
Real-Time Syst (2014) 50:592–619
DOI 10.1007/s11241-014-9210-z

Energy efficient fault-tolerant earliest deadline first
scheduling for hard real-time systems

Qiushi Han · Linwei Niu · Gang Quan ·
Shaolei Ren · Shangping Ren

Published online: 28 September 2014
© Springer Science+Business Media New York 2014

Abstract Aggressive technology scaling has dramatically increased the power density
and degraded the reliability of embedded real-time systems. The goal of our research
in this paper is to develop effective scheduling methods that can minimize the energy
consumption and, at the same time, tolerate up to K transient faults when executing a
hard real-time system scheduled according to the EDF policy. Three scheduling algo-
rithms are presented in this paper. The first algorithm is an extension of a well-known
fault oblivious low-power scheduling algorithm. The second algorithm intends to min-
imize the energy consumption under the fault-free situation while reserving adequate
resources for recovery when faults strike. The third algorithm improves upon the first

Q. Han (B) · G. Quan
Department of Electrical and Computer Engineering, Florida International University,
10555 West Flagler Street, Miami, FL 33174, USA
e-mail: qhan001@fiu.edu

G. Quan
e-mail: gaquan@fiu.edu

L. Niu
Department of Math and Computer Science, West Virginia State University,
5000 Fairlawn Ave, Dunbar, WV 25112, USA
e-mail: lniu@wvstateu.edu

S. Ren
School of Computing and Information Sciences, Florida International University,
10555 West Flagler Street, Miami, FL 33174, USA
e-mail: sren@cs.fiu.edu

S. Ren
Department of Computer Science, Illinois Institute of Technology,
Stuart Building, Room 013C, 10 W. 31st Street,
Chicago, IL 60616, USA
e-mail: ren@iit.edu

123

Real-Time Syst (2014) 50:592–619 593

two by sharing the reserved resources and thus can achieve better energy efficiency.
Simulation results show that the proposed algorithms consistently outperform other
related approaches in energy savings.

Keywords EDF · Fault tolerance · Energy consumption · Shared recovery

1 Introduction

As the aggressive scaling in transistor size continues and more and more transistors are
integrated into a single die, the power consumption of the IC chips has been increasing
exponentially Skotnicki (2005). This in turn poses severe constraints on operations of
real-time systems, especially the battery-operated systems due to their limited energy
supply. For the past two decades, extensive power management techniques (e.g. Aydin
et al. 2004; Yao et al. 1995; Zhang et al. 2003; Mochocki et al. 2004; Quan and Hu
2001; Quan and Niu 2004) have been developed on energy minimization for real-time
systems. Among these techniques, dynamic voltage and frequency scaling (DVFS) is
one of the most popular and widely deployed schemes. Most modern processors, if not
all, are equipped with DVFS capabilities, such as Intel Xeon Intel (2012) and AMD
G-series AMD (2014). DVFS dynamically adjusts the supply voltage and working
frequency to reduce power consumption at the cost of extended circuit delay. Therefore,
for real-time systems with stringent timing constraints, care must be taken to make
sure these constraints are satisfied.

In the meantime, as embedded real-time systems grow rapidly in both scale and
complexity, reliability is becoming a major concern. First, aggressive technology scal-
ing has significantly decreased the reliability of processors (Skotnicki 2005; Srini-
vasan et al. 2004) and made electronic devices more susceptible to radiation-induced
faults (Lawrence 2007; Langley et al. 2003). Second, high power consumption leads
to high operating temperature, which further undermines the reliability of real-time
systems. Due to the nature of real-time systems, especially the safety-critical sys-
tems such as avionics and industrial controls, catastrophic consequences may occur if
system faults are not handled in a timely manner.

Processor faults can be largely classified into two categories: transient and perma-
nent faults (Srinivasan et al. 2003). Transient faults refer to the temporary errors in
computation and corruption in data caused by factors such as electromagnetic inter-
ference and cosmic ray radiations. On the contrary, permanent faults refer to that the
processors are damaged and halt permanently. It may occur due to process and man-
ufacturing defects or wear-out (Srinivasan et al. 2003). In this paper, we focus our
research on the transient fault since transient faults occur more frequently than perma-
nent faults (Castillo et al. 1982). Transient faults are usually addressed through time
redundancy and backward error recovery (Zhao et al. 2004). Both techniques require
reserving computing resources in case of faults, which may undermine the feasibility
of a real-time system. As such, many papers have been published on the feasibility
analysis under transient fault conditions for different systems and fault models (e.g.
David and Burns 2007; Many and Doose 2011; Aydin Aydin (2007); Pop et al. Pop et
al. (2007); Izosimov et al. 2012).

123

594 Real-Time Syst (2014) 50:592–619

In this paper, we are interested in developing scheduling techniques to minimize
the energy consumption and enhance the reliability of a real-time system. This is
particularly important in the design of systems, such as surveillance and satellite
systems, that demand both energy efficiency and fault tolerance. Recently, the problem
to address energy conservation with reliability improvement has drawn considerable
attention from many researchers.

When considering the reliability requirement, one approach is to formulate the reli-
ability of a real-time system analytically. For example, Zhao et al. (2004) formulated
the reliability of a real-time system as the probability to complete executions of all
tasks, with or without fault occurrences. They also proposed a linear and an exponen-
tial model to capture the effects of DVFS on transient fault rate and showed that energy
management through DVFS could reduce the system reliability. Based on this model,
they proposed a recovery scheme to schedule real-time tasks that can reduce energy
consumption without degrading the reliability. They further proposed to reserve com-
puting resources that can be shared by different tasks to improve the energy-saving
performance Zhao et al. (2011). These algorithms work only for frame-based real-time
systems, i.e. tasks with same arrival times and deadlines. Zhao et al. 2012 considered
a more general real-time periodic task model. Different tasks may have different peri-
ods. For each task, its deadline is equal to its period. Algorithms were proposed to
determine the processor speed and resource reservation for each task to achieve the
goal of energy minimization under the task-level reliability requirement. The advan-
tage of this approach is that the reliability can be quantified and the impacts of DVFS
to reliability can also be taken into consideration. However, to precisely identify the
parameters for the reliability model can be challenging, especially when faults usually
occur in a burst manner Many and Doose (2011).

Another more intuitive approach is to require that a system can still function properly
as long as fault occurrences do not exceed a predefined number. For example, Zhang et
al. 2006 introduced a combination of checkpointing and DVFS scheme for tolerating
K faults for periodic task sets while minimizing energy consumption. To guarantee
the timing constraints, they incorporated the worst case fault recovery time into fixed-
priority exact timing analysis to obtain the worst case response time, based on which
the energy efficient schedule is determined. Melhem et al. 2004 investigated the same
problem for periodic task sets scheduled under EDF on a single processor, assuming
K = 1. Wei et al. 2012 further extended the approach in Zhang and Chakrabarty
citeyearZhang2006TC for the development of combined offline and online DVFS
schedules. Since the probability of fault occurrence can be very small, the energy
saving performance of the proposed algorithm can be limited. Liu et al. 2010 proposed
a heuristic scheduling algorithm that minimizes the energy consumption under the
fault-free scenarios and preserves feasibility under the worst case fault occurrences,
i.e. up to K faults occur during an operational cycle of the system. This algorithm can
only be applied for frame-based real-time task sets. For frame-based real-time task
sets, reserved computing resources can be readily shared by different jobs. However,
if jobs have different priorities and deadlines, to share the reserved resources becomes
much more challenging.

In this paper, we study the problem of minimizing energy consumption and tolerat-
ing up to K transient faults when scheduling a set of aperiodic real-time jobs under the

123

Real-Time Syst (2014) 50:592–619 595

preemptive earliest deadline first (EDF) policy. The solution can be readily extended to
a general periodic task set by applying our approaches to the job sets consisting of jobs
within the first least common multiple of task periods. Three algorithms are proposed
in the paper. The first two algorithms are developed based on the well-known algorithm
presented in Yao et al. 1995 (so called LPEDF). The third algorithm improves upon
the first two by sharing the reserved computing resources and thus can achieve better
energy saving performance. Simulation results show that the proposed algorithms can
significantly reduce the energy consumption when compared with related approaches.

The rest of the paper is organized as follows. In Sect. 2, we introduce system models
and formally formulate our research problem. Our three algorithms are presented in
Sects. 3 and 4. Section 5 extends our algorithms to deal with several practical issues.
Section 6 discusses our simulation results. Finally, we conclude our paper in Sect. 7.

2 Preliminaries

In this section, we first introduce the system models and related notations. We then
formulate our problem formally.

2.1 Real-time application model

We model a real-time system as a job set J = {J1, J2, ..., Jn}, where Ji denotes the
ith job in a job set and is characterized by a tuple (ai , ci , di). The definition of theses
parameters is given in the following:

– ai : The time when Ji is ready for execution, referred to as arrival time;
– ci : The worst case execution time of Ji under smax , where smax is the maximum

speed that the processor supports;
– di : The absolute deadline of Ji .

This model is rather general and can be readily extended to other real-time models
such as the general periodic task model. All jobs are considered to be independent and
scheduled under preemptive EDF policy on a single processor.

2.2 Power and energy model

For ease of our presentation, we assume the speed/frequency (two terms are used
interchangeably throughout the paper) of a processor can be changed continuously in
[smin, smax] with 0 ≤ smin ≤ smax = 1. Later in this paper, we extend our algorithms
to processors supporting only a set of discrete levels of processor speed. A job is
assumed to execute with only one speed. Therefore, when Ji is executed under speed
si , the execution time of Ji becomes ci

si
. A speed schedule for an entire job set is

denoted as S = {s1, s2, s3, ..., sn} where si is the speed for Ji .
Our system-level power model is similar to that in Zhao et al. (2011) by distinguish-

ing the frequency-independent and frequency-dependent power components. Specif-
ically, the overall power consumption (P) can be formulated as

123

596 Real-Time Syst (2014) 50:592–619

P = Pind + Pdep = Pind + Cef sα (1)

where Pind is the frequency-independent power, including the power consumed by
off-chip devices such as main memory and external devices and constant leakage
power. Cef is the effective switching capacitance. α is a constant usually no smaller
than 2. Pdep is the frequency-dependent active power, including the CPU power, and
any power that depends on the processing speed s. Hence, the energy consumption of
a job Ji running at the speed si can be expressed as:

Ei (si) =
(
Pind + Cef sα

i

) · ci

si
(2)

As Ei (si) is a convex function, the minimum system energy is achieved when si is
as small as possible, provided it is larger than so-called critical speed (sc) Zhao et al.
(2004). In this study, we assume that smin ≥ sc.

2.3 Fault model

We assume that the system is subject to a maximum of K transient faults (e.g., bit
flips in architectural registers or timing errors in CMOS circuit). Faults usually are
detected at the end of each job Ji ’s execution using acceptance or sanity tests Pradhan
(1996) and the timing and energy overhead for detection are denoted as T Oi and
E Oi , respectively. Furthermore, we assume that the overheads of fault detections are
not subject to frequency variations. There is no assumption regarding the occurrence
pattern of faults, i.e. faults can occur anywhere at any time during an operational cycle
of the system, multiple faults may hit a single job. A fault is tolerated by re-executing
the affected job. Therefore, the maximum recovery overhead for job Ji executing at
smax under a single failure, denoted as Ri , is ci , or Ri = ci . When a fault happens
during the execution of Ji , a recovery job that of the same deadline di is released. The
recovery jobs are subject to preemption as well.

2.4 Problem formulation

We formulate our problem formally as follows:

Problem 1 Given a real-time job set J scheduled under EDF on a single processor,
find a speed schedule S for all the jobs in J (including the recoveries) such that the
processor energy consumption is minimized without any deadline miss when no more
than K faults occur.

3 Fault tolerant speed schedule

In this section, we introduce an approach to the development of a fault tolerant DVFS
schedule for a hard real-time job set to reduce the energy consumption. The algorithm
is developed based on LPEDF presented in Yao et al. (1995). To ease the presentation
of our approach, we first introduce several definitions and then reiterate briefly the
general idea of LPEDF.

123

Real-Time Syst (2014) 50:592–619 597

Definition 1 Given a real-time job set J ,

– J (I) denotes the set of jobs contained in the interval I = [ts, t f], i.e. J (I) =
{Ji |ts ≤ ai < di ≤ t f };

– The workload W (I) of an interval I = [ts, t f] is the accumulated execution time
of jobs completely contained in the interval, i.e W (I) = ∑

Ji∈J (I)
ci ;

– The intensity of interval I is defined as

s(I) = W (I)

L(I)
, (3)

where L(I) is the length of interval I , i.e. L(I) = t f − ts ;
– The interval I = [ts, t f] is called a critical interva if it has the highest intensity

and ts and t f are the arrival time and the deadline of some job(s), correspondingly.
– The fault-related overhead of an interval I is denoted as W f t (I) = Wr (I) +

WT O(I), where Wr (I) represents the reserved workload to be used for recovery
in the worst case, i.e. Wr (I) = K ×(Rx+T Ox) and x denotes the index of the job
with the longest recovery time in J (I), i.e. Jx = {Ji |max(Ri +T Oi), Ji ∈ J (I)}
and WT O(I) denotes the overhead imposed by fault detections from regular jobs,
i.e. WT O(I) = ∑

Ji∈J (I)
T Oi .

Given a real-time job set J , LPEDF can be employed to minimize the energy
consumption (assuming smin ≥ sc) as follows Yao et al. (1995):

1. Step 1: Identify a critical interval I = [ts, t f] using Eq. (3);
2. Step 2: Remove the critical interval and all jobs contained in the interval, set the

speeds of all jobs in J (I) to s(I) and modify the arrival times and deadlines of
other jobs accordingly. Specifically, let J ← J − J (I); change deadline di to
ts if di ∈ [ts, t f], or to di − (t f − ts) if di ≥ t f ; set ai to ts if ai ∈ [ts, t f], or to
ai − (t f − ts) if ai ≥ t f .

3. Step 3: Repeat step (1)–(2) until J is empty.

To make the above LPEDF fault-tolerant, one intuitive approach (we call this
approach as MLPEDF) is to take the fault recovery into consideration and increase
the workload of an interval when calculating its intensity, that is, to replace s(I) with
sm(I), as defined in Eq. (4),

sm(I) = W (I)+ K × Rx

L(I)−WT O(I)− K × T Ox
, (4)

where x is the index of the job with longest recovery in J (I) and WT O(I) denotes
the total fault-detection overheads for regular jobs as defined in Definition 1.

We summarize the feasibility condition of an arbitrary EDF-scheduled job set on
a single processor that is subject to a maximum number of K transient faults in the
following.

Theorem 1 Aydin (2007) Given a real-time job set J with K faults to be tolerated
and smax = 1, if for each interval I , we have

123

598 Real-Time Syst (2014) 50:592–619

Table 1 A real-time system
with three jobs

ai ci di

J1 0 1 9

J2 7 3 15

J3 13 1 20

Fig. 1 MLPEDF versus EMLPEDF. K is set to 1, a dark grey rectangle represents a reserved recovery block
and a shaded rectangle indicates that a recovery block becomes active, i.e. a fault has been encountered. a and
b show the schedules when the fault affects the job with the longest execution time, i.e.J2 under MLPEDF
and EMLPEDF, respectively. The reserved recovery blocks are not shown in the fault-free schedules. a
Fault recovery schedule under MLPEDF. b Fault recovery schedule under EMLPEDF. c Fault free schedule
under MLPEDF. d Fault free schedule under EMLPEDF

W (I)+W f t (I)

L(I)
≤ 1, (5)

then the job set J is feasible.

Note that, when a fault occurs, MPLEDF executes the recover copy of a job using
a scaled processor speed. This helps to reduce the total energy consumption for both
the original jobs and their recovery copies. However, this may not be energy efficient
in a practical scenario when the possibility of fault occurrence is low.

An alternative approach (we call this approach as EMLPEDF), is to run the recovery
backups using the maximum possible processor speed. The intensity calculation of
interval I can be modified correspondingly, as Eq. (6).

se(I) = W (I)

L(I)−W f t (I)
(6)

It can be easily verified that se(I) ≤ sm(I) for a given interval I if W (I)+W f t (I) ≤
L(I), which always holds for a feasible schedule. The advantage of this approach is that
it requires the least amount of resource reservation to guarantee the timely recovery,
and thus can reduce the energy consumption under the fault-free scenario. This can
be further illustrated using the following example.

Consider the simple real-time job set, shown in Table 1 and Fig. 1. Let α = 2, Pind =
0.02 and Cef = 1. For simplicity, the timing and energy overhead are considered

123

Real-Time Syst (2014) 50:592–619 599

Fig. 2 Monotonicity violation
example

negligible. We can calculate that the fault recovery schedule by MLPEDF (Fig. 1a)
consumes less energy than that by EMLPEDF (Fig. 1b), i.e. 5.41 vs. 5.56. However,
the fault-free schedule by MLPEDF (Fig. 1c) consumes much more energy than that by
EMLPEDF (Fig. 1d), i.e. 3.08 versus 2.48 (20 % more). Since the fault rate is usually
very low in practice, EMLPEDF can have a much better energy saving performance
than MLPEDF.

To ensure the deadlines, when removing a critical interval and updating the arrivals
or deadlines of remaining jobs in each iteration (similar to each round of Step 1 and
Step 2 in LPEDF), we assume that all K faults will affect the longest job in the crit-
ical interval under the worst case. This assumption is rather pessimistic because each
critical interval demands computing resources reserved for tolerating K faults, which
may potentially cause a feasible job set infeasible. We use an example to illustrate this
problem.

Consider a system with two jobs specified in Fig. 2 and at most one fault to be
tolerated. For ease of presentation, we set the overheads of fault detections to 0.
According to EMLPEDF, the first critical interval is interval [3,7] with intensity 1 based
on Eq. (6). After the removal of interval [3,7] along with job J2, d1 is updated as 3 and
the second critical interval is [0,3] with intensity 2. We have the schedule drawn in Fig.
2, where I1 and I2 denote the first and second critical interval, respectively. We can see
that se(I2) is larger than se(I1)(we refer to this situation as the monotonicity violation).
Moreover, se(I2) exceeds the highest speed available in the system (smax = 1), so the
required speed is unachievable. However, it is not hard to see that the job set is in fact
feasible under constant speed 1. From the above discussion, it is clear that the energy
minimization problem with fault tolerance requirement cannot be solved by simply
modifying the LPEDF solution. Provisions are required during the scheduling process
to ensure that the resulting schedule is valid.

To handle monotonicity violations, we observed that any critical interval that vio-
lates monotonicity must be adjacent to the critical interval found in the previous
iteration. Specifically, we have the following lemma.

Lemma 1 Let Ii and Ii−1 be two critical intervals identified by EMLPEDF from ith

and (i − 1)th iteration1, respectively. If se(Ii) > se(Ii−1), Ii and Ii−1 are adjacent.

1 Each iteration of EMLPEDF refers to one round of the Step 1–2 in LPEDF except the intensity function
is defined in Eq. (6).

123

600 Real-Time Syst (2014) 50:592–619

Proof When removing interval Ii−1, the workload distribution is not changed in the
intervals that have no overlap with Ii−1. Only the intervals overlapping Ii−1 are short-
ened by �, 0 < � ≤ L(Ii−1); therefore, they may experience an increase in intensity
in the next iteration. ��

As implied in the proof of Lemma 1, a monotonicity violation occurs when the
removed critical interval contains slacks that need to be reserved as recoveries for jobs
in its overlapping intervals. Therefore, the execution space for these jobs are short-
ened due to its removal. To eliminate such monotonicity violations, we can incorporate
these jobs into the previously found critical interval. We formulate this conclusion in
Lemma 2.

Lemma 2 Let Ii and Ii−1 be two critical intervals identified by EMLPEDF from ith

and (i − 1)th iteration, respectively. If se(Ii) > se(Ii−1), the minimum constant speed
to maintain feasibility of jobs contained in Ii and Ii−1 is se(Ii−1).

Proof Before removing the critical interval Ii−1 (i > 1), all the remaining jobs in
J (jobs left after first i − 2 iterations) are feasible under the constant speed se(Ii−1).
Therefore, the combined jobs in Ii and Ii−1 are definitely feasible under this speed. ��

Lemma 1 and Lemma 2 help us to keep track of the monotonicity violation and
remove it whenever it occurs.

Up to now, we can formulate our EMLPEDF algorithm in Algorithm 1. Line 4
identifies the current critical interval and its speed. Lines 5–8 check if the current
desired speed is less than the minimal available speed, and terminate the iteration if
so. Lines 9–12 remove monotonicity violation whenever it occurs. Line 14 backs up the
timing information of jobs in case a rollback operation is needed. Lines 15–17 remove
the critical interval and update the job set. The complexity of EMLPEDF mainly
comes from calculations of critical intervals (line 4), i.e. O(n2) with a straightforward
implementation. The overall complexity of EMLPEDF is same as LPEDF, i.e. O(n3).

We have the following theorem regarding the lowest constant speed that guarantees
the feasibility of a job set.

Theorem 2 Let se1, se2, se3, ... be the intensities for the critical intervals from iter-
ation 1, 2, 3... in EMLPEDF. se1 is the lowest constant speed that can be employed
throughout the entire job set without causing any deadline miss as long as no more
than K faults happen.

Proof This theorem can be proved directly in light of Theorem 1. During the first
iteration of EMLPEDF, we have W (I)

se1
≤ W (I)

se(I) for each interval I , since se1 ≥ se(I)
considering the definition of critical interval. Take Eq. (6) into the right-hand side of
the above inequality and add W f t (I) to both sides. We have W (I)

se1
+W f t (I) ≤ L(I).

Therefore, the job set is feasible under constant speed se1.
Moreover, assume se1 is the resulting intensity from interval I1, i.e. se1 =

W (I1)
L(I1)−W f t (I1)

and s∗ is the lowest constant speed that maintains the feasibility of

the job set and s∗ < se1. We have the scaled workload in I1 as W (I1)
s∗ + W f t (I1) >

W (I1)
se1
+W f t (I1) = L(I1), which violates the feasibility condition in Theorem 1. ��

In addition, by applying Algorithm 1, we have the following theorem regarding the
characteristics of critical interval speeds.

123

Real-Time Syst (2014) 50:592–619 601

Algorithm 1 EMLPEDF algorithm
Require:

1) Job set : J = {J1, J2, ...Jn};
2) Number of faults: K
3) minimum frequency available: smin

1: si = smax , for i = 1, 2, ..., n;
2: p = 1; {the critical interval index}
3: while J 	= ∅ do
4: Identify the next critical interval I∗p = [ts , t f] and its intensity se,p based on Eq. (6);

{se,p : the intensity of pth critical interval}
5: if se,p < smin then
6: si = smin , ∀Ji ∈ J ;
7: break;
8: end if
9: if se,p > se,p−1 AND p > 1 then
10: Restore the timing information from the previous iteration;
11: Merge the interval I∗p with I∗p−1;
12: p −−;{Roll back the critical interval index}
13: end if
14: Back up the timing information;
15: si = se,p, ∀Ji ∈ J (Ip);
16: remove all jobs in Ip from J ;
17: update timing information of remaining jobs according the step 2 in LPEDF Yao et al. (1995)
18: p ++;
19: end while
20: return {s1, s2, ..., }

Theorem 3 Let se1, se2, ...sem be the intensities for the critical intervals from iteration
1, 2, ...m in EMLPEDF. We have se1 ≥ se2... ≥ sem.

Proof Because all monotonicity violations are eliminated in Algorithm 1, the non-
increasing relationship between subsequent critical intervals can be easily determined.

��
More importantly, if EMLPEDF can be successfully applied for a job set, then

the feasibility of the result DVFS schedule is guaranteed. This is summarized in the
following theorem.

Theorem 4 EMLPEDF can guarantee that all jobs can meet their deadlines as long
as the following two constraints are satisfied : (1) no more than K faults occur; (2)
∀i ∈ [1, m], where m is the total number of iterations, we have sei ≤ 1.

Proof In EMLPEDF, a critical interval Ii is exclusively reserved for executing jobs
and their recovery copies in the interval. For any higher priority job (e.g. Jh) with
possible execution overlapping with Ii , it is forced to finish before the Ii in EMLPEDF.
Similarly, for any lower priority job (e.g. Jl) with possible execution overlapping with
Ii , the interval Ii is excluded for its execution by adjusting its arrival time and deadline
in EMLPEDF. Therefore, to prove the theorem, we only need to prove that if we set the
processor speed to be sei , i.e. the intensity of Ii , throughout Ii , then the schedulability
of all jobs in Ii is guaranteed in the worst case (i.e. against K faults), as long as sei ≤ 1.

We prove this by contradiction. Let Jc = (rc, cc, dc) ∈ J (Ii)miss its deadline when
processor speed is set to sei . Then we must be able to find a time t ≤ rc, such that for

123

602 Real-Time Syst (2014) 50:592–619

Fig. 3 EMLPEDF versus LPSSR. a Speed schedule by EMLPEDF. b Speed schedule by LPSSR

interval I ′ = [t, dc], we have W (I ′)
sei
+W f t (I ′) > L(I ′). Since s′ = W (I ′)

L(I ′)−W f t (I ′) > sei

and I ′ ⊆ Ii . This violates the assumption that Ii is a critical interval.
Since all jobs are associated with a critical interval in EMLPEDF and all jobs within

a critical interval are schedulable when the corresponding speed is applied, we prove
the theorem. ��

While EMLPEDF can guarantee the feasibility of a real-time job set under maxi-
mum K faults, and can also achieve better energy saving performance than MLPEDF,
each critical interval needs to reserve computing resource separately for timely recov-
ery when faults happen. It is desirable that different critical intervals can share the
reserved resources and conceivably the energy saving performance can be further
improved. We develop a new algorithm for this purpose, which is introduced in the
coming section.

4 Fault tolerant speed schedule with shared recovery slacks

This section presents an improved approach to the development of energy efficient fault
tolerant schedule for a given job set J . We call this algorithm LPSSR. Specifically,
LPSSR improves upon EMLPEDF by allowing different critical intervals to share
reserved computing resources. We also execute recovery under smax in LPSSR and
focus on determining the speed schedule S for regular jobs. Before we introduce the
algorithm in details, we first use an example to motivate our research.

Consider a simple job set with two jobs specified in Fig. 3. Note that, we set
the overheads of fault detection to 0 for easy presentation. The speed schedule by
EMLPEDF is shown in Fig. 3a. Note that in Fig. 3a, interval R1 (i.e. interval [4, 7])

123

Real-Time Syst (2014) 50:592–619 603

and interval R2 (i.e. interval [10, 13]) are the recovery blocks used for fault recovery.
However, since K = 1, at most one of the recovery blocks can be used. If the fault
occurs during J1’s execution, R1 will be used for recovery. In that case, R2 will never
be used since no fault will happen during J2’s execution. Same problem occurs if the
fault affects J2’s execution.

A better fault tolerant schedule is shown in Fig. 3b. Note that, when the fault affects
J1, the interval [7, 10] can serve as the reserved block to run the backup of J1, and J2
can be executed at interval [10, 13]. If the fault affects J2, since there is no fault during
J1’s execution, J2 can be executed at interval [7, 10], and later recovered at interval
[10, 13] if necessary. For either case, the system is always feasible. By sharing the
recovering slacks, the speed of J1 is reduced to 3/7. Using the same system parameters
as in the previous example, the energy consumption of the new schedule is more than
30 % lower than that by EMLPEDF. The example clearly shows that significant energy
savings can be obtained without compromising the system feasibility if the reserved
computing resource can be shared. The problem is how to judiciously share the reserved
resource to maximize the energy saving performance. In what follows, we develop an
approach to explore the shared slacks to improve the energy efficiency.

When removing a critical interval in EMLPEDF, its reserved slacks can only be
shared by jobs that have potential execution overlaps with it. To ease our presentation,
we classify these jobs into the following categories as defined below.

Definition 2 For a given interval I = [ts, t f] a job Ji is referred to as deadline
overlapping with I if ai 	∈ [ts, t f] and di ∈ [ts, t f], and arrival overlapping with I if
ai ∈ [ts, t f] and di 	∈ [ts, t f], and fully overlapping with I if I ⊆ [ai , di].

Specifically, for interval I , we denote all deadline overlapping jobs, arrival over-
lapping jobs, and fully overlapping jobs as J do

I and J ao
I , and J f o

I , respectively.
In EMLPEDF, when a critical interval is identified, it is removed with all jobs inside

it to make sure that the interval is exclusively used for running jobs and their backups
that are completely located within the interval. Also, the arrival times and deadlines
of the others are updated to the boundary of the interval such that their executions will
never interfere with jobs in the critical interval. In LPSSR, we allow a job to share
the reserved slacks in the critical interval by “extending” its deadline or arrival time
“into” the critical interval. We discuss each category of jobs separately as follows.

Let I ∗ = [ts, t f] be a critical interval with length L(I ∗), and intensity se(I ∗), which
is calculated the same way (i.e. Eq. (6)) as that in EMLPEDF. Let Rmax (I ∗) = Wr (I ∗),
Rmin(I ∗) = K ×min{R j + T O j |J j ∈ J (I ∗)} be the upper and lower bound of the
reserved slacks. Also, let Ji be a job with execution interval (i.e. [ai , di]) partially or
fully overlapped with I ∗, the overlap length is represented as L(I op

i). Additionally, the
maximum amount of reserved slack shared by a job Ji is denoted by RS(Ji). Consider
the following three cases:

– Ji ∈ J do
I ∗ : To share the reserved slack, the deadline of Ji will be extended into

interval I ∗. interval depends on how much the reserved slacks can be shared by
Ji without compromising the fault tolerant feasibility within the critical interval.
Note that, RS(Ji) cannot exceed either Rmin(I ∗) or K × Ri . This is because if
we know that the execution of jobs contained in I ∗ is fault-free, it is safe to delay

123

604 Real-Time Syst (2014) 50:592–619

the starting of critical interval by Rmin(I ∗) and leave the space to Ji . Rmin(I ∗) is
a lower bound of delay a fault-free critical interval can tolerate without deadline
misses. If the shared slacks are used by Ji or its recovery during run-time, which
means some faults (we assume it to be K1,0 < K1 ≤ K) have hit the jobs before
I ∗. As a result, K1

K × Rmax (I ∗) slacks are reclaimed in I ∗. Since the reserved
slacks are shared among jobs contained in the critical interval, it virtually means
each job J j ∈ J (I ∗) has reclaimed its own reserved slacks in the amount of
K1
K × R j which counters the delay caused by pushing the execution of Ji into the

critical interval and the remaining reserved slacks are still enough to handle the
rest of upcoming faults. In addition, RS(Ji) can not exceed the total overlap length
L(I op

i). In conclusion, Specifically, instead of ts , di is set to ts + RS(Ji) where
RS(Ji) = min(K × (Ri + T Oi), K × Rmin(I ∗), L(I op

i)).
– Ji ∈ J ao

I ∗ : In this case, the new arrival time of Ji will be extended into interval I ∗ in
order to share the reserved slack. reserved slack shared by Ji cannot exceed either
Rmin(I ∗) or K × Ri . Therefore RS(Ji) = min(Rmin(I ∗), K × Ri , L(I op

i)). To
share the slacks, after removing the critical interval I ∗ (only subinterval [ts, t f −
RS(Ji)] is effectively removed, where RS(Ji) = min(K × (Ri + T Oi), K ×
Rmin(I ∗), L(I op

i))), we set Ji ’s deadline as di = di − L(I ∗)+ RS(Ji), and update
ai to ts .

– Ji ∈ J f o
I ∗ : In this case, all the reserved slacks in I ∗ can be potentially used by Ji .

To share the slack, after removing the critical interval I ∗, we set Ji ’s deadline as
di = di − L(I ∗)+ RS(Ji), where RS(Ji) = min(Rmax (I ∗), K × (Ri + T Oi)).

Accordingly, we formulate a new algorithm (i.e. LPSSR), as shown in Algorithm 2.
Without loss of generality, we ignore the overheads of fault detections. The work flow
of Algorithm 2 is similar to EMLPEDF, i.e. iteratively identifying critical intervals,
removing the critical interval and the jobs inside the critical interval, and then updating
the timing parameters for the rest of the jobs, until the job queue becomes empty.
Different from EMLPEDF, we apply our sharing technique when updating the timing
parameters and eliminate monotonicity violation whenever it occurs. In Algorithm 2,
line 4 identifies pth critical interval for the current real-time job set. Lines 5–8 are
simply the application of Theorem 2. Lines 9–13 roll back to the previous iteration and
merge the current critical interval with the previous one once monotonicity violation
is found. Lines 16–29 backup and update the timing parameters of each remaining
jobs according to the sharing technique discussed above. At last, lines 30–33 remove
all jobs inside the critical interval.

The main computation complexity per iteration comes from identifying the critical
interval, which is O(n2), where n is the number of jobs. The outer loop can at most
repeat n times. Therefore, the complexity of Algorithm 2 is O(n3). In what follows,
we first use an example to illustrate the procedures of LPSSR. We then prove that the
algorithm can guarantee the schedulability of all jobs under K faults.

Consider a system with 5 jobs whose timing information is given in Fig. 4a. We
assume that K = 1. We use ↑ and ↓ to denote a job’s arrival time and deadline,
respectively. The fault-detection overheads are considered negligible in this example.
For each step, the critical interval is identified with intensity function in Eq. (6) and
is shown as | ↔ |. For the first iteration in Fig. 4a, the critical interval is identified as

123

Real-Time Syst (2014) 50:592–619 605

Algorithm 2 LPSSR algorithm
Require:

1) Job set : J = {J1, J2, ...Jn};
2) Number of faults: K

1: si = smax , for i = 1, 2, ..., n;
2: p = 1;{critical interval index}
3: while J 	= ∅ do
4: Identify the critical interval Ip = [ts , t f] and its intensity se,p based on Eq. (6);

{se,p : the intensity of pth critical interval}
5: if se,p < smin then
6: si = smin , ∀i ∈ J ;
7: break;
8: end if
9: if se,p > se,p−1 AND p > 1 then
10: Restore the timing information from the previous iteration;
11: Merge the interval Ip with Ip−1;
12: p −−;{Roll back the critical interval index}
13: end if
14: L(Ip) = t f − ts ;
15: for all Ji ∈ J do
16: Backup timing information of Ji ;
17: RS(Ji) = min(K × (Ri + T Oi), K × Rmin(Ip), L(I op

i));//Rmin(Ip) is the minimum recovery
time for jobs in J

18: if Ji ∈ J do
Ip

then

19: di ← min{di , ts + RS(Ji)};
20: else if Ji ∈ J ao

Ip
then

21: di ← di − (L(Ip)− RS(Ji))

22: ai ← ts ;

23: else if Ji ∈ J f o
Ip

then

24: RS(Ji) = min(K × (Ri + T Oi), K × Rmax (Ip));
25: di ← di − (L(Ip)− RS(Ji));
26: else
27: ai ← ai − L(Ip);
28: di ← di − L(Ip);
29: end if
30: for all Jq |[aq , dq] ⊆ Ip do
31: sq = se,p ;
32: J ← J − J (Ip);
33: end for
34: end for
35: p ++;
36: end while
37: return {s1, s2, ..., }

[5,10] with intensity se([5, 10]) = c1+c2
10−5−R2

= 1. When we remove interval [5,10], J1
and J2 are removed and speed 1 is assigned to both jobs, and then we need to update
the timing information of the remaining jobs.

Note that J3 is a fully overlapping job with respect to the critical interval, and
all the slacks that reserved in interval [5,10] can be used by J3. Therefore, RS(J3) =
min(Rmax [5, 10], R3) = min(2, 3) = 2. Consequently, we have d3 = d3−L([0, 5])+
RS(J3) = 17. For J4, it is deadline overlapping with the critical interval and thus
RS(J4) = min(R4, Rmin([5, 10]), Lop

i) = min(2, 1, 2) = 1. As a result, d4 is set to

123

606 Real-Time Syst (2014) 50:592–619

Fig. 4 An example of LPSSR. a First iteration of LPSSR. b Second iteration of LPSSR. c Third iteration
of LPSSR. d Fault-free schedule under the speeds from LPSSR

6, i.e. the boundary of the critical interval (5) plus the slacks that can be shared by J4.
For J5, which is a arrival overlapping job with respect to the critical interval, the slacks
that be shared by J5 is RS(J5) = min(R5, Rmin([5, 10]), Lop

i) = min(2, 1, 2) = 1
and its arrival and deadline are set to 5 and 12, respectively. The resulting job set is
illustrated in Fig. 4b.

Based on the new job set, we identify the critical interval as [0,6] with intensity
2/3. After the assign speed 2/3 to J4 and remove the critical interval and repeat the
same procedures as discussed in the previous iteration, we have a consequent job set
as shown in Fig. 4c. Finally, the last critical interval is [1,14] with intensity 1/2 and J3
and J5 are removed after being allocated a speed 1/2. The LPSSR algorithm terminates
and we have the resulting speed schedule S = {1, 1, 1/2, 2/3, 1/2}. The final schedule
is shown in Fig. 4d, and it can be verified that no matter when the failure occurs, there
is no deadline miss with this schedule.

Moreover, the feasibility of the schedule output from Algorithm 2 is guaranteed,
which is formulated in Theorem 5.

Theorem 5 Given a real-time job set J and a constant K , all the jobs in J can
meet their deadlines if they are executed based on the processor speeds determined
by Algorithm 2 and no more than K faults occur.

Proof The proof of Theorem 5 is similar to that of Theorem 4. Let I ∗ = [ts, t f] be the
critical interval and se(I ∗) be its speed. We consider the three types of jobs separately.

Case 1: let Ji ∈ J do
I ∗ and d ′i denote the deadline after the removal of the critical

interval I ∗, i.e, d ′i = ts + RS(Ji). If Ji and its recovery workload finishes at ts or
earlier, it has no impact to the execution for jobs in J (I ∗). Hence all jobs in J (I ∗) are
schedulable under K faults in the worst case. If Ji and its recovery workload finishes at
d ′i , this means that all K faults must occur before d ′i . Otherwise, one more fault occurs
at d ′i will cause Ji to miss deadline. As a result, there will be no faults occurring in

123

Real-Time Syst (2014) 50:592–619 607

Fig. 5 a d ′i is deadline to be assigned after the removal of critical interval, which is ts + RS(Ji), ti is the
finishing time of Ji or its recoveries. b t∗ is the completion time of all the jobs and recoveries in J (I∗), a′i
is extended into I∗ by RS(Ji)

interval I ∗. Since d ′i − ts = RS(Ji) ≤ K × Rmin(I ∗), this implies that the slack
time occupied by Ji is smaller than the minimum amount of reserved slack in interval
I ∗ that can be exploited by every job to execute the recovery workload. Therefore,
all jobs in J (I ∗) must be schedulable. The question now becomes what if Ji and its
recoveries finishes at ti , where ts < ti < ts + RS(Ji), refer to Fig. 5a.

We consider the following two cases.

– Case 1-a: Ri + T Oi >= Rmin(I ∗).
Then there are at most K ′ faults, where K ′ = �(d ′i − ti)/(Ri + T Oi)� left after
t > ti . Otherwise, if more than K ′ faults occurring at (or after) ti will cause
Ji to miss its deadline. In other words, there must be K − K ′ faults occurred
before ti . Note that Ji consumes a slack of ti − ts from I ∗. In the meantime,
each job at least has an additional slack of (K − K ′)× Rmin(I ∗) to spare. Since
K × Rmin(I ∗) ≥ d ′i − ts = RS(Ji), we have

(K − K ′)× Rmin(I ∗) ≥ (K − �(d ′i − ti)/(Ri + T Oi)�)× Rmin(I ∗)
≥ (K − (d ′i − ti)/(Ri + T Oi))Rmin(I ∗)
≥ d ′i − ts − (d ′i − ti)/Rmin(I ∗)× Rmin(I ∗)
= ti − ts .

Therefore, all jobs in J (I ∗) can be schedulable.
– Case 1-b: Ri + T Oi < Rmin(I ∗).

Then there are at least K ′ faults, where K ′ = �(ti − ts)/(Ri + T Oi)� before
ti . Otherwise, assume that there are K ′ − 1 faults before ti , then there can be
K − K ′ + 1 faults after(or at) ti , we have (K − K ′ + 1)(Ri + T Oi) > (K − (ti −
ts)/(Ri + T Oi))(Ri + T Oi) ≥ RS(Ji)− (ti − ts) = d ′i − ti , which causes Ji to
miss its deadline according to Theorem 1. Since K ′ faults have already occurred
before ti , this implies that each job in J (I ∗) at least has an additional slack of
K ′ × Rmin(I ∗) to spare. Since

K ′ × Rmin(I ∗) = �(ti − ts)/(Ri + T Oi)� × Rmin(I ∗)
≥ (ti − ts)/(Ri + T Oi)× Rmin(I ∗)
≥ ti − ts,

all jobs in J (I ∗) are schedulable.

From the above discussions, we can then conclude that d ′i is a valid deadline for
any Ji ∈ J do

I ∗ .

123

608 Real-Time Syst (2014) 50:592–619

Case 2: let Ji ∈ J ao
I ∗ and a′i represent the new arrival time, a′i = ts and d ′i the

updated deadline, i.e. d ′i = di − L(I ∗)+ RS(Ji). Note that Ji has lower priority than
all the jobs in J (I ∗). Therefore, we only need to show the changes made to the arrival
time and deadline of Ji will not compromise the resource savings to guarantee the
schedulability of Ji .

If all the jobs in J (I ∗) and their recoveries finish at or before t = t f −RS(Ji), then
Ji will not experience any interference from jobs in J (I ∗) and its feasibility will not
be affected. Now the question becomes what if all jobs in J (I ∗) and their recoveries,
if any, finish at t∗, where t f − RS(Ji) < t∗ ≤ t f , see Fig. 5b.

We consider the following two cases.

– Case 2-a: Ri + T Oi >= Rmin(I ∗). Then there are at least K ′ faults, where
K ′ = �(t∗ + RS(Ji) − t f)/Rmin� before t∗. Otherwise, similar to the proof of
Case 1-b, more than K − K ′ faults occurring at t = t∗ will cause at least one job
in J (I ∗) to miss its deadline. In the meantime, this implies that Ji at least has an
additional slack of K ′ × (Ri + T Oi) to spare. We have

K ′ × (Ri + T Oi) = �(t∗ + RS(Ji)− t f)/Rmin(I ∗)� × (Ri + T Oi)

≥ t∗ + RS(Ji)− t f .

This ensures that Ji has reserved enough resource for fault recovery.
– Case 2-b: (Ri + T Oi) < Rmin(I ∗). Then there are at most K ′ faults, where

K ′ = �(t f − t∗)/Rmin(I ∗)� that may occur after t∗. Otherwise, one more fault at
t f will cause some job(s) in J (I ∗) to miss deadline(s). In other words, there must
be at least K − K ′ faults that occurred before t∗. A portion of the shared slacks
with the amount of t∗ + RS(Ji) − t f is used by the jobs(recoveries) in J (I ∗).
However, job Ji reclaims an additional slack of (K − K ′)× (Ri + T Oi) to spare.
Since K × (Ri + T Oi) ≥ RS(Ji), we have

(K − K ′)× Ri ≥ (K − �(t f − t∗)/Rmin�)× (Ri + T Oi)

≥ (K − (t f − t∗)/(Ri + T Oi))(Ri + T Oi)

≥ RS(Ji)− (t ′f − t∗)/(Ri + T Oi)× (Ri + T Oi)

= t∗ + RS(Ji)− t f .

Therefore, Ji also reserves enough resource.

Case 3: let Ji ∈ J f o
I ∗ . Similarly we want to prove that the change of deadline for

Ji will not compromise the resource savings to guarantee its schedulability with the
possible of maximum K faults. Since there are K × Rmax (I ∗) slacks reserved in I ∗,
it just requires additional slacks of max(0, K × (Ri + T Oi)− K × Rmax (I ∗)) for Ji

with the sharing mechanism.
We consider two cases below.

– Case 3-a: (Ri + T Oi) > Rmax (I ∗). In this case, additional slacks of K × (Ri +
T Oi)− K × Rmax (I ∗) is reserved for Ji . Assume that K ′ faults occurred during
the critical interval I ∗. Ji can immediately claim the unused reserved slacks of

123

Real-Time Syst (2014) 50:592–619 609

(K−K ′)Rmax (I ∗) in I ∗ to spare. Since there will be at most K−K ′ faults striking
Ji and we have the remaining reserved resources for Ji as

(K − K ′)Rmax (I ∗)+(K × (Ri + T Oi)− K × Rmax (I ∗))
= K × (Ri + T Oi)− K ′Rmax (I ∗)
≥ (K − K ′)(Ri + T Oi).

This ensures that Ji has reserved enough resources for fault recovery.
– Case 3-b: (Ri + T Oi) ≤ Rmax (I ∗). Then there is no additional slacks needed

for Ji . Assume that there are K ′ faults in I ∗. This implies Ji can reclaim (K −
K ′)Rmax (I ∗) from the critical interval I ∗ to spare. In addition, there will be at most
K − K ′ faults affecting Ji . Since (K − K ′)Rmax (I ∗) >= (K − K ′)(Ri + T Oi),
Ji has enough resources for its execution and recovery.

Since all jobs are associated with a critical interval in LPSSR and all jobs within
a critical interval are schedulable when the corresponding speed is applied and the
feasibility of the remaining jobs is not affected after the removal of a critical interval,
we prove the theorem. ��

Algorithm 2 allows reserved slacks to be shared by different critical intervals and
thus can achieve better energy efficiency. By far, both EMLPEDF and LPSSR assume
that speeds can be continuously varied between [smin, smax]. In the next section, we
extend our LPSSR algorithm to systems with only a limited number of frequencies.

5 Other considerations of the proposed methods

5.1 Dealing with the limitations of practical processors

Up to now, we assume that the processor speed can be varied continuously. However,
current commercial variable voltage processors only have a finite number of speeds
Wei et al. (2011), Sridharan and Mahapatra (2010). In addition, it takes time for a
processor to change its running modes. These factors must be taken into consideration
to provide a practical, valid and efficient voltage schedule.

One intuitive way to deal with discrete frequency levels is to round up the required
frequency to the next available level. Unfortunately, this can be extremely pessimistic
and energy inefficient, especially for processors with only a few frequencies available.
In fact, we can adopt the similar approach as in the work Mochocki et al. (2004) to
deal with both the problem of discrete levels of working frequencies and non-zero
timing overhead. As shown in Mochocki et al. (2004), non-zero timing overhead can
cause monotonicity violation similar to the scenario when we insert recovery blocks
for fault tolerance. Therefore, the transition overhead can be efficiently handled by
adding it to the reserved blocks. For discrete frequency levels, we can take this factor
into consideration when constructing critical intervals. Specifically, when a critical
interval is found according to Algorithm 2, its speed needs to be raised to the next
level available. Once a higher than necessary speed is used, idle slacks will be generated

123

610 Real-Time Syst (2014) 50:592–619

in the critical interval. Then we reduce the idle slacks by identifying the latest finishing
time of the critical interval.

Given the jobs in the interval and a higher speed than required, we can find the latest
finishing time of the workload including recoveries under the worst case as follows.
Let I ∗ = [ts, t f] be the critical interval and sh be its speed. In addition, the set of jobs
in I ∗ is denoted by J (I ∗) and Jhp(i) is the set of jobs of priority higher than that of
job Ji . Therefore, the latest finishing time(L FT (I ∗)) is obtained by Eq. (7),

L FT (I ∗) = max
∀Ji∈J (I ∗)

⎧
⎨

⎩
ci

sh
+

∑

∀J j∈Jhp(i)∩d j >ai

c j

sh
+ K × Re(i)+ ai

⎫
⎬

⎭
(7)

where the first part denotes the execution requirement from Ji itself and the second and
third part represent the interference from the higher priority jobs and the worst case
recovery time, i.e. Re(i) = max{Rp + T Op|Jp ∈ {Ji } ∪ Jhp(i)} that Ji can suffer,
respectively. Note that not all the workload from higher priority jobs are considered
because only those with deadlines after the arrival of Ji , i.e. ai may delay the execution
of Ji . Therefore, the actual critical interval to be removed is [ts, min(t f , L FT (I ∗))].

To update our LPSSR to deal with discrete frequency levels, we only need to calcu-
late the latest finishing time and update the ending point of the critical interval before
line 14. Similarly, this technique can be incorporated into MLPEDF and EMLPEDF
as well.

5.2 System reliability and imperfect fault coverage

Our proposed approach enhances the system reliability by ensuring the K-fault-
tolerance capability of the system through advanced backup policies. Let the system
reliability be defined in 3.

Definition 3 The reliability of the system, denoted as Rsys , is the probability that the
system functions correctly during an operational cycle (its length is represented by
Lcyc) of the system.

Let Pr(q, Lcyc) denote the probability that exactly q faults occur during Lcyc and
ρ denote the fault coverage of the given fault detection method, i.e. 0 < ρ ≤ 1. To
ensure the system to function correctly, two conditions have to be met: 1) no more than
K faults occur during Lcyc; 2) all failures are appropriately detected. As the event of
fault occurrence is independent of the process of fault detection, the system reliability
Rsys can be calculated in Eq. (8),

Rsys =
K∑

q=1

Pr(q, Lcyc) · Prdet (q), (8)

where Prdet (q) = ρq , i.e. the probability that q faults are detected. If the failure
distribution is modeled as a Possion process with a failure rate λ as in Zhao et al.
(2004; 2012; 2011), then the reliability function is shown in Eq. (9),

123

Real-Time Syst (2014) 50:592–619 611

Rsys =
K∑

q=1

(λLcyc)
q · e−λLcyc

q! · ρq (9)

As can be seen from both Eqs. (8) and (9), the larger the number of faults, i.e. K
that the system can tolerate, the higher the system reliability. Note that, this reliability
model is not limited to any particular failure distribution, as long as Pr(q, Lcyc) is
well defined, it can be readily applied. Given a reliability goal and the length of an
operational cycle of the system, a corresponding K can be determined under any given
fault detection technique.

From Eq. 9, the fault coverage factor can play an important role in system reliability.
To study the tradeoffs between different fault coverage techniques is an interesting
research problem and will be our future work.

6 Simulation results

In this section, we compare the performance of four algorithms: NPM, MLPEDF,
EMLPEDF, and LPSSR. NPM represents the speed schedule with no power manage-
ment involved, i.e. all jobs or recoveries are executed under smax and is used as a
reference schedule. MLPEDF and EMPLEDF are fault tolerant algorithms discussed
in Sect. 3 and LPSSR is the algorithm presented in Sect. 4. All energy consumptions
plotted were normalized to NPM.

We assumed that α = 2, Cef = 1, Pind = 0.05, and smin was set to 0.25. We tested
our algorithm with job sets randomly generated as follows: for each job, the arrival
time ai is uniformly distributed in the interval [0s,100s] while its relative deadline rdi

is in [50s,100s]. Therefore, the absolute deadline was calculated as di = ai + rdi .
In addition, the worst case execution time ci was less than rdi and also randomly
generated. For each job, the timing and energy overhead of fault detection is set to
10 % of its worst case execution time and its energy consumption, respectively. The
choices of K were based on the characteristics of the task sets and typical fault arrival
rates. As indicated in Zhang and Chakrabarty (2006), the typical fault arrival rate in
safety-critical real-time system is in the range of 10−10 to 10−5/hour . However, for
systems that operate in harsh environment, the fault arrival rate can be much higher,
in the range of 10−2 to 102/hour . Only the job sets running at smax that are feasible
under K faults are of interest to us.

Two sets of simulations were conducted to study the performance of our algorithm
in terms of energy savings under continuously varied speeds and discrete speed levels,
respectively.

6.1 System with continuous speeds

First, we studied how energy saving performance changes with the number of jobs.
We set the fault rate to be 10−5 and varied the number of jobs from 10 to 50. For
simulations with the same number of jobs, we generated at least 1000 different test
cases. With our settings, the number of fault in our job set is no more than 1. Therefore,

123

612 Real-Time Syst (2014) 50:592–619

Fig. 6 Energy savings with different numbers of jobs, K = 1

we set K = 1. For each job set, we collected the energy consumption of the speed
schedule by each of the four approaches. The result is illustrated in Fig. 6.

From Fig. 6, we can see that the energy consumption of LPSSR, EMLPEDF and
MLPEDF increases as the job set becomes larger. This is reasonable since the workload
is increasing while the slacks that can be used for DVFS are diminishing. LPSSR
always dominates the other three algorithms because, by sharing reserved slacks,
LPSSR reserves fewer resources for fault recovery and uses more for slowing down
the execution of jobs. When the workload is very low, i.e., only 10 jobs, the energy
savings achieved by all three algorithms are almost the same, this is due to the fact
that most of the test cases are feasible under constant speed smin . When the workload
is high enough, most of the slacks are used for fault recovery and no room is left for
DVFS. Moreover, if the number of jobs is increased to a certain point, no fault-tolerant
speed schedule can be found. In average, additional 13 and 10 % energy saving can
be achieved by LPSSR when comparing with MLPEDF and EMLPEDF, respectively.

In our second set of simulations, we wanted to investigate how the number of faults
affects the performance of our algorithm. In this simulation, the number of jobs is fixed
to 15 and the fault rates to be tolerated varies from 10−2 to 102/h, i.e. K changes from
1 to 5. Again, no less than 1,000 different test cases were generated for simulations
with the same fault numbers. The average results are shown in Fig. 7.

From Fig. 7 we can see that the energy consumptions by MLPEDF and EMLPEDF
increase rapidly as the increase of the number of faults. The energy consumption
by LPSSR, on the other hand, grows but less dramatically. From Fig. 7, the energy
consumption difference is around 6 % between tolerating 1 fault and 5 faults under
LPSSR. This is due to the fact that the recovery slacks are shared to the maximum
extent by employing the sharing mechanism in LPSSR. On the contrary, MLPEDF
(EMLPEDF) is affected significantly by the increasing number of faults in the system
and more than 40 % (33 %) additional energy is consumed when fault occurrences
increase from 1 to 5.

123

Real-Time Syst (2014) 50:592–619 613

Fig. 7 Energy savings with increasing number of faults, # of jobs = 15

Fig. 8 Energy savings with increasing number of jobs under PentiumM, K = 1

6.2 System with discrete speed levels

In this section, we also evaluate the four algorithms using two different sets of simu-
lations. The technique discussed in Sect. 5.1 is used to deal with discrete speed levels.

We adopt PentiumM processor with 8 frequency levels (1.00, 0.86, 0.76, 0.67, 0.57,
0.47, 0.38, 0.28) as our target system as used in Liu et al. (2010). Two simulations
under the same configuration as those in Sect. 6.1 are performed and their results
are shown in Figs. 8 and 9, respectively. Again, four algorithms with limited number
of speeds are evaluated, which are NPM, D-MLPEDF, D-EMLPEDF and D-LPSSR,
respectively. To better illustrate the performance of our algorithm under discrete speed
levels, we compare it with that of continuous speeds, which is denoted by C-LPSSR.

The advantages of our algorithm D-LPSSR over the other two in terms of energy
savings are manifested in Fig. 8, and the additional energy savings only drops around

123

614 Real-Time Syst (2014) 50:592–619

Fig. 9 Energy savings with increasing number of faults under PentiumM, # of jobs = 15

3 % compared with continuous varied speeds. In average, the difference between
D-LPSSR and C-LPSSR is only 5 %.

Moreover, for the second simulation, algorithm LPSSR performs even better as
shown in Fig. 9. This is due to the fact that it extensively explores the slacks that
can be shared among different critical intervals and significantly reduce the amount of
recoveries. Therefore, increasing the number of faults has little impact on the resulting
speed schedule. Comparing with C-LPSSR, only 3 % more energy is consumed for
tolerating 1–5 faults.

6.3 Real-life periodic task sets

In this section, we verify the proposed algorithms using three real-life periodic task
sets, which are a CNC task set, an inertial navigation system (INS) task set, and a
generic aviation platform (GAP) task set, respectively. The specifications of these
task sets can be found in Zhang and Chakrabarty (2006) and omitted here due to
space limitation. Based on our simulations, no task set can tolerate more than 2 faults.
Therefore, only the results of K = 1, 2 are recorded and are normalized to NPM.
Processors with continuous frequencies and discrete frequency levels are considered,
separately.

As shown in Table 2, all three algorithms can achieve energy savings compared with
NPM while maintaining the feasibility of the task sets, where A1, A2 and A3 stand for
MLPEDF, EMLPEDF and LPSSR, respectively. The two algorithms, i.e. EMLPEDF
and LPSSR have similar performance when tolerating 1 fault, because the shared
slacks are negligible considering a relatively small execution time to period ratio. For
all three algorithms, we noticed a consequent increase in energy consumption when
K increases. This increase mostly comes from the first iteration of the algorithm,
the intensity of the first critical interval is much higher for a larger K , especially
for a task set with large utilization where slacks are already scarce. However, when
K = 2, LPSSR stills attains another 8.5 % (12 %) energy reduction compared with
EMLPEDF (MLPEDF), which is a strong demonstration of the benefits from slack-

123

Real-Time Syst (2014) 50:592–619 615

Table 2 Energy-performance comparison for CNC, INS, and GAP

Continuous frequencies PentiumM

Task set K A1 (%) A2 (%) A3 (%) A1 (%) A2 (%) A3 (%)

CNC 1 69.9 60.4 59.9 72.8 62.6 61.9

2 86.4 80.5 71.4 91.8 84.8 77.4

INS 1 96.3 93.0 88.5 98.7 96.2 92.1

2 NF NF NF NF NF NF

GAP 1 91.5 89.4 87.2 98.4 96.9 93.3

2 100 100 92.2 100 100 96.8

sharing. Under a processor with a limited number of frequencies, i.e. PentiumM in
Sect. 6.2, the performance of our algorithms is slightly degraded as expected.

6.4 Further validation of LPSSR

To our best knowledge, there is no other paper in the literature addressing the exactly
same problem. However, to demonstrate the efficacy of our LPSSR, we compared
LPSSR against the method fault-tolerant uniform checkpointing with DVFS (FTU-
niChK) from the work Melhem et al. (2004) that studied the fault-tolerant energy
reduction for periodic task sets scheduled under EDF on a single processor. FTU-
niChK first identified the the checkpointing interval and then derived a constant speed
to execute the entire task set, but it is only applicable when no more than one fault
can occur, i.e. K = 1. Note that, our LPSSR exploits the slacks that can be shared
among different jobs and acts on top of any checkpointing scheme. Therefore, we
directly adopted the uniform checkpointing scheme from Melhem et al. (2004) before
employing LPSSR.

The simulation parameters were set as follows. We had α = 2, Cef = 1, Pind =
0.05, and smin was set to 0.25. Each task set consisted of 10 periodic tasks, whose
periods were uniformly generated in the range of [5s 50s]. The checkpointing overhead
of each task was set to 5 % of its worst case execution time under smax . The total
utilization of the task set was varied from 0.2 to 0.95 with a step of 0.05. For each
utilization value, we generated 1000 different task sets according to UUNISORT in
Bini and Buttazzo (2005), and the average energy consumption of one LCM was
reported. We again normalized the energy consumption with respect to that of NPM.

According to Fig. 10, our LPSSR consistently outperforms FTUniChK. When the
processor is light-loaded, both methods use close-to-minimum speed to execute the
task set, therefore the energy performance is close. However, as the utilization increase,
LPSSR can reduce the amount of slacks reserved for fault-tolerance and use more for
energy reduction compared to FTUniChK. For instance, when the utilization is 0.8,
LPSSR achieves around 10 % more energy savings.

123

616 Real-Time Syst (2014) 50:592–619

Fig. 10 LPSSR versus FTUniCk

Through extensive simulations, we have shown that the three proposed algorithms
can save a significant amount of energy comparing with NPM. Specifically, our LPSSR
algorithm is more energy efficient by reserving the least amount of slacks.

7 Conclusion

In this paper, we investigate the problem of minimizing energy consumption when
scheduling a set of real-time jobs in presence of up to K transient faults under EDF
policy. We explore the reserved slacks in the system and maximize its utility by pro-
viding a slack sharing mechanism. Under the notion of shared recovery slacks, we
propose an algorithm that reduces the energy consumption and maintains feasibility
under the worst case, i.e. up to K faults occur during one operational cycle of the
system. We then extend our algorithm to systems with discrete speed levels to provide
practical and energy efficient solutions. Theoretical validation of our approach is pro-
vided and the simulation results have shown that our approach consistently results in
lower energy consumption compared with other algorithms.

Acknowledgments This work is supported in part by NSF under Projects CNS-1423137 and CNS-
1018108.

References

AMD (2014) Amd g-series. http://www.amd.com/us/products/embedded/processors/Pages/g-series.aspx.
Accessed 20 Feb 2014

Aydin H (2007) Exact fault-sensitive feasibility analysis of real-time tasks. IEEE Trans Comput
56(10):1372–1386. doi:10.1109/TC.2007.70739

Aydin H, Melhem R, Mosse D, Mejia-Alvarez P (2004) Power-aware scheduling for periodic real-time
tasks. IEEE Trans Comput 53(5):584–600. doi:10.1109/TC.2004.1275298

Bini E, Buttazzo GC (2005) Measuring the performance of schedulability tests. Real-Time Syst 30(1–
2):129–154. doi:10.1007/s11241-005-0507-9

Castillo X, McConnel SR, Siewiorek DP (1982) Derivation and calibration of a transient error reliability
model. IEEE Trans Comput 31:658–671. doi:10.1109/TC.1982.1676063

123

http://www.amd.com/us/products/embedded/processors/Pages/g-series.aspx
http://dx.doi.org/10.1109/TC.2007.70739
http://dx.doi.org/10.1109/TC.2004.1275298
http://dx.doi.org/10.1007/s11241-005-0507-9
http://dx.doi.org/10.1109/TC.1982.1676063

Real-Time Syst (2014) 50:592–619 617

Davis RI, Burns A (2007) Controller area network (can) schedulability analysis: refuted, revisited and
revised. refuted, revisited and revised. Real-Time Syst 35:239–272

Intel (2012) Intel xeon processor. http://www.intel.com/content/www/us/en/intelligent-systems/crystal-
forest-server/xeon-e5-v2-89xx-chipset.html. Accessed 20 Feb 2014

Izosimov V, Pop P, Eles P, Peng Z (2012) Scheduling and optimization of fault-tolerant embedded systems
with transparency/performance trade-offs. ACM Trans Embed Comput Syst 11(3):61:1–61:35. doi:10.
1145/2345770.2345773

Langley T, Koga R, Morris T (2003) Single-event effects test results of 512mb sdrams. In: Radiation effects
data workshop, IEEE, pp 98–101. doi:10.1109/REDW.2003.1281355

Lawrence R (2007) Radiation characterization of 512mb sdrams. In: Radiation effects data workshop, vol
0, IEEE, pp 204–207. doi:10.1109/REDW.2007.4342566

Liu Y, Liang H, Wu K (2010) Scheduling for energy efficiency and fault tolerance in hard real-time systems.
In: Design, automation test in Europe conference exhibition (DATE), pp 1444–1449

Many F, Doose D (2011) Scheduling analysis under fault bursts. In: Real-Time and embedded technology
and applications symposium, IEEE, pp 113–122. doi:10.1109/RTAS.2011.19

Melhem R, Mosse D, Elnozahy E (2004) The interplay of power management and fault recovery in real-time
systems. IEEE Trans Comput 53(2):217–231. doi:10.1109/TC.2004.1261830

Mochocki B, Hu X, Quan G (2004) A unified approach to variable voltage scheduling for nonideal
dvs processors. IEEE Trans Comput-Aided Des Integr Circuits Syst 23(9):1370–1377. doi:10.1109/
TCAD.2004.833602

Pop P, Poulsen KH, Izosimov V, Eles P (2007) Scheduling and voltage scaling for energy/reliability trade-offs
in fault-tolerant time-triggered embedded systems. In: Proceedings of the 5th IEEE/ACM international
conference on Hardware/software codesign and system synthesis, CODES+ISSS ’07, ACM, New
York, pp 233–238. doi:10.1145/1289816.1289873

Pradhan DK (ed) (1996) Fault-tolerant computer system design. Prentice-Hall Inc, Upper Saddle River
Quan G, Hu X (2001) Energy efficient fixed-priority scheduling for real-time systems on variable voltage

processors. In: DAC ’01, Proceedings of the 38th annual design automation conference, ACM, New
York, pp 828–833. doi:10.1145/378239.379074

Quan G, Niu L (2004) Fixed priority scheduling for reducing overall energy on variable voltage processors.
In: IEEE computer Society in 25th IEEE Real-Time system symposium, IEEE, pp 309–318

Skotnicki T, Hutchby J, King TJ, Wong HS, Boeuf F (2005) The end of cmos scaling: toward the introduction
of new materials and structural changes to improve mosfet performance. IEEE Circuits Dev Mag
21(1):16–26. doi:10.1109/MCD.2005.1388765

Sridharan R, Mahapatra R (2010) Reliability aware power management for dual-processor real-time embed-
ded systems. In: 47th ACM/IEEE design automation conference (DAC), IEEE, pp 819–824

Srinivasan J, Adve S, Bose P, Rivers J (2004) The impact of technology scaling on lifetime reliability. In:
2004 International conference on dependable systems and networks, pp 177–186. doi:10.1109/DSN.
2004.1311888

Srinivasan J, Adve SV, Bose P, Rivers J, Hu CK (2003) Ramp: A model for reliability aware microprocessor
design. IBM Research Report, RC23048. New York

Wei T, Chen X, Hu S (2011) Reliability-driven energy-efficient task scheduling for multiprocessor real-time
systems. IEEE Trans Comput-Aided Des Integr Circuits Syst 30(10):1569–1573. doi:10.1109/TCAD.
2011.2160178

Wei T, Mishra P, Wu K, Zhou J (2012) Quasi-static fault-tolerant scheduling schemes for energy-efficient
hard real-time systems. J Syst Softw 85(6):1386–1399. doi:10.1016/j.jss.2012.01.020

Yao F, Demers A, Shenker S (1995) A scheduling model for reduced cpu energy. In: Proceedings of 36th
annual symposium on foundations of computer science, pp 374–382. doi:10.1109/SFCS.1995.492493

Zhang Y, Chakrabarty K (2006) A unified approach for fault tolerance and dynamic power management
in fixed-priority real-time embedded systems. IEEE Trans Comput-Aided Des Integr Circuits Syst
25(1):111–125. doi:10.1109/TCAD.2005.852657

Zhang Y, Chakrabarty K, Swaminathan V (2003) Energy-aware fault tolerance in fixed-priority real-time
embedded systems. In: ICCAD ’03, Proceedings of the 2003 IEEE/ACM international conference on
Computer-aided design, IEEE Computer Society, Washington, DC, p 209. doi:10.1109/ICCAD.2003.
63

Zhao B, Aydin H, Zhu D (2011) Generalized reliability-oriented energy management for real-time embedded
applications. In: 48th ACM/EDAC/IEEE design automation conference (DAC), IEEE, pp 381–386

123

http://www.intel.com/content/www/us/en/intelligent-systems/crystal-forest-server/xeon-e5-v2-89xx-chipset.html
http://www.intel.com/content/www/us/en/intelligent-systems/crystal-forest-server/xeon-e5-v2-89xx-chipset.html
http://dx.doi.org/10.1145/2345770.2345773
http://dx.doi.org/10.1145/2345770.2345773
http://dx.doi.org/10.1109/REDW.2003.1281355
http://dx.doi.org/10.1109/REDW.2007.4342566
http://dx.doi.org/10.1109/RTAS.2011.19
http://dx.doi.org/10.1109/TC.2004.1261830
http://dx.doi.org/10.1109/TCAD.2004.833602
http://dx.doi.org/10.1109/TCAD.2004.833602
http://dx.doi.org/10.1145/1289816.1289873
http://dx.doi.org/10.1145/378239.379074
http://dx.doi.org/10.1109/MCD.2005.1388765
http://dx.doi.org/10.1109/DSN.2004.1311888
http://dx.doi.org/10.1109/DSN.2004.1311888
http://dx.doi.org/10.1109/TCAD.2011.2160178
http://dx.doi.org/10.1109/TCAD.2011.2160178
http://dx.doi.org/10.1016/j.jss.2012.01.020
http://dx.doi.org/10.1109/SFCS.1995.492493
http://dx.doi.org/10.1109/TCAD.2005.852657
http://dx.doi.org/10.1109/ICCAD.2003.63
http://dx.doi.org/10.1109/ICCAD.2003.63

618 Real-Time Syst (2014) 50:592–619

Zhao B, Aydin H, Zhu D (2012) Energy management under general task-level reliability constraints. In:
IEEE 18th real-time and embedded technology and applications symposium (RTAS), pp 285–294.
doi:10.1109/RTAS.2012.30

Zhu D, Melhem R, Mosse D (2004) The effects of energy management on reliability in real-time embed-
ded systems. In: ICCAD ’04, Proceedings of the 2004 IEEE/ACM International conference on
Computer-aided design, IEEE Computer Society, Washington, DC, pp 35–40. doi:10.1109/ICCAD.
2004.1382539

Qiushi Han is a Ph.D. candidate in the Department of Electrical
and Computer Engineering at the Florida International University,
Florida, USA. He received his B.S. from the Department of Soft-
ware Engineering, Beijing Jiaotong University. His research inter-
ests include real-time systems, power-/thermal- aware computing and
reliable/fault-tolerant system designs.

Linwei Niu received the B.S. in Computer Science and Technology
from Peking University, Beijing, China in 1998, the M.S. in Com-
puter Science from State University of New York at Stony Brook in
2001, and the Ph.D. in Computer Science and Engineering from Uni-
versity of South Carolina in 2006. Currently, he is an associate pro-
fessor in the Department of Math and Computer Science, West Vir-
ginia State University, U.S.A. His research interests include power-
aware design for embedded systems, design automation, real-time
scheduling and software/hardware co-design.

123

http://dx.doi.org/10.1109/RTAS.2012.30
http://dx.doi.org/10.1109/ICCAD.2004.1382539
http://dx.doi.org/10.1109/ICCAD.2004.1382539

Real-Time Syst (2014) 50:592–619 619

Gang Quan received his Ph.D. from the Department of Computer
Science & Engineering, University of Notre Dame, USA, his M.S.
from the Chinese Academy of Sciences, Beijing, China, and his B.S.
from the Department of Electronic Engineering, Tsinghua University,
Beijing, China. He is currently an associate professor in the Electrical
and Computer Engineering Department, Florida International Univer-
sity. Before he joined the department, he was an assistant professor
at the Department of Computer Science and Engineering, University
of South Carolina. His research interests and expertise include real-
time systems, embedded system design, power-/thermal-aware com-
puting, advanced computer architecture and reconfigurable comput-
ing. Dr. Quan is the recipient of a National Science Foundation Fac-
ulty Career Award. He also won the Best Paper Award from the 38th
Design Automation Conference. His paper was also selected as one
of the Most Influential Papers of 10 Years Design, Automation, and
Test in Europe Conference (DATE) in 2007. Dr. Quan is a senior
member of IEEE.

Shaolei Ren received the B.E. degree in Electronic Engineering
from Tsinghua University in 2006, the M.Phil. degree in Eletronic
and Computer Engineering from Hong Kong University of Science
and Technology in 2008, and the Ph.D. degree in Electrical Engi-
neering from University of California, Los Angeles, in 2012. Since
August 2012, he has been with Florida International University,
where he currently holds a joint appointment of Assistant Professor in
the School of Computing and Information Sciences and the Depart-
ment of Electrical and Computer Engineering. His research interests
lie in cloud computing, data center resource management and net-
work economics.

Shangping Ren is an associate professor in the Computer Science
Department at the Illinois Institute of Technology. She earned her
Ph.D from UIUC in 1997. Before she joined IIT in 2003, she worked
in software and telecommunication companies as a software engi-
neer and then lead software engineer. Her current research inter-
ests include coordination models for real-time distributed open sys-
tems, real-time, fault-tolerant and adaptive systems, Cyber-Physical
System, parallel and distributed systems, cloud computing, and
application-aware many-core virtualization for embedded and real-
time applications.

123

	Energy efficient fault-tolerant earliest deadline first scheduling for hard real-time systems
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Real-time application model
	2.2 Power and energy model
	2.3 Fault model
	2.4 Problem formulation

	3 Fault tolerant speed schedule
	4 Fault tolerant speed schedule with shared recovery slacks
	5 Other considerations of the proposed methods
	5.1 Dealing with the limitations of practical processors
	5.2 System reliability and imperfect fault coverage

	6 Simulation results
	6.1 System with continuous speeds
	6.2 System with discrete speed levels
	6.3 Real-life periodic task sets
	6.4 Further validation of LPSSR

	7 Conclusion
	Acknowledgments
	References

