind +Pdep = Pind +Ce f f α, (3)

where Pind is the frequency-independent power, including the power
consumed by off-chip devices such as main memory and external
devices and constant leakage power. Ce f is the effective switching
capacitance. α is a constant usually no smaller than 2. Pdyn is the
dynamic power consumed by switching transistor state. As a result,
the fault-free energy consumption of a job from task τi with mi
checkpoints executed under speed fi is calculated as:

Ei(fi) = (Pind +Ce f f α
i) ·

Ci

fi

+mi(eoi +oiPind)+(mi +1)(eqi +qiPind), (4)

where the first part is the energy consumed by executing the job (the
scaled execution time of task τi under frequency fi is Ci

fi
), and the

second and the third part represent the energy overhead from check-
pointing and fault detections, respectively. Similar to [13], [17], we
assume that checkpointing, fault detections and checkpoint retrievals
are not affected by processor frequency. Note that, during those

2015 Design, Automation & Test in Europe Conference & Exhibition (DATE) 831

operations, the frequency-independent power is still consumed. As
Ei(fi) is a convex function, one intuition to save energy is to lower
the operating frequency as much as possible, provided it is larger
than so-called critical frequency (fc = α

√
Pind

(α−1)Ce f
) [20].

Γ j is used to denote the set of tasks assigned to the processor ψ j.
As we only study the energy consumption within one LCM of the
task periods, the energy consumption of processor ψ j is formulated
in equation (5).

E(Γ j) = ∑
τi∈Γ j

LCM
Ti

Ei(fi). (5)

The total energy consumption of the system is thus E(Γ) =

∑φ
j=1 E(Γ j).

III. FEASIBLE CHECKPOINTING CONFIGURATION FOR
FIXED-PRIORITY TASKS ON A SINGLE PROCESSOR

Our goal is to minimize the energy consumption while being
able to tolerate, in the worst case, K faults when scheduling a
fixed-priority task set on a multiprocessor platform. One key to
this problem is to choose an appropriate number of checkpoints
for each task. Adding more checkpoints to tasks may reduce the
recovery overheads, which is in favor of system schedulability.
However, excessive checkpointing overheads may outweigh the
benefits of decreasing recovery overheads, which might undermine
the schedulability of the system. Therefore, to determine the number
of checkpoints for each task is not a trivial problem and must be
carefully studied.

As a closely related work, Zhang et al. [13] showed that the
optimal number of checkpoints to minimize the worst case latency
of a single task τi, denoted as m∗

i , can be calculated as

m∗
i =

⎧⎨
⎩

�
√

K∗ci
oi+qi

−1� if ci >
(m−

i +1)(m−
i +2)(oi+qi)
K

	
√

K∗ci
oi+qi

−1
 if ci ≤ (m−
i +1)(m−

i +2)(oi+qi)
K

where m−
i = 	

√
K∗ci
oi+qi

− 1
. However, when considering multiple
fixed-priority tasks on a single processor, the individual optimal
checkpointing configuration does not necessarily lead to a feasible
checkpointing configuration for a task set.

To this end, Zhang et al. [13] proposed a recursive approach
for identifying a feasible checkpointing scheme for a given fixed-
priority task set on a single processor. Specifically, the recursive
algorithm, i.e. (ZCP(p,q)), takes two parameters p and q as inputs,
where p and q are the indexes for the first and last task in the sub-
task set with checkpoint numbers to be determined. The algorithm
works as follows:

1) Initially, let mi = 0 and obtain m∗
i for 1 ≤ i ≤ n. Set p = 1,q =

n.
2) ZCP(p,q): Starting from the first task τp, evaluates the schedu-

lability of each task in decreasing order of task priorities, and
finishes successfully if all tasks are determined schedulable.

3) If task τ j, j ∈ [p,q] is not schedulable, the task τh,h ∈ [1, j]
with the longest recovery is found and one more checkpoint
is added to it, i.e. mh = mh+1 to reduce its recovery time, i.e.
Fh = Fh(mh). Since the addition of checkpoints to τh affects
the schedulability of the tasks from τh to τ j, we need to set
p = h,q = j and recursively call ZCP(p,q).

4) ZCP(p,q) terminates and reports that the task set is unschedu-
lable if, for each task τi, i ∈ [1, p], the number of checkpoints
is larger than m∗

i , i.e. the optimal value for a single task.

This approach works well only for small task sets and/or tasks
with small optimal checkpoint numbers. Otherwise, it can be
extremely time consuming. Note that, a task τi is considered
unschedulable only when the checkpoint numbers of all tasks in
{τ1,τ2, ...,τi} exceed their individual optimal numbers. In addition,
each time when a checkpoint is added to a task τi, the schedulability
of task τi along with all the lower-priority tasks has to be re-
evaluated. These two factors contribute the most to the excessive
running time of ZCP and make it extremely computational expensive
for design space explorations for our multiprocessor energy-efficient
fault-tolerant real-time scheduling problem, which is NP-hard in
nature.

It is therefore desirable that a more efficient and effective method
can be developed to rapidly determine the checkpointing configura-
tion for tasks on a single processor. In what follows, we introduce
several theorems, and based on which, we develop a much more
efficient algorithm.

Theorem 1: Given a checkpointing configuration
M = {m1, ...,mp, ...,mn}, assume that there exists a task τp
with mp > m∗

p. Let M′ = {m1, ...,m∗
p, ...,mn}. Then if the task set Γ

is unschedulable under M′, it must also be unschedulable under M.
Proof: Detailed proof can be found in our technical report [21].

Theorem 1 implies that, if the task set is not schedulable when
the number of checkpoints of any task has already exceeded its indi-
vidual optimal number, this task set is deemed to be unschedulable.
As a result, there is no need to increase the numbers of checkpoints
for other tasks until all of them exceed their individual optimal
numbers, as in ZCP algorithm stated above. With larger task sets
and larger optimal checkpoint numbers for each tasks, Theorem 1
can improve the computational efficiency tremendously.

In addition, changing the number of checkpoints of a higher
priority task also changes its preemption impacts to the low priority
tasks and thus results in time-consuming schedulability checking
operations. The following theorem helps to greatly reduce the
computational cost for schedulability checking.

Theorem 2: Let τq be the unschedulable task with the highest pri-
ority under the checkpointing configuration M = {m1, ...,mq, ...,mn}.
Assume that τq becomes schedulable under a new configuration
M′ = {m′

1, ...,m
′
q, ...,m

′
n}, ∀i,m′

i ≥ mi when gradually adding check-
points to tasks with the largest recovery cost. Then, for any higher
priority task τi, where i ∈ [1,q), if it is schedulable under M then it
must be schedulable under the new configuration M′.

Proof: Detailed proof can be found in our technical report [21].

According to Theorem 2, for the first task τq that misses its
deadline under a checkpoint scheme, if we are able to incrementally
add checkpoints to its higher-priority tasks or itself to make it
schedulable, all tasks with priorities higher than τq are guaranteed
to be schedulable. This theorem can eliminate the computational
efforts for re-evaluating the schedulability of higher priority tasks
when inserting the checkpoints to them. Based on Theorem 1 and
2, we formulate an efficient and effective algorithm for finding a
feasible checkpointing configuration for fixed-priority tasks on a
single processor, as shown in Algorithm 1.

ECHK evaluates the schedulability of each task from the highest
priority to the lowest. If an unschedulable task τi is encountered,
ECHK searches for the checkpointing configuration to make τi
schedulable by repeatedly adding checkpoints to a higher priority
task or τi that currently contributes the most to τ′is recovery, an

832 2015 Design, Automation & Test in Europe Conference & Exhibition (DATE)

Algorithm 1 ECHK(Γ, K)
Require:

1) Task set : Γ = {τ1,τ2, ...τn};
2) Number of faults: K

1: flag = “task set schedulable”
2: obtain m∗

i , for i = 1,2, ...,n according to [11]
3: ∀i, i =,1,2...,n, initialize mi to 0;
4: for (i = 1; i < n+1; i++) do
5: while τi is not feasible do
6: Fh = max(F1, ...,Fi);
7: mh = mh +1;
8: if mh > m∗

h then
9: f lag = “task set unschedulable”

10: return f lag
11: end if
12: end while
13: end for
14: return f lag, M = {m1,m2, ...,mn}

termination condition is set according to Theorem 1. If an feasible
checkpointing configuration is found, then the schedulability of
all the tasks with higher priorities than τi is guaranteed based on
Theorem 2.

Algorithm 1 greatly simplifies the process of searching for a
feasible checkpointing combination for a given task set on a single
processor. The complexity of ZCP is O(∏n

i=1 m∗
i · nT), where T is

the longest time for evaluating the schedulability of a task using
exact response time analysis, whereas our ECHK has a complexity
of at most O(∑n

i=1 m∗
i ·nT). Moreover, given that our algorithm can

determine a task set to be unschedulable as soon as the number of
checkpoints of any task exceeds its individual optimal value, ECHK
is much more efficient in practice.

IV. ENERGY AWARE TASK ALLOCATION

Based on our algorithm ECHK that guarantees the uniprocessor
fault tolerance, we now present an algorithm determining the task
allocation and the corresponding DVFS schedule on multiprocessor
platforms to minimize the overall energy consumption.

Without the fault tolerance requirement, one intuitive method is
to balance the workload among multiprocessor platforms as much
as possible [2] such that each processor can run at a relatively
low speed. When we take fault tolerance into account, however,
extra care must be taken since both recovery reservation and energy
management compete for system resources. The amount of reserved
resources heavily depends on the feasible checkpointing scheme that
can be obtained for a given task set. Balancing the workload does
not necessarily leads to a favorable checkpointing scheme, since the
system utilization itself does not provide any information regarding
the fault-tolerant schedulability of a task set. On the other hand,
packing as many tasks as possible into one processor helps to reduce
the number of processor to be utilized, but leaves less space for
slowing down the processor.

In what follows, we focus our effort on developing an effective
heuristic for jointly determining the task allocation, checkpointing
configuration and DVFS schedule for fixed-priority task sets sched-
uled on multiprocessor platforms, as it is a NP-Hard problem in
strong sense [11].

Our task allocation scheme for energy minimization with K-fault
tolerance capability is developed based on the algorithm ECHK. The

Algorithm 2 TACHK(Γ, Ψ, K)
1: Γ j = NULL, for j = 1,2, ...,φ;
2: for i = 1; i ≤ n; i++ do
3: f easible speedi = fmax;
4: assigned = 0;
5: for j = 1; j ≤ φ; j++ do
6: { f lag,Mtemp} = ECHK(Γ j ∪ τi, K);
7: if (! f lag) then
8: continue;
9: end if

10: speedtemp = determine core speed(Γ j ∪ τi,K);
11: if speedtemp < f easible speed then
12: assigned = j; f easible speedi = speedtemp;
13: end if
14: end for
15: if assigned == 0 then
16: return “not schedulable”;
17: else
18: Γassigned ← Γassigned ∪{τi};
19: end if
20: end for
21: calculate the energy consumption Etotal according to equation

(4) and (5);
22: return {Γ1, ...,Γφ},Etotal

Algorithm 3 determine core speed(Γ, K)
1: lowest f easible speed = fmax;
2: sort the available discrete speeds of the processors,i.e. FR in

decreasing order;
3: for i = 1; i ≤ |FR|; i++ do
4: Γtemp: temporary task set resulting from Γ scaled by fre-

quency FR[i];
5: flag = ECHK(Γtemp, K);
6: if (! f lag) then
7: break;
8: else
9: lowest f easible speed = FR[i];

10: end if
11: end for
12: return lowest f easible speed

overall algorithm is described in Algorithm 2. Specifically, when
allocating a new task τi, we tentatively assign τi to each processor
and determine whether a feasible checkpointing can be obtained.
For each feasible candidate processor ψ j, we search for the lowest
constant speed that can guarantee the schedulability of all the tasks
assigned to it according to Algorithm 3. As excessive frequency
switching can cause significant overhead, we use a constant speed
for each processor. Then, τi is allocated to the processor with the
lowest possible speed among all the feasible candidates.

In Algorithm 3, we reduce the speed of a core one level at a
time until the lowest speed that yields a feasible checkpointing
scheme is reached. Therefore, the complexity of our algorithm
greatly hinges on that of ECHK. We assume that the re-execution
of a faulty task is always performed at the highest speed, given
the probability of failure is low. The checkpointing overhead is
considered independent of the processor’s running mode.

It is not difficult to see that the overall complexity of Algorithm

2015 Design, Automation & Test in Europe Conference & Exhibition (DATE) 833

(a) varying the number of tasks (b) varying the number of K (c) varying checkpoint overhead

Fig. 1. Time complexity comparison, ECHK vs. ZCP

3 is O(nL∑n
i=1 m∗

i ·T), where L is the number of available processor
frequencies and T is the longest time for evaluating the schedula-
bility of a task using exact response time analysis. Furthermore, the
complexity of Algorithm 2 is O(n2 ·φ ·L∑n

i=1 m∗
i ·T).

V. EXPERIMENTAL RESULTS

In this section, we use simulations to verify the effectiveness and
efficiency of our proposed algorithms.

A. Timing complexity evaluation

Firstly, we evaluate the timing complexity of our algorithm
ECHK against the method proposed in [13], i.e. ZCP, on a unipro-
cessor platform.

We set the system utilization to be 0.8. Note that, we fixed the
system utilization to a high value such that the task set generated was
not schedulable under faults without checkpointing. The period of
each task was randomly selected in the range [10,1000]. The rest of
the task parameters were generated according to UUNIFAST in [22].
In our experiments, ZCP can easily fail even with a small number
of task when the execution ratio, i.e. Cmax

Cmin
is very large (e.g. > 100),

where Cmax and Cmin are the longest and shortest execution time in
the task set, respectively. This is due to the fact that it may keep
adding checkpoints to the task with a number of checkpoints already
larger than its optimal value and thus incurs unnecessary recursions.
Therefore, we first modified the ZCP according to Theorem 1. The
running times of ECHK and ZCP greatly rely on the following
three factors: the number of tasks, checkpointing overhead and the
number of faults. We conducted experiments regarding each factor
and recorded the results as shown in Figure 1. The result of each
test case is the average from over 1000 task sets.

In Figure 1(a), we set K = 2 and the checkpointing overhead of
each task τi as 3% of its worst case execution time, i.e. Ci. The
number of tasks was varied from 20 to 320 with a step of 50.
As can be seen from the figure, our approach ECHK significantly
outperforms the method ZCP. ECHK can achieve a speedup with
the maximum of 38X and 20X in average.

Next we evaluated the impact of increasing K on running time
of ECHK and ZCP, respectively. The number of tasks was set to
200 and the checkpointing overhead of each task τi was fixed at 3%
of its worst case execution time, i.e. Ci. As expected, our ECHK
performs much better in terms of timing complexity. In this case,
ECHK can achieve a maximum speedup of 37X and an average
speedup of 30X.

Finally, we studied the effects of increasing checkpointing over-
head. The checkpointing overhead was varied from 1% to 11% of
the worst case execution of each task, and the numbers of faults and
tasks were set to 2 and 200, respectively. As shown in Figure 1(c),

when the checkpointing overhead increases, the individual optimal
number of checkpoints for each task decreases, hence the search
space becomes smaller. While running time of both algorithms
decrease, our algorithm can achieve a speedup of 16X in average.

In conclusion, our algorithm ECHK is significantly more efficient
than ZCP and more scalable in terms of task numbers, the number
of faults and checkpoint overhead.

B. Energy performance evaluation

Next, we evaluated the effectiveness of our algorithm TACHK.
To our best knowledge, there is no existing approach that solves

the exact same problem. Therefore, we evaluated our algorithm
against two widely used fault-oblivious approaches, i.e. Best-Fit
(BF) and Worst-Fit (WF). In particular, WF is well-known for its
effectiveness in fault-oblivious energy reduction as it balances the
workload among different processors [2].

To make BF and WF fault-tolerant, we propose a two-step
approach. The first step is to identify a feasible task allocation
solution. Similar to our approach TACHK, we tentatively allocate
the current task to each processor. We use ECHK to check if a
processor is a feasible candidate. BF (WF) allocates a task to a
feasible processor with the least (most) remaining capacity, i.e.
the spare utilization. After obtaining a feasible allocation solution,
Algorithm 3 is used to find the lowest constant speed for each
processor and then the total energy consumption is calculated. The
energy consumptions of TACHK and WF are normalized with
respect to that of BF.

To evaluate the energy saving performance, we set up the simu-
lation platform as follows. For a fixed number (φ) of processors, we
varied the average utilization, i.e. Utotal

φ from 0.2 (light load) to 0.8
(heavy load). The period of each task τi was uniformly distributed
in the range [10,1000]. The rest of task parameters were generated
according to UUNIFAST [22]. The fault detection, checkpointing
and state retrieval overhead were identically set to 1%, 3% and
3% respectively for each task. The corresponding energy overheads
were set to 1%, 3% and 3% of the dynamic energy under fmax for
each task. In addition, we set Pind = 0.1, Ce f = 1 and α = 3 [17] and
we assumed the existence of the normalized frequency in the range
of [0.2, 1] with a step of 0.05. The faults were randomly generated
with a probability of K

LCM , where K is the maximum number of
faults the system needs to tolerate and LCM is the least common
multiple of all task periods, respectively.

We present three sets of experimental results with various num-
bers of tasks, processors and total transient faults. Each value
reported in the figure is averaged over 1000 test cases. Figure
2(a) shows the energy consumption for a 4-processor system with
40 tasks and K=2. We can see the energy consumption increases

834 2015 Design, Automation & Test in Europe Conference & Exhibition (DATE)

(a) 40 tasks on 4 processors, K = 2 (b) 80 tasks on 8 processors, K = 5 (c) 160 tasks on 16 processors, K = 10

Fig. 2. Energy comparison of different approaches

for all three techniques as the system workload becomes heavier,
but our approach TACHK always outperforms the other two. For
instance, when the processor average utilization is 0.65, 12%(34%)
energy saving is achieved by TACHK over WF (BF). Our algorithm
achieves a energy reduction of 7.5% (38.4%) in average when
comparing with WF (BF). The energy savings are more substantial
in Figure 2(b), on a 8-processor system with 80 tasks that can
tolerate 5 faults, TACHK in average saves 10% and 46% energy over
WF and BF, respectively. Similarly, for the case of a 16-processor
system with 160 tasks that can tolerate at most 10 faults as shown
in Figure 2(c), 13% and 59% energy savings are achieved over
WF and BF, respectively. In general, we can see that our approach
becomes more effective when system utilizations and/or the number
of tasks/processors become larger. The reason is that at each step,
our approach TACHK tries to determine the best combination of
task allocation, checkpointing configuration and speed assignment.

VI. CONCLUSION

With relentless technology scaling and mass integration of tran-
sistors into a single chip, the exponentially increased power con-
sumption and the severely degraded reliability have become first-
class design issues in modern computing systems. In this paper,
we study the energy minimization problem for hard real-time
fixed-priority systems running on multiprocessor platforms that
can tolerate up to K transient faults. We propose a solution to
this problem by jointly considering the task allocation, checkpoint
configuration and speed assignment. We first develop an efficient
method to judiciously determine the checkpointing scheme that can
guarantee the schedulability of a task set on a single processor.
From our theoretical analysis and simulation results, we can see
that this algorithm is much more efficient than the state-of-art
technique. We then present an algorithm that comprehensively takes
the task allocation, checkpointing scheme and speed assignment into
account for designing systems with high energy-efficiency and fault-
tolerance requirements. Its efficiency and effectiveness are clearly
validated by extensive simulation results.

REFERENCES

[1] T. Skotnicki, J. Hutchby, T.-J. King, H.-S. Wong, and F. Boeuf, “The end of
cmos scaling: toward the introduction of new materials and structural changes
to improve mosfet performance,” Circuits and Devices Magazine, IEEE, vol. 21,
no. 1, pp. 16 – 26, jan.-feb. 2005.

[2] T. AlEnawy and H. Aydin, “Energy-aware task allocation for rate monotonic
scheduling,” in Real Time and Embedded Technology and Applications Sympo-
sium, 2005. RTAS 2005. 11th IEEE, March, pp. 213–223.

[3] G. Quan and X. Hu, “Energy efficient fixed-priority scheduling for
real-time systems on variable voltage processors,” in Proceedings of
the 38th annual Design Automation Conference, ser. DAC ’01. New
York, NY, USA: ACM, 2001, pp. 828–833. [Online]. Available: http:
//doi.acm.org/10.1145/378239.379074

[4] B. Mochocki, X. Hu, and G. Quan, “A unified approach to variable voltage
scheduling for nonideal dvs processors,” Computer-Aided Design of Integrated
Circuits and Systems, IEEE Transactions on, vol. 23, no. 9, pp. 1370 – 1377,
sept. 2004.

[5] G. Quan and L. Niu, “Fixed priority scheduling for reducing overall energy on
variable voltage processors,” in In 25th IEEE Real-Time System Symposium.
IEEE Computer Society, 2004, pp. 309–318.

[6] R. Lawrence, “Radiation characterization of 512mb sdrams,” in Radiation
Effects Data Workshop, 2007 IEEE, vol. 0, july 2007, pp. 204 –207.

[7] T. Langley, R. Koga, and T. Morris, “Single-event effects test results of 512mb
sdrams,” in Radiation Effects Data Workshop, 2003. IEEE, july 2003, pp. 98
– 101.

[8] P. Shivakumar, M. Kistler, S. Keckler, D. Burger, and L. Alvisi, “Modeling the
effect of technology trends on the soft error rate of combinational logic,” in De-
pendable Systems and Networks, 2002. DSN 2002. Proceedings. International
Conference on, 2002, pp. 389 – 398.

[9] Intel, “Intel xeon processor.” [Online]. Available: http:
//www.intel.com/content/www/us/en/intelligent-systems/crystal-forest-server/
xeon-e5-v2-89xx-chipset.html

[10] AMD, “Amd g-series.” [Online]. Available: http://www.amd.com/us/products/
embedded/processors/Pag\-es/g-series.aspx

[11] P. Pop, V. Izosimov, P. Eles, and Z. Peng, “Design optimization of time-
and cost-constrained fault-tolerant embedded systems with checkpointing and
replication,” Very Large Scale Integration (VLSI) Systems, IEEE Transactions
on, vol. 17, no. 3, pp. 389–402, March 2009.

[12] T. Wei, P. Mishra, K. Wu, and J. Zhou, “Quasi-static fault-tolerant
scheduling schemes for energy-efficient hard real-time systems,” J. Syst.
Softw., vol. 85, no. 6, pp. 1386–1399, Jun. 2012. [Online]. Available:
http://dx.doi.org/10.1016/j.jss.2012.01.020

[13] Y. Zhang and K. Chakrabarty, “A unified approach for fault tolerance and
dynamic power management in fixed-priority real-time embedded systems,”
Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions
on, vol. 25, no. 1, pp. 111 – 125, jan. 2006.

[14] B. Zhao, H. Aydin, and D. Zhu, “Energy management under general task-
level reliability constraints,” in Real-Time and Embedded Technology and
Applications Symposium (RTAS), 2012 IEEE 18th, april 2012, pp. 285 –294.

[15] P. Pop, K. H. Poulsen, V. Izosimov, P. Eles, and M. M. Dept, “Scheduling and
voltage scaling for energy/reliability trade-offs in fault-tolerant time-triggered
embedded systems,” CODES+ISSS’ 2007.

[16] M. Haque, H. Aydin, and D. Zhu, “Energy management of standby-sparing sys-
tems for fixed-priority real-time workloads,” in Green Computing Conference
(IGCC), 2013 International, June 2013, pp. 1–10.

[17] Q. Han, M. Fan, and G. Quan, “Energy minimization for fault tolerant real-time
applications on multiprocessor platforms using checkpointing,” in Low Power
Electronics and Design (ISLPED), 2013 IEEE International Symposium on,
Sept 2013, pp. 76–81.

[18] R. I. Davis and A. Burns, “Controller area network (can) schedulability analysis:
Refuted, revisited and revised,” Refuted, Revisited and Revised. Real-Time
Systems, vol. 35, pp. 239–272, 2007.

[19] B. Zhao, H. Aydin, and D. Zhu, “Generalized reliability-oriented energy
management for real-time embedded applications,” in Design Automation
Conference (DAC), 2011 48th ACM/EDAC/IEEE, june 2011, pp. 381 –386.

[20] Y. Liu, H. Liang, and K. Wu, “Scheduling for energy efficiency and fault
tolerance in hard real-time systems,” in Design, Automation Test in Europe
Conference Exhibition (DATE), 2010, march 2010, pp. 1444 –1449.

[21] Q. Han, M. Fan, L. Niu, and G. Quan, “Energy minimization
for fault tolerant scheduling of periodic fixed-priority applications on
multiprocessor platforms.” [Online]. Available: https://drive.google.com/file/d/
0B3AHHrHn92eGcXN6cEdJMlJiSUk/view?usp=sharing

[22] E. Bini and G. C. Buttazzo, “Measuring the performance of schedulability
tests,” Real-Time Syst., vol. 30, no. 1-2, pp. 129–154, May 2005. [Online].
Available: http://dx.doi.org/10.1007/s11241-005-0507-9

2015 Design, Automation & Test in Europe Conference & Exhibition (DATE) 835

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages false
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
 /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
 /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
 /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
 /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
 /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>
 /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 6.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

