
Energy Minimization for Fault Tolerant Real-Time
Applications on Multiprocessor Platforms Using

Checkpointing
Qiushi Han Ming Fan Gang Quan

Electrical and Computer Engineering Department
Florida International University

Miami, FL, 33174
{qhan001,mfan001,gaquan}@fiu.edu

Abstract—Relentless technology scaling not only dramatically
increases the energy consumption of modern processors, it
also makes processors less reliable. In this paper, we study
the energy minimization problem for real-time applications on
multi-processor platforms while tolerating K transient faults
using checkpointing. We first introduce an efficient method to
determine the checkpointing scheme that minimizes the worst-
case response time for a task set that shares the reserved
recoveries on a single processor. We then present a fault-
tolerant task assignment algorithm to minimize the overall
energy. Experimental results show that the proposed algorithm
significantly outperforms other related approaches in energy
savings.

Keywords—energy-minimization, fault-tolerance, checkpoint-
ing, shared recovery

I. INTRODUCTION

As the aggressive scaling in transistor size continues, more
and more transistors are integrated into a single die to boost
computing performance, which causes the power consumption
of IC chips to increase exponentially [1]. This in turn poses
severe constraints on operations of real-time systems, espe-
cially the battery-operated ones due to their limited energy
supply. For the past two decades, energy awareness has
become a first-class design constraint. Dynamic voltage and
frequency scaling (DVFS) is one of the most popular and
widely deployed schemes to conserve energy consumption.
DVFS dynamically adjusts the supply voltage and working
frequency to reduce power consumption at the cost of increas-
ing response time, which may undermine the performance
of real-time systems. Therefore, extensive studies have been
proposed (e.g. [2], [3]) to guarantee timing constraints while
minimizing energy consumption with DVFS-enabled settings
for various system/task models.

Meanwhile, as transistors become smaller and smaller, the
reliability of IC chips is increasingly becoming a serious
concern. First, the rapidly decreased feature size of the tran-
sistors has dramatically increased the rate of radiation-induced
faults, up to several orders of magnitude [4]. Second, the
ever-increasing on-chip power consumption and temperature
have imposed serious threats for the lifetime reliability of IC
chips[5]. Due to the nature of safety-critical real-time sys-
tems, e.g. automobiles and industrial controls, catastrophical

consequences may occur if system faults can not be handled
timely or properly.

Processor faults can be largely classified as transient or
permanent [6]. A transient fault happens for a short period
time and then disappears without physical damage to the
processor. On the contrary, a permanent fault disables a pro-
cessor permanently. In this paper, we only consider transient
faults because they occur more frequently than permanent
faults (with a ratio of 100:1 or higher) [7]. Fault tolerance is
usually achieved through time redundancy or backward error
recovery. Checkpointing with rollback recovery provides an
efficient method to reduce reexecution time in the presence
of faults and is well adopted by many researchers [7], [8].
We adopt checkpointing scheme in our research to address
the fault tolerance issue.

A plethora of techniques has been presented in the literature
on real-time scheduling with both fault tolerance and energy
minimization requirements. For example, Zhang et al. [8]
introduced a static combination of checkpointing and DVFS
scheme for fixed-priority tasks for tolerating K transient faults
while minimizing energy consumption. This approach was ex-
tended by Wei et al. [9] to explore run-time slacks for further
reducing energy consumption. Zhao et al. [10] considered the
negative effects of DVFS on transient fault rate and proposed
a task-level reliability model. They developed algorithms to
determine DVFS schedules and resource-reservation schemes
to minimize energy consumption while meeting task-level
reliability requirements. All these approaches are restricted
to uniprocessor platforms.

As more and more transistors are integrated to the same
chip, and due to problems such as the power/thermal issues
and limitations in instruction level parallelism [11], multi-
processor platforms are becoming mainstream. As a result,
most of the research efforts are turned to multi-processor
platforms. Pop et al. [12] presented a constraint logic pro-
gramming method to design low-power fault-tolerant hard
real-time applications on distributed heterogeneous platforms.
They assumed that the task allocation is fixed and known
a priori, and an entire task needs to be re-executed when a
transient fault occurs. Qi et al. [13] derived a reliability-aware
global scheduling scheme aiming at reducing the system en-
ergy consumption for a set of framework-based tasks running

on a homogeneous multi-processor platform. They assumed
that different tasks can share the same reserved sources to
recover when faults happen. Again, the entire task has to be
re-executed in case of faults, which can greatly affect the
energy efficiency of the system. Pop et al. [7] proposed a
more comprehensive approach to the synthesis of fault tol-
erant schedule for applications on heterogeneous distributed
systems. They used the combination of checkpointing and
active replication to deal with the fault tolerance problem.
A meta-heuristic (Tabu search) is constructed to decide the
fault-tolerance policy, the placement of checkpoints and the
mapping of tasks to processors, but energy consumption is
not considered in their approach.

We are interested in the problem of minimizing energy
consumption while tolerating up to K transient faults with
checkpointing scheme for a real-time system running on
a homogeneous multiprocessor platform. A key to solve
this problem is to make the judicious tradeoffs between
the number of checkpoints for each task and the amount
of reserved resources for fault recovery. In this paper, we
first study the problem on how to identify the appropriate
numbers of checkpoints for tasks on a single processor to
minimize the worst case response time. Based on the results,
we then develop an efficient method to optimize the energy
consumption for a real-time application while ensuring that
K transient faults can be tolerated. From our simulation
study, our approach can significantly outperform the related
approaches.

The rest of the paper is organized as follows. Section II
introduces the system models and notations used throughout
this paper. Section III presents our method to minimize the
worse case latency for real-time tasks on a single processor.
We then present our energy efficient fault-tolerant algorithm in
section IV. The effectiveness and efficiency of our algorithms
are evaluated in Section V. Finally, section VI concludes the
paper.

II. PRELIMINARIES

A. Application model

The real-time applications considered in this paper consist
of n independent tasks, denoted as Γ = {τ1,τ2, ...,τn}. All
tasks in Γ have the same deadline D, but with different
execution requirements. We denote the execution time of τi
as ci. The utilization of task τi is represented as ui =

ci
D . The

system utilization U is therefore calculated as Utotal =∑
n
i=1

ci
D .

B. Fault model and checkpointing

In this paper, we only consider transient faults that can be
tolerated by backward rollback recoveries. We assume that the
system needs to tolerate K faults, and the faults can happen
on any of the processors and at any time, even in a burst
manner. Run-time faults are countered by rolling back to the
latest checkpoints and re-executing the corrupted segments.
Checkpointing is considered to be self fault-tolerant.

The timing and energy overhead of inserting one check-
point to task τi (saving the fault-free state) are denoted by oi
and eoi, respectively. In addition, we use ri (eri) to denote
the time (energy) it takes to retrieve the information needed

to rollback to the latest checkpoint when a fault happens
during the execution of τi. Fault detection is performed
at each checkpoint to ensure the correctness of the saved
state. The timing and energy overhead for such an operation
are represented as qi and eqi, respectively. Assuming mi
checkpoints inserted into τi, fault detections will be performed
for total (mi + 1) times (including one fault detection at the
end of τi’s execution). Therefore, the fault-free execution time
of τi with mi number of checkpoints, denoted as c′i(mi), can
be specified as shown in equation (1a). The recovery time
of τi with a single failure, denoted as Ri(mi), is shown in
equation (1b).

c′i(mi) = ci +mi(oi +qi)+qi (1a)

Ri(mi) = ri +
ci

mi +1
+qi (1b)

C. Platform and energy model

We consider a homogeneous multiprocessor platform Ψ

with m processors, i.e. Ψ = {ψ1, ...,ψm}. We assume all the
processors are identical in terms of processing frequency
and power characteristics. For the ease of presentation, we
assume the speed/frequency of a processor can be changed
continuously in [fmin, fmax] with 0 ≤ fmin ≤ fmax = 1. As
discussed later in this paper, this constraint can be easily
relaxed to accommodate the fact that most practical processors
support a set of discrete levels of frequencies.

Our system-level power model is similar to that in [14] by
distinguishing the dynamic and leakage power components.
Specifically, the overall power consumption P can be formu-
lated as

P = Pleak +Pdyn = Pleak +Ce f f α (2)

where Pleak is the constant leakage power and can be only
eliminated by turning down the processor. Ce f is the effective
switching capacitance. α is a constant usually larger than
1. Pdyn is the dynamic power consumed when the device
changes logic states. Hence, the energy consumption of a task
τi with mi checkpoints running under the frequency fi can be
expressed as:

Ei(fi) = (Pleak +Ce f f α
i) ·

ci

fi

+mi(eoi +oiPleak)+(mi +1)(eqi +qiPleak), (3)

which includes the energy consumption incurred by executing
task τi and the energy overheads caused by checkpointing
and fault detections. Similar to [8], we consider checkpoint-
ing, fault detections and checkpoint retrievals are frequency
independent, but leakage power is still consumed during their
operations. As Ei(fi) is a convex function, the minimum
system energy is achieved when fi is as small as possible,
provided it is larger than so-called critical frequency (fc =
α

√
Pleak

(α−1)Ce f
) [14].

We use Γ j to represent the set of tasks assigned to the
processor ψ j. The energy consumption of processor ψ j can
be calculated using equation (4).

E(Γ j) = ∑
τi∈Γ j

Ei(fi). (4)

The total energy consumption of the system is thus E(Γ) =
∑

m
j=1 E(Γ j).

III. OPTIMAL CHECKPOINTING SCHEME FOR MINIMIZING
THE WORST CASE LATENCY ON A SINGLE PROCESSOR

Our goal is to develop a method that can minimize the
energy consumption while ensuring the K-fault tolerance
using checkpointing. A key to solve this problem is to make
judicious decisions on inserting checkpoints to each task. As
shown in the previous section, increasing the numbers of
checkpoints for real-time tasks incurs larger checkpointing
overhead which may compromise the feasibility and/or energy
efficiency of real-time systems. On the other hand, however,
increasing the checkpoint numbers decreases the needs of
larger resource reservation for fault recovery, which can be
in favor of both system feasibility and energy efficiency. As
a result, the number of checkpoints (or the checkpointing in-
terval) must be carefully chosen to balance the checkpointing
overhead with the fault recovery cost.

As a closely related work, Zhang et al. [8] showed that the
optimal number of checkpoints to minimize the worst case
latency of a single task τi, denoted as m∗i , can be calculated
as

m∗i =

 d
√

K∗ci
oi+qi

−1e if ci >
(m−i +1)(m−i +2)(oi+qi)

K

b
√

K∗ci
oi+qi

−1c if ci ≤
(m−i +1)(m−i +2)(oi+qi)

K

where m−i = b
√

K∗ci
oi+qi

−1c. However, when considering mul-
tiple tasks that share recovery resources on a single processor,
the individual optimal checkpointing configuration does not
necessarily lead to the global optimal result. Pop et al. [7]
resorted to meta-heuristic (i.e. Tabu search) to search for the
global optimal solution. It is desirable that a more efficient
and effective method can be developed to identify the optimal
global checkpointing settings, especially during the design
space exploration process.

Assuming all tasks on the same processor share the same
recovery resources, to tolerate K faults, we must reserve
enough CPU time, i.e. K×SR, to re-execute the corresponding
program segments, where SR= max

i=1,...n
{Ri(mi)}, mi is the num-

ber of checkpoints for τi, and Ri(mi) is defined in equation
(1b). We call SR as the shared recovery block. Considering the
task set Γ = {τ1,τ2, ...,τn} is allocated to the same processor,
the worst case latency of task set Γ with shared recovery block
of SR, denoted as L(Γ,SR), can be formulated in equation (5)

L(Γ,SR) =
n

∑
i=1

ci +
n

∑
i=1

(mi ∗oi +mi ∗qi +qi)+K ∗SR. (5)

To find the optimal checkpointing scheme that minimize
the worst case latency, i.e. L(Γ,SR), we have the following
theorem.

Theorem 1: If {m1,m2, ...,mn} is the optimal checkpoint-
ing configuration to minimize L(Γ,SR), then we have ∀i,mi ≤
m∗i , where m∗i is the optimal number of checkpoints to run a
task τi individually.

Proof: We prove this theorem by contradiction.

{m1,m2, ...,mn} is assumed to be the optimal
checkpointing configuration but ∃i ∈ [1,n],mi > m∗i .
Let {m1,m2, ...,m∗i , ...mn} be another configuration that
distinguishes the former one only by the number of
checkpoints for task τi. SR and SR′ denote the sizes
of the shared recovery blocks under two configurations,
respectively. δ represents the difference between the two
worst case latencies, i.e. δ = L(Γ,SR) − L(Γ,SR′). Then,
we have δ = mi(oi + qi) + K ∗ SR− (m∗i (oi + qi) + K ∗ SR′)
according to equation (5).

Note that SR can be potentially increased after reducing mi
to m∗i , we discuss the two possible scenarios separately in the
following.
• Case 1: Ri(m∗i) ≤ SR. In this case, reducing mi to m∗i

does not change the size of the shared recovery block,
i.e. SR′ = SR. Because mi > m∗i , we know δ > 0.

• Case 2: Ri(m∗i) > SR. This means that the share re-
covery block is increased due to the decrease in the
checkpointing number of task τi and SR′ = Ri(m∗i). Since
SR≥Ri(mi), if we replace SR (SR′) with Ri(mi) (Ri(m∗i)),
respectively, we have

δ≥mi(oi +qi)+K ∗Ri(mi)− (m∗i (oi +qi)+K ∗Ri(m∗i)).
(6)

Note that the right hand side of equation (6) represents
the difference of two worst case latencies when running τi
individually using two different checkpointing schemes. Since
m∗i is the optimal checkpoint solution, we must have δ > 0.

For both cases, we have δ > 0. This contradicts our
assumption that M is optimal.

Theorem 1 helps to prune the search space for the check-
pointing configurations. However, a brute-force method based
on Theorem 1 still has a very high computational complexity,
i.e. ∏

n
i=1 m∗i , which can be computationally prohibitive for

large task sets with a considerable amount of possible values
of m∗i . In what follows, we introduce a novel approach to
further prune the search space.

Since SR = max
i=1,...n

{Ri(mi)}, from equation (1b), for a given

SR, we have
mi = d

ci

SR− (ri +qi)
−1e. (7)

Therefore, equation (5) can be transformed to

L(Γ,SR) =
n

∑
i=1

(ci +qi)+
n

∑
i=1
d ci

SR− (ri +qi)
−1e(oi +qi)

+K ∗SR (8)

Therefore, to search for the optimal checkpointing configura-
tions, we only need to search the optimal value of SR that can
optimize L(Γ,SR). To achieve this purpose, we first introduce
the following lemma.

Lemma 1: If M = {m1,m2, ...,mn} is the optimal check-
pointing configuration for task set Γ = {τ1,τ2, ...,τn}, then
the size of the shared recovery block SR under configuration
M is no less than max

i=1,...n
{Ri(m∗i)}.

Proof: The proof of Lemma 1 is similar to that of
Theorem 1. We also prove it by contradiction. The config-
uration M is assumed to be optimal but the resulting SR <

max
i=1,...n

{Ri(m∗i)}. Let task τk have the longest recovery time,

i.e. Rk(m∗k) = max
i=1,...n

{Ri(m∗i)}. According to equation (7), the

number checkpoint of τk is calculated as mk = d ck
SR−(rk+qk)

−
1e> d ck

Rk(m∗k)−(rk+qk)
−1e= dm∗ke. This contradicts Theorem 1.

From Lemma 1, we can immediately set up a lower bound
for SR as

SR≥ max
i=1,...n

{ ci

m∗i +1
}. (9)

Moreover, based on the properties of ceiling(floor) functions
and equation (8), we can set an upper bound and a lower
bound as follows:

Lupper(T ,SR) =
n

∑
i=1

(ci +qi)+
n

∑
i=1

ci

SR−φmax
(oi +qi)+K ∗SR

(10a)

Llower(T ,SR) =
n

∑
i=1

(ci−oi)+
n

∑
i=1

ci

SR−φmin
(oi +qi)+K ∗SR

(10b)

where φmax = max
i=1,2,...,n

(ri +qi) and φmin = min
i=1,2,...,n

(ri +qi).

Note that the two curves defined in equation (10a) and
(10b) constrain the optimal SR as shown in Figure 1. More-
over, from equation (10a), we can readily calculate the
minimum upper bound by setting

∂Lupper(Γ,SR)
∂SR

= 0. (11)

As can be seen from Figure 1, the optimal SR can only be
located in the shaded range between [low,high], beyond which
L is always greater than L1, which is the solution of equation
(11). The exact values of low and high can be calculated
accordingly by solving the following equation

Llower(Γ,SR) = L1. (12)

As such, equation(9) and solutions of equation (12) can be
effectively used for pruning the solution space for the optimal
checkpoint configurations. We summarize the procedures in
Algorithm 1. It is not difficult to see that the complexity
of Algorithm 1 is linear to the possible values of SR. In
section V, we use experimental results to test the efficiency
of our approach.

IV. ENERGY AWARE FAULT-TOLERANT TASK
ALLOCATION

With our analysis results and algorithm to search for the
optimal checkpointing scheme on a single processor, we are
now ready to present our algorithm to minimize the overall
energy consumption while tolerating K transient faults on
multi-processor platforms.

Without fault tolerance requirement, one intuitive method
is to spread the workload among multi-processor platforms as
even as possible [3]. When fault tolerance requirements are
taken into consideration, however, extra care must be taken
since both resource reservation and DVFS compete for system
slack time. Aggressively packing as many tasks as possible
into one processor helps to reduce the resource reservation

S
c
h

e
d

u
le

 le
n

g
th

 (L
)

L1

low high

SR

Lupper

Llower

Fig. 1. Upper and lower bounds of L(Γ,SR)

Algorithm 1 OPT CHK(Γ, K)
1: obtain m∗i , for i = 1,2, ...,n according to [7]
2: Lmin = INF ;
3: S = {SRi,k|SRi,k = Ri(k), i = 1, ...,n;k = 1, ...m∗i };
4: Prune S based on equation (9) and solutions of equation

(12);
5: for i = 1; i≤ sizeo f (S); i++ do
6: calculate L(Γ,S(i)) according to equation (8);
7: if L(Γ,S(i))< Lmin then
8: Lmin = L(Γ,S(i));
9: SRopt = S(i);

10: end if
11: end for
12: mi = d ci

SRopt−(ri+qi)
−1e ∀i = 1, ...n;

13: return Lmin,SRopt ,M = mi, i = 1, ...n

since the reserved resource can be shared by all tasks in the
same processor. However, with too much workload stacked
in one processor, it becomes difficult for a processor to
scale down the processor speed. On the contrary, spreading
tasks around helps to balance the workload among different
processors and thus effectively reduces the processor speed.
The problem is that potentially more resources need to be
reserved since tasks allocated to different processors cannot
share the same reserved resources. Moreover, as indicated in
our analysis results before, different sets of tasks may lead to
totally different optimal checkpointing results, i.e. resource-
reservation schemes.

It is well known that the multi-objective task allocation
problem is a NP-hard problem in the strong sense [3].
Therefore, we focus our effort on developing an effective
heuristic solution for this problem. Our task allocation scheme
for energy minimization with K fault tolerance guarantee is
developed based on the algorithm OPT CHK. Specifically,
when allocating a new task τi, we assign τi to the processor
that leads to the minimum energy consumption increase. Note
that, when assigning τi to a processor (e.g. ψ j), the optimal
checkpoint configurations can be obtained using algorithm
OPT CHK. We assume that the re-execution of a faulty task

(a) 20 tasks on 4 processors, K = 1 (b) 40 tasks on 8 processors, K = 2 (c) 80 tasks on 16 processors, K = 4

Fig. 2. Simulation results of EATA

Algorithm 2 EATA(Γ, Ψ, K)
1: obtain m∗i , for i = 1,2, ...,n according to [7]
2: Etotal = 0;
3: Γ j = NULL, for j = 1,2, ...,m;
4: for i = 1; i≤ n; i++ do
5: ∆E = ∞;
6: assigned = 0;
7: Mnew = NULL;
8: for j = 1; j ≤ m; j++ do
9: {Ltemp, SRtemp, Mtemp} = OPT CHK(Γ j ∪{τi}, K);

10: Etemp = E(Γi∪{τi})
11: if Ltemp ≤ D and Etemp < ∆E then
12: assigned = j;
13: ∆E = Etemp, Mnew = Mtemp
14: end if
15: end for
16: if assigned == 0 then
17: return “not feasible”;
18: else
19: Γassigned ← Γassigned ∪{τi};
20: M = Mnew;
21: Etotal ← Etotal +∆E;
22: end if
23: end for
24: return {Γ1, ...,Γm},Etotal ,M

is always performed at the highest speed and the checkpoint-
ing overhead is independent to the processor’s running mode.
Then the processor speed for ψ j, i.e. f j, can be determined
by

f j = max(

∑
τi∈Γ j

ci

D− ∑
τi∈Γ j

c′i(mi)−K ∗max
τi∈Γ j

Ri(mi)
, fc) (13)

where fc is the critical speed, c′∗(∗) and R∗(∗) are obtained
through equations (1a) and (1b), respectively. Also, the energy
consumption of processor ψ j, i.e E(Γ j), can be calculated
according to equation (4). Note that even though we assume
the frequency of a processor can be continuously varied, we
can still adopt the traditional approach [15] to deal with the
scenario when only a set of discrete levels of frequencies
are available. Specifically, if the desired constant frequency,
i.e. fi, is not available, we identify two available neighboring
frequencies of fi to run the task set Γ j on ψ j. The overall

algorithm is described in Algorithm 2. It is not difficult to
see that the overall complexity of Algorithm 2 is O(n×m×
|S |), where |S | is the worst case possible values of the shared
reservation block on a processor.

V. EXPERIMENTAL RESULTS

In this section, we study the effectiveness and efficiency
of our proposed algorithms. To our best knowledge, there is
no existing approach targeting the exact same problem. As a
result, to study the energy saving performance of EATA, we
compared it with two well-known fault-oblivious approaches,
i.e. Best-Fit(BF) and Worst-Fit(WF). Especially, WF is a
commonly used energy optimization heuristic and has been
shown to be quite effective in the absence of processor faults
due to its load-balancing characteristic [3]. To maintain the
feasibility under the K faults for both BF and WF, the reserved
resource on each processor was considered as part of the
workload, and different tasks can share the reserved resource.
BF(WF) allocates a task to a feasible processor with the
least(most) remaining capacity. Individual optimal number
of checkpoints was inserted to each task under these two
heuristics. We then evaluate how many speedups that EATA
can achieve with the techniques proposed in Section III to
prune the search space of OPT CHK. To evaluate the energy
saving performance, we set up the simulation platforms as
follows. For a fixed number (m) of processors, we varied the
average utilization, i.e. Utotal

m from 0.1(light load) to 1 (heavy
load). The utilization of each task τi was uniformly distributed
in the range [0.01,0.6]. The deadline of the application, i.e.
D, was set to 100. The fault detection, checkpointing and
state retrieval overhead was identically set to 0.5, 1 and 1
respectively for each task. The corresponding energy overhead
was set to 0.05, 0.1 and 0.1. In addition, we set Pleak = 0.1,
Ce f = 1 and α = 3 and we assumed the existence of four
normalized frequency levels given by {0.4,0.6,0.8,1.0}.

Due to page limits, we only show three sets of experimental
results with different numbers of tasks, processors and total
transient faults. Figure 2(a) shows the energy consumption for
20 tasks and 4 processors with K=1. Each point in the figure
was averaged over 1000 test cases. As we can see, the energy
consumption increases when the system workload becomes
heavier for all three techniques, but our approach EATA
always outperforms the other two. For instance, when the
processor average utilization is 0.55, 12%(46%) energy saving
is achieved by EATA over WF(BF). In average, our algorithm
reduces energy consumption by 11% (59%) compared to

(300,4) (400,8) (500,12) (600,16) (700,20) (800,24) (900,28) (1000,32)
0

50

100

150

200

250

300

350

400

450

500

system configuration (n,m)
n: the number of tasks, m: the number of processors

si
m

ul
at

io
n

tim
e

(s
)

EATA with speedup

EATA

Fig. 3. Performance of two speed-up techniques

WF (BF). The energy savings are more substantial in Figure
2(b), with 8 processors and 40 tasks to tolerate maximum 2
faults, with over 16% and 62% energy savings in average
compared to WF and BF, respectively. Similar results are
observed for the case of 16 processors and 80 tasks with at
most 4 faults as shown in Figure 2(c), where 19% and 65%
energy savings are achieved over WF and BF respectively.
In general, we can see that our approach can achieve better
energy savings for test cases with higher system utilizations,
larger numbers of tasks and processors. This is due to the
fact that our approach tries to find the best combination of
task allocation, checkpointing scheme and speed assignment
at each step. High energy savings are achieved by reserving as
less resources as possible and leaving more slacks for DVFS.

Next, we evaluated the benefits of our approach proposed
in Section III. The complexity of EATA heavily depends on
that of OPT CHK. Therefore, the computational efficiency
of OPT CHK is critical to the success of EATA. To study
the computational efficiency of EATA brought by the speedup
techniques for OPT CHK, we set the average utilization, i.e.
Utotal

m to be 0.8. The utilization of each task was randomly
generated to be uniformly distributed in [0.01, 0.06]. The
deadline, i.e. D was set to 100. The timing overhead of check-
pointing, fault detection and state retrieval were considered as
1% of the average task execution time. We varied the numbers
of tasks and processors and recorded the results in Figure
3. In each step, we increase the number of tasks by 100
and the number of processors by 4. As we can see, as the
system size grows, the time consumed by both simulations
increase. However, our approach proposed in section III can
easily achieve a speed up of at least 10X. As the number
of tasks and processors increases, the efficiency of the two
speed-up technique becomes more prominent and make the
algorithm EATA efficiently scalable.

VI. CONCLUSION

As IC technology continues its evolution into the deep
submicron domain, the exponentially increased energy con-
sumption and the deteriorated reliability have become se-
rious concerns in computer system design. In this paper,
we study the energy minimization problem for a real-time
application on a multi-processor platform that can tolerate
K transient faults using the checkpointing method. We first
develop an efficient method to determine the checkpointing

scheme that can minimize the worst case response time for a
task set that shares the reserved resources for fault recovery
on a single processor. We then present a task assignment
algorithm to minimize the overall energy while guaranteeing
the fault-tolerance capability. Our experimental results also
demonstrate the effectiveness and efficiency of our proposed
approach.

ACKNOWLEDGEMENT

This work is supported in part by NSF under projects CNS-
0969013, CNS-0917021, and CNS-1018108.

REFERENCES

[1] T. Skotnicki, J. Hutchby, T.-J. King, H.-S. Wong, and F. Boeuf,
“The end of cmos scaling: toward the introduction of new materials
and structural changes to improve mosfet performance,” Circuits and
Devices Magazine, IEEE, vol. 21, no. 1, pp. 16 – 26, jan.-feb. 2005.

[2] B. Mochocki, X. Hu, and G. Quan, “A unified approach to variable
voltage scheduling for nonideal dvs processors,” Computer-Aided De-
sign of Integrated Circuits and Systems, IEEE Transactions on, vol. 23,
no. 9, pp. 1370 – 1377, sept. 2004.

[3] T. AlEnawy and H. Aydin, “Energy-aware task allocation for rate
monotonic scheduling,” in Real Time and Embedded Technology and
Applications Symposium, 2005. RTAS 2005. 11th IEEE, March, pp.
213–223.

[4] R. Lawrence, “Radiation characterization of 512mb sdrams,” in Radi-
ation Effects Data Workshop, 2007 IEEE, vol. 0, july 2007, pp. 204
–207.

[5] L. Huang, F. Yuan, and Q. Xu, “On task allocation and scheduling
for lifetime extension of platform-based mpsoc designs,” Parallel and
Distributed Systems, IEEE Transactions on, vol. 22, no. 12, pp. 2088–
2099, Dec. 2011.

[6] J. Srinivasan, A. S.V., B. P., R. J., and C.-K. Hu, “Ramp: A model
for reliability aware microprocessor design,” IBM Research Report,
RC23048, 2003.

[7] P. Pop, V. Izosimov, P. Eles, and Z. Peng, “Design optimization
of time- and cost-constrained fault-tolerant embedded systems with
checkpointing and replication,” Very Large Scale Integration (VLSI)
Systems, IEEE Transactions on, vol. 17, no. 3, pp. 389–402, March
2009.

[8] Y. Zhang and K. Chakrabarty, “A unified approach for fault tolerance
and dynamic power management in fixed-priority real-time embedded
systems,” Computer-Aided Design of Integrated Circuits and Systems,
IEEE Transactions on, vol. 25, no. 1, pp. 111 – 125, jan. 2006.

[9] T. Wei, P. Mishra, K. Wu, and J. Zhou, “Quasi-static fault-tolerant
scheduling schemes for energy-efficient hard real-time systems,” J.
Syst. Softw., vol. 85, no. 6, pp. 1386–1399, Jun. 2012. [Online].
Available: http://dx.doi.org/10.1016/j.jss.2012.01.020

[10] B. Zhao, H. Aydin, and D. Zhu, “Energy management under general
task-level reliability constraints,” in Real-Time and Embedded Technol-
ogy and Applications Symposium (RTAS), 2012 IEEE 18th, april 2012,
pp. 285 –294.

[11] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, K. Keutzer, D. A.
Patterson, W. L. Plishker, J. Shalf, S. W. Williams, K. A. Yelick,
M. J. Demmel, W. Plishker, J. Shalf, S. Williams, and K. Yelick,
“The landscape of parallel computing research: A view from berkeley,”
TECHNICAL REPORT, UC BERKELEY, Tech. Rep., 2006.

[12] P. Pop, K. H. Poulsen, V. Izosimov, P. Eles, and M. M. Dept, “Schedul-
ing and voltage scaling for energy/reliability trade-offs in fault-tolerant
time-triggered embedded systems,” CODES+ISSS’ 2007.

[13] X. Qi, D. Zhu, and H. Aydin, “Global reliability-aware power manage-
ment for multiprocessor real-time systems,” in Embedded and Real-
Time Computing Systems and Applications (RTCSA), 2010 IEEE 16th
International Conference on, Aug., pp. 183–192.

[14] Y. Liu, H. Liang, and K. Wu, “Scheduling for energy efficiency and
fault tolerance in hard real-time systems,” in Design, Automation Test
in Europe Conference Exhibition (DATE), 2010, march 2010, pp. 1444
–1449.

[15] T. Ishihara and H. Yasuura, “Voltage scheduling problem for
dynamically variable voltage processors,” in Proceedings of the 1998
international symposium on Low power electronics and design, ser.
ISLPED ’98. New York, NY, USA: ACM, 1998, pp. 197–202.
[Online]. Available: http://doi.acm.org/10.1145/280756.280894

