
J

E
b

M
a

b

c

a

A
R
R
A
A

K
P
R
H

1

i
i
c
i
M
c
2
e
e
f
t
s

i
w

1

s
r

h
0

ARTICLE IN PRESSG Model
SS-9381; No. of Pages 12

The Journal of Systems and Software xxx (2014) xxx–xxx

Contents lists available at ScienceDirect

The Journal of Systems and Software

j ourna l ho mepage: www.elsev ier .com/ locate / j ss

nhanced fixed-priority real-time scheduling on multi-core platforms
y exploiting task period relationship�

ing Fana, Qiushi Hana,∗, Shuo Liua, Shaolei Rena,c, Gang Quana, Shangping Renb

Department of Electrical and Computer Engineering, Florida International University, 10555 West Flagler Street, Miami, FL 33174, United States
Department of Computer Science, Illinois Institute of Technology, 10 West 31st Street, Chicago, IL 60616, United States
School of Computing and Information Sciences, Florida International University, 11200 SW 8th Street, ECS 350, Miami, FL 33199, United States

 r t i c l e i n f o

rticle history:
eceived 1 May 2014
eceived in revised form 2 September 2014
ccepted 4 September 2014
vailable online xxx

eywords:

a b s t r a c t

One common approach for multi-core partitioned scheduling problem is to transform this problem into
a traditional bin-packing problem, with the utilization of a task being the “size” of the object and the
utilization bound of a processing core being the “capacity” of the bin. However, this approach ignores
the fact that some implicit relations among tasks may significantly affect the feasibility of the tasks
allocated to each local core. In this paper, we study the problem of partitioned scheduling of periodic
real-time tasks on multi-core platforms under the Rate Monotonic Scheduling (RMS) policy. We present
artitioned scheduling
MS
armonic

two effective and efficient partitioned scheduling algorithms, i.e. PSER and HAPS, by exploiting the fact
that the utilization bound of a task set increases as task periods are closer to harmonic on a single-core
platform. We formally prove the schedulability of our partitioned scheduling algorithms. Our extensive
experimental results demonstrate that the proposed algorithms can significantly improve the scheduling
performance compared with the existing work.
. Introduction

Multi-core architecture has been widely accepted as the most
mportant technology in the future industrial market. By provid-
ng multiple processing cores on a single chip, multi-core systems
an significantly increase the computing performance while relax-
ng the power requirement over traditional single-core systems.

ost of the major chip manufactures have already launched multi-
ore chips into the market, i.e. AMD OpteronTM 6300 Series (AMD,
013). It is not surprising that in the coming future, hundreds or
ven thousands of cores will be integrated into a single chip (Yeh
t al., 2008). The quickly emerging trend towards multi-core plat-
orm brings urgent needs for effective and efficient techniques for
he design of different types of computing systems, e.g. real-time
ystems.
Please cite this article in press as: Fan, M., et al., Enhanced fixed-prio
task period relationship. J. Syst. Software (2014), http://dx.doi.org/10.

One major problem in the design of multi-core real-time system
s how to utilize the available computing resources most efficiently

hile satisfying the timing constraints of all real-time tasks. To

� This work is supported in part by NSF under projects CNS-0969013, CNS-
423137, CAREER-0746643, CNS-1018731, CNS-0917021 and CNS-1018108.
∗ Corresponding author. Tel.: +1 3059151789.

E-mail addresses: mfan001@fiu.edu (M. Fan), qhan001@fiu.edu (Q. Han),
liu005@fiu.edu (S. Liu), sren@cs.fiu.edu (S. Ren), ganquan@fiu.edu (G. Quan),
en@iit.edu (S. Ren).

ttp://dx.doi.org/10.1016/j.jss.2014.09.010
164-1212/© 2014 Elsevier Inc. All rights reserved.
© 2014 Elsevier Inc. All rights reserved.

address this problem, one effective way is to develop an appropri-
ate scheduling algorithm, which plays one of the most significant
roles in real-time operating systems.

It is well known that the scheduling problem for multi-core
systems is an NP-hard problem (Shin and Ramanathan, 1994).
Although there exists optimal scheduling algorithms on single-core
systems, i.e. Rate Monotonic Scheduling (RMS) and Earliest Deadline
First (EDF) (Liu and Layland, 1973), none of them are optimal any
more (Dhall and Liu, 1978) for multi-core systems. The reason is
that, different from single-core scheduling, the multi-core sched-
uling needs to decide not only when but also where to execute a
real-time task. Therefore, developing a sub-optimal heuristic for
scheduling strategy on multi-core systems is reasonable and prac-
tical.

In this paper, we are interested in studying the problem of par-
titioned scheduling for periodic tasks on multi-core systems under
RMS policy. Compared with the existing works on fixed-priority
partitioned scheduling, we have made a number of contributions:

• We develop two new partitioned scheduling algorithms for fixed-
priority periodic real-time tasks by taking the relationship among
rity real-time scheduling on multi-core platforms by exploiting
1016/j.jss.2014.09.010

task periods into consideration. The first algorithm, namely Par-
titioned Scheduling with Enhanced RBound (PSER), improves the
traditional R-Bound by applying a more flexible task set scal-
ing method (i.e. TSS method) and then partitions tasks under

dx.doi.org/10.1016/j.jss.2014.09.010
dx.doi.org/10.1016/j.jss.2014.09.010
http://www.sciencedirect.com/science/journal/01641212
http://www.elsevier.com/locate/jss
mailto:mfan001@fiu.edu
mailto:qhan001@fiu.edu
mailto:sliu005@fiu.edu
mailto:sren@cs.fiu.edu
mailto:ganquan@fiu.edu
mailto:ren@iit.edu
dx.doi.org/10.1016/j.jss.2014.09.010

 ING Model
J

2 ems a

•

•

d
s
f
a
S

2

i
f
t
e
s
q
n
m
t
c
e
s
I
s
a
s

2

e
u
p
t
m
t
a
e

p
1

•

ARTICLESS-9381; No. of Pages 12

 M. Fan et al. / The Journal of Syst

the enhanced utilization bound (i.e. RBounden). The second one,
namely Harmonic Aware Partition Scheduling (HAPS), captures the
“degree” of harmonic for a set of tasks with a novel harmonic met-
ric (i.e. harmonic index) and then makes the partitioning decision
such that tasks with closer harmonic relationship can be allocated
to the same core.
We analytically prove that both of our proposed partitioned
scheduling algorithms, i.e. PSER and HAPS, can guarantee the
schedulability of any task set that can successfully pass the par-
titioning procedure.
We conduct extensive experiments to evaluate the performance
of our proposed techniques. Through the experimental results,
we can see that our proposed algorithms can significantly
improve the scheduling performance compared with the existing
works.

The rest of the paper is organized as follows. Section 2 intro-
uces the work closely related to this paper. Section 3 describes the
ystem models and Section 4 presents our motivational examples
or this work. Section 5 and 6 present two partitioned scheduling
lgorithms we developed. Experiments and results are discussed in
ection 7, and we conclude this work in Section 8.

. Related work

In partitioned multi-core scheduling problem, the schedulabil-
ty for tasks allocated on each processor can be determined based on
easibility conditions on single processors. To search for the optimal
ask partition for multiple processors is essentially a design space
xploration problem, with complexity increasing rapidly with the
ize of the problem (e.g. the numbers of tasks or processors). How to
uickly and accurately evaluate the schedulability of a design alter-
ative (i.e. task partition) is key to the success of the partitioned
ulti-core scheduling problem. As a result, while there exists exact

iming analysis method for feasibility checking for tasks on a single
ore platform (Liu and Layland, 1973; Kuo and Mok, 1991; Lauzac
t al., 1998), they are not commonly used for partitioned multi-core
cheduling problem due to their large computational complexity.
nstead, many other timing-efficient feasibility checking methods,
uch as the utilization-bound based feasibility checking methods,
re commonly used in the search for task partitions for multi-core
cheduling problem.

.1. Different utilization bounds for single-core systems

A utilization bound f(�) for a task set � is a function of the param-
ters of � , and can be used to determine the schedulability of �
nder certain specific scheduling policy (e.g. RMS). By applying the
arameters of � into f(�), all tasks in � can be guaranteed to meet
heir deadlines if the task set utilization (denoted as U(�)) is no

ore than that parametric utilization bound, i.e. U(�) ≤ f(�). Note
hat U(�) can be calculated by summing up the task utilizations of
ll tasks in the task set � , where a task utilization is the ratio of its
xecution time over its period.

For single-core systems, there are several utilization bounds
roposed under RMS policy (Liu and Layland, 1973; Kuo and Mok,
991; Lauzac et al., 1998).

LLBound (Liu and Layland, 1973): The LLBound is a function with
respect to the number of tasks, and is formulated as
Please cite this article in press as: Fan, M., et al., Enhanced fixed-prio
task period relationship. J. Syst. Software (2014), http://dx.doi.org/10.

LLBound(�) = N(21/N − 1), (1)

where N is the number of tasks in the task set � . When N goes to
infinity, the LLBound achieves its worst-case as 69%.
 PRESS
nd Software xxx (2014) xxx–xxx

• KBound (Kuo and Mok, 1991): The KBound has a similar form as
the LLBound, and is formulated as

KBound(�) = K(21/K − 1), (2)

where K, instead of being the number of all tasks as that used by
LLBound, is the number of tasks in original task sets such that no
two tasks are completely harmonic.

• RBound (Lauzac et al., 1998): The RBound takes not only the
number of tasks but also the relationship among periods into
consideration, i.e.

RBound(�) = (N − 1)(r1/N−1 − 1) + 2/r − 1, (3)

where N is the number of tasks in the task set, and r is the ratio
between the maximum and minimum periods and need to satisfy
1 ≤ r < 2.

• CBound (Han and Tyan, 1997): The CBound is the utilization bound
for a harmonic task set, in which the periods of any two tasks being
integer multiple of each other, i.e.

CBound(�) = 1, (4)

where � is a harmonic task set.

Among all four utilization bounds shown in the above, it has
been proved that for RMS-based single-core scheduling, the RBound
and CBound are higher than the other two (i.e. the LLBound and the
KBound) (Lauzac et al., 1998; Han and Tyan, 1997). However, these
two utilization bounds (RBound or CBound) have critical limitations.
The RBound can only be applied when a given task set satisfies the
period constraint (i.e. 1 ≤ r < 2), while the CBound can only be used
directly to harmonic task sets. Hence, in order to use the RBound
or CBound for checking the schedulability of an arbitrary task set,
we need to first transform the task set appropriately such that it
satisfies the required condition.

For RBound, there are a few methods proposed to transform a
task set to satisfy the condition of 1 ≤ r < 2, such as Lauzac et al.
(1998) and Kandhalu et al. (2012). In particular, Lauzac et al. (1998)
proposed a task set scaling method by scaling all tasks with respect
to the maximum period. Specifically, given a task set � , ∀�i ∈ � , the
period as well as the execution time of �i was scaled by{

C ′
i
= Ci · 2�log(Tmax/Ti)�

T ′
i
= Ti · 2�log(Tmax/Ti)�

(5)

where Tmax represents the maximum period among all tasks. Their
method scaled all task periods with respect to, but no larger than
Tmax. They formally proved that as long as the scaled task set is
feasible then the original task set is also feasible.

Kandhalu et al. (2012) presented another method by scaling the
task set with respect to the minimum period. Specifically, given a
task set � , ∀�i ∈ � , the period and the execution time of �i was
scaled by{

C ′
i
= Ci/�(Ti/Tmin)�

T ′
i
= Ti/�(Ti/Tmin)�

(6)

where Tmin is the minimum period among all tasks. This method
scaled all task periods with respect to, but no smaller than Tmin.
However, this approach cannot always guarantee the schedula-
bility of the original task set even when the scaled task set is
schedulable. For example, consider a task set � consisting of four
tasks with execution time and periods as {(3,24), (32,100),(40,135)}
and (15,140). According to the scaling method introduced in
rity real-time scheduling on multi-core platforms by exploiting
1016/j.jss.2014.09.010

Kandhalu et al. (2012), we can transform the task set to a new task
set � ′ as {(3,24),(8,25),(8,27),(3,28)}. It is not difficult to verify that
the new task set � ′ is schedulable while the original task set � is
not schedulable.

dx.doi.org/10.1016/j.jss.2014.09.010

 ING Model
J

ems a

a
a
f
t
(

•
•

•

t
g
a

e
a
i

2

d
m
t
p
F
p
s
t
a
c
t
c

p
t
e
F
a
e
a
e
p
c
t
o
g
A
o
s
t
s
u
c

ARTICLESS-9381; No. of Pages 12

M. Fan et al. / The Journal of Syst

For CBound, there are also a few methods proposed to transform
 task set to satisfy the harmonic condition. Han et al. (1996), Han
nd Tyan (1997) proposed two methods, i.e. Sr and DCT, to trans-
orm a task set into a harmonic one. Since both methods result in
he same harmonic task set, we only introduce the DCT method
which has a complexity equal to N2) as below:

Sort � by T with non-increasing order.
For each �i ∈ � , transform � to � ′

i
by

T ′
j =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

T ′
j+1

(�T ′
j+1/Tj�)

, if j < i

Tj, if j = i

T ′
j−1 ·

⌊
Tj

T ′
j−1

⌋
, if j > i

(7)

Find the optimal primary harmonic task � ′ that minimizes the
total task set utilization among all � i where i = 1, 2, . . ., N. In other
word, U(� ′) = minN

i=1U(� ′
i
).

The RBound and CBound indicate that on a single-core processor,
he system utilization as well as the task set schedulability, can be
reatly improved if the relationship between task periods can be
ppropriately exploited.

Existing work (i.e. Lauzac et al., 1998; Kandhalu et al., 2012; Han
t al., 1996; Han and Tyan, 1997) has shown that, with appropri-
te task transformation, using RBound and CBound can significantly
mprove the schedulability checking accuracy.

.2. Partitioned scheduling

Partitioned scheduling is originally derived based on the tra-
itional bin-packing technique (Shin and Ramanathan, 1994). By
apping the utilization of a task to the “size” of the object and

he utilization bound of a processor to the “capacity” of the bin,
eople can directly apply the common bin-packing strategies, i.e.
irst-Fit (FF), Best-Fit (BF) and Worst-Fit (WF), to deal with the
artitioned multi-core problem. Coffman et al. (1997) presented
everal partitioned scheduling approaches derived from the tradi-
ional bin-packing strategies. For example, the FF approach assigns

 task immediately to the first processor that can provide enough
apacity for it, while the BF (WF) approach always assigns a task to
he processor with the largest (smallest) total utilization that still
an accommodate that task.

A few papers have been published on studying the problem of
artitioned multi-core scheduling of fixed-priority periodic real-
ime tasks (Dhall and Liu, 1978; Burchard et al., 1995; Andersson
t al., 2001; Darera and Jenkins, 2006; Andersson and Tovar, 2007;
an and Quan, 2011; Fan et al., 2014). Burchard et al. (1995) evalu-
ted the partitioned multi-core scheduling under RMS policy by
xploiting the traditional bin-packing heuristics, such as FF, BF
nd WF, with a decreasing order of task utilizations. Andersson
t al. (2001) developed a multi-core scheduling algorithm for fixed-
riority periodic tasks, and proved that their proposed algorithm
an guarantee the schedulability of any task set with system utiliza-
ion no more than 1/3. They also showed that the utilization bound
f fixed-priority multi-core scheduling (for both partitioned and
lobal scheduling) was no more than 50% (Andersson et al., 2001;
ndersson and Jonsson, 2003). Lopez et al. (2001, 2004) devel-
ped more accurate but complex utilization bounds for multi-core
cheduling under RMS by combining the number of processors,
Please cite this article in press as: Fan, M., et al., Enhanced fixed-prio
task period relationship. J. Syst. Software (2014), http://dx.doi.org/10.

he number of tasks and the maximum task utilization into con-
ideration. Later, Darera and Jenkins (2006) developed a specific
tilization bound for partitioned multi-core scheduling under the
ase of a greedy RMS-based algorithm. Andersson and Tovar (2007)
 PRESS
nd Software xxx (2014) xxx–xxx 3

introduced a new performance metric, named speed competitive
ratio, to measure the performance of partitioned multi-core sched-
uling under RMS, and based on that new metric, they developed
an algorithm with guaranteed schedulability under deterministic
processor speedup. In what follows, we first introduce some basic
concepts necessary to our work.

3. Preliminary

In this section, we first present our system models and some
basic concepts, then we introduce two feasibility test methods, i.e.
the RBound and CBound feasibility tests.

3.1. System models

We first introduce the multi-core platform and the task model
used in this paper. The multi-core platform consists of M identical
cores, M ≥ 2, denoted as P = {P1, P2, . . ., PM}. Our task model con-
sists of N periodic tasks, represented as � = {�1, �2, . . ., �N}. Each
task �i is characterized by a two-parameter tuple (Ci, Ti). Ci is the
worst case execution time of �i, and Ti is the inter-arrival time (period)
between any two consecutive jobs of �i. We assume that � is sorted
by non-decreasing period order, i.e. for ∀�i, �j ∈ � , Ti ≤ Tj if i < j.

Next, we define three concepts, i.e. task utilization, task set uti-
lization and system utilization, that are necessarily required to our
work.

The task utilization of �i, denoted as ui, is defined as

ui = Ci

Ti
(8)

The task set utilization of � , denoted as U(�), is defined as

U(�) =
N∑

i=1

ui (9)

where N is the number of tasks in task set � . Moreover, let � k
denote the task set assigned to core Pk, then U(� k) represent the
total utilization of all tasks assigned to Pk.

The system utilization of P, denoted as UM(�), is defined as

UM(�) = U(�)
M

(10)

Intuitively, UM(�) represents the average CPU utilization among all
M cores.

3.2. Two feasibility test methods

3.2.1. RBound feasibility test
The RBound (Lauzac et al., 1998), as what we have introduced in

Section 2.1, can be used as a feasibility test method for scheduling
fixed-priority periodic tasks on single-core systems. We formally
present the RBound feasibility test approach with Theorem 1.

Theorem 1 ((Lauzac et al., 1998)). Given a task set � , let � ′ be the
task set by scaling all tasks in � (i.e. ∀�i ∈ �) through

C ′
i
= Ci · 2�log(Tmax/Ti)�

T ′
i
= Ti · 2�log(Tmax/Ti)�

(11)

where Tmax = max
∀�i∈�

Ti. Then � is schedulable on a single-core system

under RMS if

′

rity real-time scheduling on multi-core platforms by exploiting
1016/j.jss.2014.09.010

U(�) ≤ RBound(�) (12)

The RBound(*) is given by Eq. (3).
From Theorem 1, we can see that the RBound feasibility test first

scales all tasks in � with respect to the maximum period, and then

dx.doi.org/10.1016/j.jss.2014.09.010

ARTICLE IN PRESSG Model
JSS-9381; No. of Pages 12

4 M. Fan et al. / The Journal of Systems and Software xxx (2014) xxx–xxx

Table 1
A task set with six real-time periodic tasks.

� i Ci Ti ui

1 1 4 0.25
2 2 8 0.25
3 3 10 0.30

p
t

3

l
h
t

T
f
s

U

m
w
t
t
o
e

4

p
e
s
d
h

a
T
d
(
t

t
o
t
f
s
c
t
a
s
o

f
c
i
c
u

i
f

Fig. 1. Assign tasks in Table 1 based on ideal harmonic relationship, and all tasks
can be scheduled successfully on two processors.

τ4
5.8τ3

9.2
0 15 30

5.8

τ1 4.8

0 10 20
τ2 5.2 5.2

4.8

0.2

deadline miss

the system processing resource more efficiently; (2) exploiting the
task period relationship can also improve the system utilization,
even though how to quantify the harmonic relationship between

Table 2
A task set with four real-time periodic tasks.

� i Ci Ti ui
4 8 16 0.50
5 8 20 0.40
6 12 40 0.30

redicts the schedulability of � by comparing its utilization with
he value of RBound under � ′.

.2.2. CBound feasibility test
The CBound (Han and Tyan, 1997) is another efficient uti-

ization bound to test the feasibility of periodic tasks by taking
armonic characteristic into consideration. The CBound feasibility
est method is formally concluded in Theorem 7.

heorem 2. Given a task set � , let � ′ be a harmonic task set trans-
ormed from � by DCT method. Then � is schedulable on a single-core
ystem under RMS if

(� ′) ≤ 1 (13)

Theorem 2 shows that by transforming a task set � into a har-
onic task set � ′, we can easily predict the feasibility of � by check
hether the utilization of � ′ is less than or equal to “1”. Note that

he CBound feasibility test is different from the RBound feasibility
est in terms of the way of task set transformation, i.e. CBound test
nly scales the periods while RBound test scales both periods and
xecution times.

. Motivational examples

Before presenting our approach in detail, we first use two exam-
les to motivate our research. In the first example, we illustrate that
xploiting the harmonic relationship can significantly improve the
chedulability in multi-core scheduling. In the second example, we
emonstrate that we can explore this property for tasks not strictly
armonic.

Consider a multi-core platform with two processors, i.e. M = 2,
nd a task set consisting of six tasks with parameters shown in
able 1. When scheduling those six tasks on two processors, it is not
ifficult to verify that none of the existing bin-packing heuristics
e.g. “first-fit”, “best-fit” and “worst-fit”) can successfully schedule
he tasks listed in Table 1.

Note that, current bin-packing based approaches allocate real-
ime tasks solely based on their utilization factors and simply ignore
ther factors such as the task period, which can significantly affect
he schedulability of a real-time task. For example, it is a well known
act (Kuo and Mok, 1991; Han and Tyan, 1997) that a harmonic task
et, i.e. the tasks with periods being integer multiples of each other,
an have a much higher schedulability than other non-harmonic
ask sets. If we take this factor into consideration and assign �1, �2
nd �4 to one processor, and �3, �5 and �6 to another processor, as
hown in Fig. 1(a), the task set in Table 1 can be perfectly scheduled
n two processors.

Since tasks with ideal harmonic relationship have much higher
easibility on a single-core, one intuitive idea for partitioned multi-
ore scheduling would therefore be the one to group tasks with
deal harmonic relationship together and assign them to one pro-
essor. The question is what if tasks are not exactly harmonic. We
Please cite this article in press as: Fan, M., et al., Enhanced fixed-prio
task period relationship. J. Syst. Software (2014), http://dx.doi.org/10.

se another example to illustrate this scenario.
We consider another example to schedule a task set consist-

ng of four tasks as shown in Table 2 on two processors. Different
rom the first example, from Table 2, we can see that none of any
Fig. 2. Assign tasks in Table 2 based on pCOMPACTS (Kandhalu et al., 2012), while
�4 missing its deadline.

two tasks are strictly harmonic. Thus, we cannot directly taking the
harmonic advantage by assigning tasks according to the ideal har-
monic relationship, i.e. the divisible period relationship. Once again,
it is not difficult to verify that the traditional “first-fit” and “best-
fit” approaches fail in satisfying the timing constraints for all four
tasks. Even some most recent partitioning approach with harmonic
awareness, i.e. pCOMPACTS approach (Kandhalu et al., 2012), can-
not successfully guarantee the timing constraints in this example.
pCOMPACTS measures the harmonic relationship by the distance
between periods under the condition of Tmax/Tmin < 2, and thus first
assigns �1 and �2 to the same processor and then leaves �3 and �4
running on another processor. This results in a failure of schedule
for �4, see Fig. 2.

However, by assigning �1 and �4 to one processor and �2 and
�3 to another processor, as shown in Fig. 3, we can build a feasible
solution for all four tasks. As indicated by this example, although
�1 and �4 have the largest period distance, i.e. T4 − T1 = 19 − 10 = 9,
among all tasks, they are more harmonic. In fact, by assigning �1 and
�4 to one processor, that local processor can achieve a much higher
system utilization up to 0.97 (0.48 + 0.49), which is very close to the
maximum ideal harmonic performance, i.e. 1.

From the above two motivational examples, we can observe
that: (1) taking advantage of the harmonic relationship can utilize
rity real-time scheduling on multi-core platforms by exploiting
1016/j.jss.2014.09.010

1 4.8 10 0.48
2 5.2 11 0.47
3 5.8 15 0.39
4 9.4 19 0.49

dx.doi.org/10.1016/j.jss.2014.09.010

ARTICLE ING Model
JSS-9381; No. of Pages 12

M. Fan et al. / The Journal of Systems a

τ3
5.2τ2

5.8
0 22 30

5.2

τ1 4.8

0 10 20
τ4 5.2 4.2

4.8

5.2
5.8

11 15

F
c

t
s

5

s
t
m
1
i

t
t
e
d
i
t
o
I
b
t
n

5

e
t
t
c
i

A

R

1
2
3
4

5
6
7
8
9
1
1
1
1
1
1
1

� . Therefore, we can see that if � is schedulable, then � must be
ig. 3. Assign tasks in Table 2 based on closely harmonic relationship, and all tasks
an be scheduled successfully on two processors.

asks is a challenge. In what follows, we present our first partitioned
cheduling algorithm based on an enhanced RBound.

. Task partition with an enhanced RBound

In order to apply the RBound to test the schedulability of a task
et, one key point is to develop an effective and efficient method
o transform the task set to a new one such that the ratio of the

aximum and minimum period is between 1 and 2 (Lauzac et al.,
998). In addition, we need to guarantee that once the new task set

s schedulable, so is the original task set.
To transform a task set, one approach (Lauzac et al., 1998) is

o fix Tmax and scale up the rest task periods towards Tmax so that
he maximum/minimum period ratio is between 1 and 2. Another
ffort (Kandhalu et al., 2012) is to keep the Tmin unchanged and scale
own task periods such that the maximum/minimum period ratio

s between 1 and 2. Unfortunately, as explained before(see Sec-
ion 2.1), this approach cannot guarantee the schedulability of the
riginal task set even though the new task set can be schedulable.
n this section, we introduce a new method to scale task periods
ased on the period of any task in the task set, and most impor-
antly, we guarantee that the original task set is schedulable if the
ew task set is schedulable.

.1. Task set scaling (TSS)

Instead of using a restricted transformation, such as scaling the
ntire task set only with respect to a unique task (i.e. the task with
he maximum period), we introduce a more general and flexible
ask set transformation method, denoted as the TSS method, which
an scale a task set with respect to the period of an arbitrary task
n a given task set.

lgorithm 1. TSS(� , �k)

equire
(1) � : input task set, sorted with non-decreasing period order;
(2) �k: the kth task in � , based on which the task set is scaled.

: N = |� |;
: T ′

k
= Zk = Tk , and C ′

k
= Ck;

: // step 1: transform LOWER-priority tasks into harmonic;
: for i = k + 1 to N Zi = Zi−1 · � Ti

Zi−1
� end for;

: // step 2: scale all tasks with respect to �k;
: for i = 1 to k − 1 do
: Ri = 2�log2

Tk
Ti

�

: T ′
i
= Ti · Ri

: C ′
i
= Ci · Ri

0: end for
1: for i = k + 1 to N do
2: Ri = Zi/Tk;
3: T ′ = Zi/Ri;
Please cite this article in press as: Fan, M., et al., Enhanced fixed-prio
task period relationship. J. Syst. Software (2014), http://dx.doi.org/10.

i
4: C ′

i
= Ci/Ri;

5: end for
6: return � ′;
 PRESS
nd Software xxx (2014) xxx–xxx 5

Algorithm 1 shows the details of our proposed Task Set Scal-
ing (TSS) method. We assume that the input task set � is sorted
with non-decreasing period order, i.e. for any two tasks �i and �j, it
holds Ti ≤ Tj if i < j. TSS method transforms the entire task set � into
another task set � ′ by scaling all tasks with respect to �k’s period,
i.e. Tk, where �k is an arbitrary task in � .

There are two major steps in Algorithm 1: (1) tasks with prior-
ities lower than �k are transformed into harmonic tasks with their
periods being integer multiples of Tk (line 4); (2) Tasks with pri-
orities higher than �k are scaled up (lines 6–10), and tasks with
priorities lower than or equal to �k are scaled such that the new
period is equal to Tk (lines 11–15). Therefore, the timing complex-
ity of TSS is O(N), where N is the number of tasks in � . After all
tasks in � are scaled appropriately, the corresponding task set � ′

is returned. In what follows, we discuss the property of TSS trans-
formation, specifically the relationship between the transformed
task set (� ′) and its original task set (�) in terms of schedulability.

5.2. Property of TSS transformation

In this subsection, we discuss the property of our proposed TSS
transformation method. We show that if a transformed task set
� ′ is schedulable under RMS, then its original task set � must be
schedulable under RMS. This is essential to the application of our
utilization bound in schedulability test.

Theorem 3. Given a task set � = {�1, �2, . . ., �N−1, �N} with
T1 ≤ T2 . . . ≤ TN, let � ∗ = {�1, �2, . . ., �∗

q, . . ., �∗
N−1, �∗

N}, such that
∀j ∈ [q, N], �∗

j
= (C∗

j
, T∗

j
) satisfies that

C∗
j = k · Cj, T∗

j = k · Tj, (14)

where k is an arbitrary positive integer. If � is schedulable on a single-
core system under RMS, then � * must be schedulable on a single-core
system under RMS.

Proof. Since the first q − 1 tasks always have higher priorities than
the qth task in either � or � *, their schedulability does not change.
Thus, we only need to prove that ∀j ∈ [q, N], �∗

j
is schedulable in � *.

Since � is schedulable, we know that the first instance of task �j
must be able to meet its deadline. In other words, there must exist
a time point tx, where tx ∈ (0, Tj], such that

q−1∑
i=1

Ci ·
⌈

tx

Ti

⌉
+

j−1∑
i=q

Ci ·
⌈

tx

Ti

⌉
+ Cj ≤ tx (15)

Multiply both sides of the equation by k, the above equation can be
rewritten as

q−1∑
i=1

k · Ci ·
⌈

tx

Ti

⌉
+

j−1∑
i=q

C∗
i ·

⌈
k · tx

T∗
i

⌉
+ C∗

j ≤ k · tx. (16)

Since
∑q−1

i=1 k · Ci ·
⌈

tx
Ti

⌉
≥
∑q−1

i=1 Ci ·
⌈

k · tx
Ti

⌉
and let t′

x = k · tx, we have

q−1∑
i=1

Ci ·
⌈

t′
x

Ti

⌉
+

j−1∑
i=q

C∗
i ·

⌈
t′
x

T∗
i

⌉
+ C∗

j ≤ t′
x. (17)

The above inequality means that at time point t′
k
, �∗

j
as well as all

other higher priority tasks can completely finish their execution
requirements. Note that t′

k
≤ k · Tj = T∗

j
. Thus, �∗

j
is schedulable in

* *
rity real-time scheduling on multi-core platforms by exploiting
1016/j.jss.2014.09.010

schedulable. �

Next, for any given task set � , let � ′ be the task set obtained by
applying TSS method given by Algorithm 1. We prove that the ratio

dx.doi.org/10.1016/j.jss.2014.09.010

 ING Model
J

6 ems a

b
l

L
o
t
h

1

w

P
t
b
t
1

f

1

O
t
b

T

B

w

i

t

s
�

T
b
I
s

P
{
i
�
s

t

T

T
i
�
w
f

�

ARTICLESS-9381; No. of Pages 12

 M. Fan et al. / The Journal of Syst

etween the maximum and minimum periods of all tasks in � ′ is
ess than 2. We formally conclude this property in Lemma 1.

emma 1. Given a task set � sorted with non-decreasing period
rder and a task �k representing the kth task in �, let �′ be the scaled
ask set obtained by applying TSS method (see Algorithm 1). Then we
ave

 ≤ T ′
max

T ′
min

< 2 (18)

here T ′
max = max

∀�′
i
∈� ′

T ′
i

and T ′
min = min

∀�′
i
∈� ′

T ′
i
.

roof. We prove this property by showing that T ′
k

(same as Tk) in
he transformed task set � ′ is the maximum period and the ratio
etween Tk and any other period is less than 2. On one hand, for any
ask �i with priority higher than �k, i.e. i < k, according to Algorithm
, we have

T ′
k

T ′
i

= Tk

Ti · 2�log(Tk/Ti)�
(19)

rom which we can derive that

 = Tk

Ti · 2log(Tk/Ti)
≤ T ′

k

T ′
i

<
Tk

Ti · 2(log(Tk/Ti)−1)
= 2Tk

Ti · 2log(Tk/Ti)
= 2

(20)

n the other hand, for any task �i with priority lower than or equal
o �k, i.e. i > k, according to Algorithm 1, its transformed period can
e represented as

′
i = Zi

Zi/Tk
= Tk (21)

ased on the above, we can immediately get

T ′
k

T ′
i

= T ′
k

Tk
= 1 (22)

here i > k. Thus far, we show T ′
k
(Tk) is the maximum period in � ′,

.e. ∀i,
T ′

k
T ′

i
≥ = 1, and the ratio of T ′

k
over any other period T ′

i
is less

han 2. Therefore, Lemma 1 is proved. �

Now we are ready to show that after applying TSS method, the
chedulability of the original task set � can be predicted by that of
′. We formulate this property in Theorem 4.

heorem 4. Given a task set � , let � ′ be the scaled task set obtained
y applying the TSS method with respect to an arbitrary task �k in � .
f U(� ′) ≤ RBound(� ′), then � must be schedulable on a single-core
ystem under RMS.

roof. According to Lemma 1, we have that � ′ =
� ′

1, . . ., � ′
k−1, � ′

k
, � ′

k+1, . . ., � ′
N} satisfies that 1 ≤ r < 2, where r

s the ratio between the maximum and minimum periods in
′. Thus, if U(� ′) ≤ RBound(� ′), according to Theorem 1, � ′ is

chedulable on a single-core system under RMS.
Next, for ∀i > k, according to line 11-15 in Algorithm 1, we have

hat

′
i = Zi

Ri
= Zi

(Zi/Tk)
= Tk = T ′

k (23)

hus, � ′
k
, � ′

k+1, . . ., � ′
N have the same as well as the lowest priority

n � ′. Moreover, � ′
1, . . ., � ′

k−1 are tasks with priorities higher than
′
k

before as well as after the transformation. Based on Lemma 2 in
Please cite this article in press as: Fan, M., et al., Enhanced fixed-prio
task period relationship. J. Syst. Software (2014), http://dx.doi.org/10.

ork (Lauzac et al., 1998), if � ′ is schedulable, we know that the
ollowing task set �̂ ′ must be schedulable.̂ ′ = {�1, . . ., �k−1, �k, � ′

k+1, . . ., � ′
N} (24)
 PRESS
nd Software xxx (2014) xxx–xxx

Then we construct task set � * from �̂ ′ by replacing � ′
i

with �∗
i
,

where i = k + 1, . . ., N, such that T∗
i

= Zi (based on line 4 in Algorithm
1) and C∗

i
= C ′

i
· (T∗

i
/T ′

i
).

� ∗ = {�1, . . ., �k−1, �k, �∗
k+1, . . ., �∗

N} (25)

For i = k, . . ., N − 1, we have that T∗
i+1 is an integer multiple of T∗

i
.i.e.

there exists a perfect harmonic relationship between periods of
T∗

k
to T∗

N . In other words, � * can be obtained through a series of

transformation of �̂ ′ as descried in Theorem 3, therefore if �̂ ′ is
schedulable, � * must be schedulable.

Finally, since T∗
k+1 ≤ . . . ≤ T∗

N and Tk+1 ≤ . . . ≤ TN, thus by extend-
ing T∗

i
to Ti, where i = k + 1, . . ., N, the schedulability of all tasks do

not change. In other words, if � * is schedulable, the original task
set � = {�1, . . ., �k−1, �k, �k+1, . . ., �N} must be schedulable.

In summary, after applying the TSS method on a given task set
� , if the scaled task set � ′ satisfies that U(� ′) ≤ RBound(� ′), then
� is schedulable on a single-core system under RMS. �

5.3. Enhanced RBound

In this part, we propose an enhanced utilization bound based on
our TSS method, and then introduce a new feasibility test method.

First, after the transformation by TSS, we can apply the RBound
function given by Eq. (3) to evaluate the schedulability of the trans-
formed task set, and therefore that of the original task set. By
applying TSS with different initial tasks, we can possibly attain a
higher utilization bound. Subsequently, we derive our enhanced
utilization bound in the following equation,

RBounden(�) = max
∀�i∈�

{RBound(� ′
i)|� ′

i = TSS(�, �i)} (26)

where RBound(*) is the utilization bound function given by Eq. (3)
and TSS(*, *) is our task set scaling method shown in Algorithm 1.

Next, in light of Theorem 4, we know that the task set � is
guaranteed to be schedulable if there exists a task �i ∈ � such that
the condition U(� ′) ≤ RBound(� ′) is satisfied. The feasibility test
method based on our RBounden is concluded with Theorem 5 in
light of Theorem 1, Lemma 1 and Theorem 4.

Theorem 5. Given a task set � , if ∃�i, �i ∈ � , such that

U(� ′) ≤ RBound(� ′) (27)

where � ′ = TSS(� , �i), then � is schedulable on a single-core system
under RMS.

Theorem 5 provides a new feasibility test method by applying
our proposed TSS method to obtain an enhanced RBound for a given
task set. It is not surprising to see that our proposed feasibility test
(given by Theorem 5) can always outperform the previous RBound
feasibility test(Lauzac et al., 1998).

Corollary 1. Given a task set � , if � can successfully pass the tra-
ditional RBound feasibility test given by Theorem 1, then � must be
able to successfully pass the enhance RBound feasibility test given by
Theorem 5.

Proof. If � can pass the traditional RBound feasibility test suc-
cessfully, according to Theorem 1, we must have that

U(�) ≤ RBound(� ′
1)

where � ′
1 is obtained by using Eq. (5). Note that U(�) = U(� ′

1). On
other hand, let �N represent the task with the maximum period
in � , by using �N to our TSS method, we can get a scaled task set,
rity real-time scheduling on multi-core platforms by exploiting
1016/j.jss.2014.09.010

denoted as � ′
2. According to TSS method given by Algorithm 1, we

have that � ′
2 is exactly the same as � ′

1. Thus, we have

U(� ′
2) = U(�) ≤ RBound(� ′

1) = RBound(� ′
2)

dx.doi.org/10.1016/j.jss.2014.09.010

 ING Model
J

ems a

A
i
g
e

a
T
c

�
f

U

T
e
i
H

U

A
t

5

a
t

a
t

A
(

a
t
t
a
a

i
t

ARTICLESS-9381; No. of Pages 12

M. Fan et al. / The Journal of Syst

ccording to Theorem 5, we get that � is schedulable. Therefore,
f � can successfully pass the traditional RBound feasibility test
iven by Theorem 1, then � must be able to successfully pass the
nhanced RBound feasibility test given by Theorem 5. �

Corollary 1 shows that our proposed feasibility test method can
lways outperform the previous RBound feasibility test method.
his is because the proposed feasibility test method completely
overs the test cases in the traditional RBound feasibility test.

As an example, consider the following three tasks, �1 = (7, 10),
2 = (1, 11) and �3 = (1, 15). According to the traditional RBound
easibility test (see Theorem 1), we get that

(�) = 0.858 > RBound(� ′
1) = 0.783

hus � is not schedulable under the traditional RBound test. How-
ver, by transforming � with respect to �2 under our TSS method,
.e. � ′

2 = TSS(�, �2), we can get the � ′
2 = {(7, 10), (1, 11), (1, 11)}.

ence we can derive that

(� ′
2) = 0.882 < RBound(� ′

2) = 0.916

ccording to Theorem 5, our proposed feasibility test can guarantee
hat � is schedulable on a single-core system under RMS.

.4. The partitioning algorithm

In this subsection, we first present a new multi-core scheduling
lgorithm, Partitioned Scheduling with Enhanced RBound (PSER),
hen we prove its schedulability after a successful partition.

PSER is a partitioned multi-core scheduling algorithm, which
dopts our proposed TSS to make the partitioning decisions for a
ask set.

lgorithm 2. Partitioned Scheduling with Enhanced RBound
PSER)

Require
(1) Task set:� = {�1, �2, . . . �N};
(2) Multi-core: P = {P1, P2, . . ., PM };

1: sort � with non-decreasing period order;
2: for m = 1 to M do
3: if � = =∅ then break, end if;
4: Uopt = 0;
5: for i = 1 to |� | do
6: � ′ = TSS(� , � i);
7: sort � ′ with non-increasing period order (for tasks with

same periods, sort them with non-increasing utilization order);
8: � ′

sub
= ∅;

9: for j = 1 to |� ′ | do
10: if U(� ′

sub

⋃
{� ′

j
}) ≤ RBound(� ′

sub

⋃
{� ′

j
}) then

11: � ′
sub

= � ′
sub

⋃
{� ′

j
};

12: end if
13: end for
14: if U(� sub) > Uopt then
15: � opt = � sub;
16: Uopt = U(� sub);
17: end if
18: end for
19: assign � opt to core Pm , and remove � opt from � ;
20: end for
21: if � =∅ then return “success”; else return “failure”, end if;

We show the details of PSER in Algorithm 2. During each iter-
tion (with a total number of M iterations), we assign a group of
asks to a core such that the core utilization is maximized and the
asks are deemed to be schedulable according to the RBound. The
lgorithm is terminated when either all the tasks are successfully
Please cite this article in press as: Fan, M., et al., Enhanced fixed-prio
task period relationship. J. Syst. Software (2014), http://dx.doi.org/10.

ssigned or a schedulable partition cannot be found.
Note that in order to find the best combination of tasks in each

teration, the unassigned task set � is transformed with respect
o each of the tasks in � (i.e. line 6) with a complexity of O(N)
 PRESS
nd Software xxx (2014) xxx–xxx 7

as discussed in Section 5.1. Following each transformation, two
subroutines are performed, namely sorting the transformed task
set (line 7) and tentatively grouping as many tasks as possible
while satisfying the RBound constraint (line 9-12), whose timing
complexities are O(N log N) (e.g. quick sort) and O(N), respectively.
By exploring all transformations with different initial conditions,
we can optimize the grouping decisions and as a result, maxi-
mize the system utilization. Since we have at most N tasks in an
unassigned task set � , the total complexity of the PSER algorithm
is then O(M × N × (N + N log N + N)). Dropping the low-order terms,
this algorithm has a polynomial complexity of O(MN2 log N).

After successfully partitioning all tasks by PSER, we apply the
RMS on each core as the local scheduling policy. We prove that the
schedulability of any task set after a successful partitioning by PSER
can be guaranteed.

Theorem 6. If a task set � is successfully partitioned by PSER on M
cores and scheduled under RMS, then all tasks can meet their deadlines.

Proof. Assume that a task set � is successfully partitioned by PSER,
then we prove that each core can guarantee the schedulability of all
tasks assigned to it. Consider an arbitrary core Pm ∈ P, and let � m

be the corresponding task set assigned to Pm. Once PSER finishes
successfully, according to lines 9–17 in Algorithm 2, we know that
there must exist �i ∈ � m, such that

U(� ′
m) ≤ RBound(� ′

m) (28)

where � ′
m = TSS(�, �i). According to Theorem 5, � m is schedulable

on core Pm under RMS policy. Therefore, for an arbitrary core Pm,
after the partitioning procedure PSER is successfully completed, all
tasks assigned to Pm can meet their deadline. Thus far, this theorem
is proved. �

From Theorem 6, we can see that any task set successfully
partitioned by PSER can be guaranteed to be schedulable under
RMS on a multi-core system. In what follows, we will introduce
another strategy for partitioned scheduling by exploring the har-
monic advantage with CBound.

6. Harmonic advantage exploration with CBound

Instead of scaling each task with respect to both period and exe-
cution time, i.e. like TSS (shown in Algorithm 1), in this section, we
introduce another approach that scales only the task periods. We
first introduce a new metric, called “harmonic index” to quantify
the harmonic characteristic among periodic tasks. Then based on
that harmonic index, we present our second partitioned scheduling
algorithm, i.e. HAPS, by taking the harmonic relationship into con-
sideration to optimize the system utilization. Finally, we analyze
the schedulability of our proposed algorithm HAPS.

6.1. Quantifying harmonic property

Since not all tasks in a given task set are harmonic, it is desir-
able that we can quantify the harmonicity of a task set. We first
introduce the following two concepts.

Definition 1. Given a task set � = {�1, �2, . . ., �N} where �i = (Ci,
Ti), let � ′ = {� ′

1, � ′
2, . . ., � ′

N} where � ′
i
= (Ci, T ′

i
), T ′

i
≤ Ti, and T ′

i
|T ′

j
if

i < j. (Note a|b means “a divides b” or “b is an integer multiple of a”.)
Then � ′ is called a sub-harmonic task set of � .
rity real-time scheduling on multi-core platforms by exploiting
1016/j.jss.2014.09.010

Given a task set, there may be infinite numbers of different sub-
harmonic task sets. There is one type of sub-harmonic task sets that
is of most interest to us, which we call the primary harmonic task
set and is formally defined as follows.

dx.doi.org/10.1016/j.jss.2014.09.010

 ING Model
J

8 ems a

D
c
h

m

D
h
H
H

w

c
f

t
I
s
h

6

u
(
b
a
t
h

•

•

•

•

A

P

ARTICLESS-9381; No. of Pages 12

 M. Fan et al. / The Journal of Syst

efinition 2. Let � ′ be a sub-harmonic task set of � . Then � ′ is
alled a primary harmonic task set of � if there exists no other sub
armonic task set � ′′ such that T ′

i
≤ T ′′

i
for all 1 ≤ i ≤ n.

We are now ready to define a metric, i.e. the harmonic index, to
easure the harmonicity of a real-time task set.

efinition 3. Given a task set � , let G(�) represent all the sub-
armonic task sets of � . Then the harmonic index of � , denoted as
(�), is defined as

(�) = min
� ′∈G(�)

�U ′, (29)

here �U′ = U(� ′) − U(�)

From Eq. (29), �U′ defines the “distance” of a task set to the
orresponding harmonic task sets in terms of its total utilization
actor.

In this paper, we adopt the DCT algorithm (Han and Tyan, 1997)
o find a primary harmonic task set for any given periodic task set.
n the rest of this section, we will present our second partitioned
cheduling algorithm HAPS by exploiting the harmonic metrics (i.e.
armonic index H) to make our partitioning decision.

.2. Harmonic Aware Partitioned Scheduling

In this subsection, we introduce our second partitioned sched-
ling algorithm, namely Harmonic Aware Partitioned Scheduling
HAPS). HAPS significantly distinguishes from PSER, as well as the
in-packing based scheduling approaches (i.e. First-Fit, Worst-Fit
nd Best-Fit). Instead of assigning tasks one by one, HAPS assigns
asks group by group in order to allocate as many tasks with closer
armonic relationship as possible to the same core.

The basic idea of HAPS can be briefly described as below:

Among all unassigned tasks, for each task �i, construct a sub har-
monic task set � ′ with respect of Ti.
Pick up Ni tasks, denoted as � sub, from higher harmonic relation-
ship to lower harmonic relationship by maximizing U(� sub) while
keeping U(� ′

sub
) ≤ 1.

Find the task group � opt among unassigned tasks such that
U(� sub) is maximized.
Allocate � opt to an empty core.

lgorithm 3. Harmonic Aware Partitioned Scheduling (HAPS)

Require
(1) Task set: � = {�1, �2, . . . �N};
(2) Multi-core system: P = {P1, P2, . . ., PM };

1: Sort � with no-decreasing order of task period;
2: while � /= ∅ and P /= ∅
3: � opt =∅;
4: for i = 1 to |� | do
5: T ′

i
= Ti

6: for j = i + 1 to |� | do T ′
j
= T ′

j−1
· �Tj/T ′

j−1
�;

7: for j = i − 1 downto 1 do T ′
j
=

T ′
j+1

�T ′
j+1

/Tj

;

8: � sub = pick up Ni tasks from � such that
(1) U(� ′

sub
) ≤ 1, and U(� ′

sub
) is maximized;

(2) H(� sub) is minimized;
9: if U(� sub) > U(� opt) then
10: � opt = � sub;
11: end if
12: end for
13: Pick up Pm ∈ P, and assign � opt to Pm;
14: � = � \ � opt;
15: P = P \ Pm;
16: end while
Please cite this article in press as: Fan, M., et al., Enhanced fixed-prio
task period relationship. J. Syst. Software (2014), http://dx.doi.org/10.

17: if � =∅ then return “success”; else return “fail”, endif;

The HAPS is described in more details in Algorithm 3. Similar to
SER, we denote � as the task set containing all unassigned tasks
 PRESS
nd Software xxx (2014) xxx–xxx

and denote P as the core set containing all empty processors. We
first sort � with non-decreasing order of task period (line 1). Then,
when both � and P are not empty, we pick up a group of tasks
with optimal combination, in terms of harmonic index and total
utilization, and allocate them together to one empty core (from
line 2 to line 16).

In each iteration of the “while” loop, we first initialize the objec-
tive subset of tasks as empty (line 3). The “for” loop (from line 4 to
line 12) contains three steps: (1) transforming the task set � into
a harmonic task set by using the Ti as the harmonic standard; (2)
picking up a sub task set, denoted as � sub, consisting of Ni tasks
with higher harmonic relationship, meanwhile the corresponding
task set utilization U(� ′

sub
) is maximized under the constraint of

U(� ′
sub

) ≤ 1; (3) among all |� | harmonic transformations, choos-
ing the sub task set that has the maximum utilization in order to
optimize the total system utilization. Note that the first step has
a complexity of O(N) as only one traverse of the entire task set is
required. In addition, to accomplish step 2 (line 8), the transformed
task set is first sorted (e.g. quick sort) in a non-decreasing order
w.r.t. the harmonic index and group as many tasks as possible fol-
lowing the sorted order while ensuring the total utilization is less
than or equal to 1. It is not hard to see that step (2) requires a total
running time of O(N log N + N). Note that the second term N can be
ignored since N log N is the dominant factor.

After finding the optimal group of tasks by the “for” loop, we
assign that sub task set together to an empty core(line 13). Accord-
ingly, we update the unassigned task set by removing the sub task
set from � (line 14), and update the available processors by remov-
ing the occupied one from P (line 15). The algorithm succeeds if
all tasks could be allocated, otherwise, it fails (line 17). Therefore,
there is at most min(N, M) iterations for the “while” loop (line 2) as
the algorithm terminates when either N tasks have been assigned
(only one task is assigned in each iteration in the worst case) with
excessive cores or total M core are occupied. Without loss of gen-
erality, we assume that N > M. Additionally, the “for” loop (line 4) is
executed at most N times, therefore the HAPS algorithm also has a
polynomial run-time complexity, i.e. O(MN2 log N). In what follows,
we conduct further feasibility analysis for this algorithm.

6.3. Schedulability analysis for HAPS

In this section, we discuss the schedulability of our proposed
HAPS algorithm. We adopt the RMS policy on each core as the prior-
ity assignment criteria for all local tasks assigned on that local core.
We prove that, after successfully partitioning all tasks by HAPS, the
schedulability of all tasks can be guaranteed under RMS.

First, recall that in Section 6.1, we define the concept of primary
harmonic task set, in which for any two tasks, the period of one can
divide or be divided by the other. Then we introduce a feasibility
test approach for real-time task set on single-core by checking its
corresponding primary harmonic task set.

Theorem 7 ((Han and Tyan, 1997)). Let � ′ be a primary harmonic
task set of � . Then � is feasible on a single-core system under RMS if
U(� ′) ≤ 1.

From Theorem 7, we see that given a task set � and its corre-
sponding primary harmonic task set � ′, if the utilization of � ′ is no
greater than 1, then scheduling � on a single-core platform under
RMS, all tasks can meet their deadlines.

Now we are ready to draw the conclusion of the feasibility of
our proposed HAPS algorithm. We formally conclude this property
rity real-time scheduling on multi-core platforms by exploiting
1016/j.jss.2014.09.010

in Theorem 8.

Theorem 8. If a task set � is successfully partitioned by HAPS on
M processors and scheduled under RMS, then all tasks can meet their
deadlines.

dx.doi.org/10.1016/j.jss.2014.09.010

 IN PRESSG Model
J

ems and Software xxx (2014) xxx–xxx 9

P
a
�
l
�

U

A
P
b
d

o
r
t
I
e
i

7

i
a
e
g

7

o
p
t
c
t
p
g

7

R
u

•

•

•

s
e
t
i
t
a
[
t
w
n
a

0.5 0.6 0.7 0.8 0.9 1
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

su
cc

es
s

ra
tio

system utilization

LLBound
RBound

RBounden

(a) Performanc e v.s . syste m utilization

4 6 8 10 12 14 16
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

number of tasks

su
cc

es
s

ra
tio

LLBound
RBound

RBounden

(b) Performanc e v.s . numbe r of tasks
ARTICLESS-9381; No. of Pages 12

M. Fan et al. / The Journal of Syst

roof. Consider an arbitrary core Pm, let � m be the task set
ssigned to Pm. Based on Algorithm 3, we know that all tasks in
m are partitioned together at one time. Moreover, according to

ine 8 in Algorithm 3, there exists a primary harmonic task set of
m, denote as � ′

m, such that

(� ′
m) ≤ 1

ccording to Theorem 7, we can see that � m is feasible on core
m under RMS. Consequently, the task set on each local core can
e successfully scheduled. Therefore, all tasks in � can meet their
eadlines. �

HAPS algorithm assigns all tasks group by group instead of
ne by one as the traditional bin-packing based partitioning algo-
ithms (i.e. First-Fit, Best-Fit and Worst-Fit). Thus, HAPS can take
he advantage of period relations and optimize task allocations.
n the following section, we will conduct different experiments to
valuate the performance of our proposed scheduling algorithms
n terms of task set schedulability and system utilization.

. Experimental evaluations

In this section, we present a detailed discussion of our exper-
mental evaluations for the proposed partitioned scheduling
lgorithms. We first introduce the experimental setup used in our
valuation. Then we present two groups of experiments to investi-
ate the performance of our proposed techniques.

.1. Experimental setup

We conducted two sets of experiments to study the performance
f our proposed enhanced utilization bound (in Section 5.3) and
artitioned scheduling algorithms (in Sections 5.4 and 6.2), respec-
ively. The scheduling performance for different approaches were
ompared by using the success ratios, i.e. the number of feasible
asks over the number of total tasks generated under a specific test
oint. In what follows, we respectively present the results of two
roup experiments.

.2. Experiment 1: efficiency of our enhanced utilization bound

In this experiment, we evaluated the efficiency of our enhanced
-Bound (see Section 5.3) on a single-core platform. Three different
tilization bounds were implemented:

LLBound (Liu and Layland, 1973): Apply the Liu & Layland′s utiliza-
tion bound as shown in Eq. (1).
RBound (Lauzac et al., 1998): Calculate the utilization bound by
Eq. (3) under the traditional task set transformation method as
given by Eq. (5).
RBounden (our proposed method): Calculate the utilization bound
by Eq. (26).

We tested the above three utilization bounds with respect to the
ystem utilization and the number of tasks, respectively. In the first
xperiment, we varied the system utilization (see Eq. (10)) from 0.5
o 1 with an increment of 0.025. In the second experiment, we var-
ed the number of tasks from 4 to 16 with an increment of 2, and
he total utilization of all tasks at each test point is randomly gener-
ted with [0.5, 1]. The task periods are randomly generated within
10, 500]. For each testing point, we generated 500 task sets, and
Please cite this article in press as: Fan, M., et al., Enhanced fixed-prio
task period relationship. J. Syst. Software (2014), http://dx.doi.org/10.

he performance was evaluated by using the metric success ratio,
hich is the fraction of the number of feasible task sets over the
umber of total task sets. The experimental results were collected
nd plotted in Fig. 4.
Fig. 4. Efficiency of our enhanced utilization bound on a single core.

Fig. 4 shows the performance of three different utilization
bounds with respect to system utilization and number of tasks,
respectively. From Fig. 4(a) and (b), we can observe that our pro-
posed RBounden outperforms the others, i.e. LLBound and RBound.
For example, in Fig. 4(a), when system utilization is 0.8, RBounden

can achieve a success ratio around 0.49, an improvement of 29%
over RBound (0.38), and an improvement of 2.7 times over LLBound
(0.13). In Fig. 4(b), when the number of tasks is 12, the success ratio
of RBoundem is 52%, while that ratio of LLBound and RBound are 47%
and 46%, respectively.

Compared with RBound, the improvement of our proposed uti-
lization bound (i.e. RBounden) comes from the fact that, instead
of choosing only one task period as the task set transformation
standard, RBounden takes all periods into consideration, and find
the optimal transformation among all task set scalings. Thus our
proposed RBounden always outperforms the traditional RBound.

7.3. Experiment 2: performance of our partitioned scheduling
algorithms

In this experiment, we studied the performance differences by
different scheduling algorithms under different system utilizations.
Five algorithms were implemented in this experiment.

• WF: Partitions each task based on the Worst-Fit (WF) bin-packing
method (which assigns each task to the core with the largest
rity real-time scheduling on multi-core platforms by exploiting
1016/j.jss.2014.09.010

remaining capacity that can accommodate the task), and checks
the capacity of each local core with the LLBound (see Eq. (1)).

• BF: Partitions each task based on the Best-Fit (BF) bin-packing
method (which assigns each task to the core with the smallest

dx.doi.org/10.1016/j.jss.2014.09.010

 IN PRESSG Model
J

1 ems and Software xxx (2014) xxx–xxx

•

•

•

u
t
t
d
o
i
i
d
t

i
t
t
o
t
b
d
t
m
c
L
u
P
F
c
t
f
n
P
o
1

t
F
a
w
c
t

o
p
w
a
g
t
c
s
t

0.5 0. 6 0. 7 0. 8 0. 9 1
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

su
cc

es
s

ra
tio

system utilization

WF
BF
RBOUNDMP
PSER
HAPS

0.5 0. 6 0. 7 0. 8 0. 9 1
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

su
cc

es
s

ra
tio

system utilization

WF
BF
RBOUNDMP
PSER
HAPS

A

B

0.5 0. 6 0. 7 0. 8 0. 9 1
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

su
cc

es
s

ra
tio

system utilization

WF
BF
RBOUNDMP
PSER
HAPS

C

Fig. 5. Experimental results for light task sets (ui ∈ [0, 0.5]) by different system
ARTICLESS-9381; No. of Pages 12

0 M. Fan et al. / The Journal of Syst

remaining capacity that can successfully accommodate that task),
and checks the capacity of each local core with the LLBound.
RBOUNDMP: Exploits the RBound with traditional task set scaling
method (see Eq. (5)), and allocates each task based on the Best-Fit
strategy under the RBound.
PSER: PSER (our first proposed algorithm) scales the entire task
set (including both periods and execution times of all tasks) with
respect of each task’s period, and then finds the maximal uti-
lization bound among all scaled task sets, and further partitions
each task based on the corresponding scaled task set meanwhile
maximizes the total utilization of each local core.
HAPS: HAPS (our second proposed algorithm) transforms the orig-
inal task set into a harmonic counterpart by scaling and only
scaling the periods of all tasks, and then based on our proposed
harmonic index, assigns tasks with closer harmonic relationship
into the same core to maximize the system utilization.

To study the performance differences among the above sched-
ling approaches with respect of system utilizations, we conducted
wo sub-sets of experiments, for light and general task sets, respec-
ively. In light task sets, the utilization of each task was evenly
istributed within [0, 0.5], while in general task sets, the utilization
f each task was evenly distributed within [0, 1]. For each exper-
ment, we varied the system utilization from 0.5 to 1.0 with an
ncrement of 0.025. For both sub-sets of experiments, we tested on
ifferent number of processors, i.e. M = 4, 8, and 16. The experimen-
al results for all approaches are collected and shown in Figs. 5 and 6.

Fig. 5 shows the experimental results for task sets contain-
ng only light tasks (i.e. ui ∈ [0, 0.5]). From Fig. 5, we can observe
hat PSER and HAPS can achieve success ratios significantly better
han other three approaches. Compared with PSER and HAPS, all
ther three approaches, i.e. WF, BF and RBOUNDMP, can guarantee
he feasibility of any task set with utilization below Liu&Layland’s
ound, the same as PSER and HAPS. The success ratio by WF and BF
rop sharply when system utilization is around 0.7. This is because
hat while WF and BF can guarantee task sets with utilizations no

ore than the Liu&Layland’s bound, they reject any task set that
annot pass the feasibility checking condition determined by the
iu&Layland’s approach. While RBOUNDMP may potentially sched-
le task sets with utilization higher than the Liu&Layland’s bound,
SER and HAPS can achieve higher performance. For example, in
ig. 5(a), when the system utilization is around 0.85, PSER and HAPS
an respectively achieve a success ratio up to 0.55 and 0.95, while
hat of RBOUNDMP is around 0.3. We can also see that the per-
ormance improvement by PSER and HAPS tends to increase as the
umber of processors increases. Under the system utilization of 0.9,
SER (HAPS) can achieve a success ratio of 0.05 (0.7) with 4 process-
rs, 0.25 (0.95) with 8 processors, and increased up to 0.8 (1) with
6 processors.

Fig. 6 shows our experimental results for general task sets con-
aining both heavy (ui ∈ [0.5, 1]) and light (ui ∈ [0, 0.5]) tasks. From
ig. 6, we can also observe that our proposed algorithms, i.e. PSER
nd HAPS, perform better than other three approaches. In Fig. 6(b),
hen the system utilization is 0.85, PSER (HAPS) can achieve a suc-

ess ratio 5 times (7 times) of that by WF and BF, and 1.25 times of
hat by RBOUNDMP.

It is important to observe that for both light and general task sets,
ur second proposed algorithm (HAPS) always outperforms our first
roposed algorithm (PSER). For example, from Figs. 5(c) and 6(c),
e can see that as the number of processors is fixed to 16, HAPS

chieves better performance than PSER when system utilization is
reater than 0.85 and 0.75 for light and general task sets, respec-
Please cite this article in press as: Fan, M., et al., Enhanced fixed-prio
task period relationship. J. Syst. Software (2014), http://dx.doi.org/10.

ively. The reason is that PSER takes the harmonic advantage by only
onsidering the relationship among periods of tasks (i.e. see task set
caling(Algorithm 1)), while HAPS takes both period and utiliza-
ion of each task into consideration (i.e. see primary harmonic task
utilization. (a) Number of processors: M = 4. (b) Number of processors: M = 8. (c)
Number of processors: M = 16.

set Definition (2) and harmonic index Definition (3)). Although by
taking the harmonic relationship among periods of tasks can poten-
tially increase the system utilization, we cannot consider the period
factor isolated in order to optimize the system utilization, specifi-
cally for multi-core scheduling. Thus, to better improve the system
performance of schedulability by taking the harmonic advantage,
we need to appropriately consider not only the relationship among
periods but also the utilizations of all tasks.

In summary, our experimental results clearly show that by
rity real-time scheduling on multi-core platforms by exploiting
1016/j.jss.2014.09.010

exploiting the harmonic relationship among tasks appropriately,
PSER and HAPS can significantly improve the schedulability of par-
titioned scheduling compared with the existing algorithms.

dx.doi.org/10.1016/j.jss.2014.09.010

ARTICLE ING Model
JSS-9381; No. of Pages 12

M. Fan et al. / The Journal of Systems a

0.5 0. 6 0. 7 0. 8 0. 9 1
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
su

cc
es

s
ra

tio

system utilization

WF
BF
RBOUNDMP
PSER
HAPS

0.5 0. 6 0. 7 0. 8 0. 9 1
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

su
cc

es
s

ra
tio

system utilization

WF
BF
RBOUNDMP
PSER
HAPS

A

B

0.5 0. 6 0. 7 0. 8 0. 9 1
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

su
cc

es
s

ra
tio

system utilization

WF
BF
RBOUNDMP
PSER
HAPS

C

Fig. 6. Experimental results for general task sets (ui ∈ [0, 1]) by different system
u
N

8

l
a
m
n
w
H
f
s
o
a
t
d

real-time systems, power-/thermal-aware computing and fault-tolerant system
design.
tilization. (a) Number of processors: M = 4. (b) Number of processors: M = 8. (c)
umber of processors: M = 16.

. Conclusions

Multi-core scheduling problem is the most fundamental prob-
em in real-time embedded system design. Partitioned scheduling,
s one of the major types in multi-core scheduling design, becomes
ore important as the multi-core platform emerging as the domi-

ant technology in both research and industry fields. In this paper,
e have presented two new partitioned approaches (i.e. PSER and
APS) for scheduling real-time sporadic tasks on multi-core plat-

orm under RMS. The PSER algorithm first transformed a given task
et with respect to each task’s period, and then assigned tasks based
n their scaled periods under the traditional RBound. The HAPS
Please cite this article in press as: Fan, M., et al., Enhanced fixed-prio
task period relationship. J. Syst. Software (2014), http://dx.doi.org/10.

lgorithm took the harmonic advantage by transforming the entire
ask set into a harmonic set, and based on made the partitioning
ecision according to an efficient utilization bound, i.e. CBound.
 PRESS
nd Software xxx (2014) xxx–xxx 11

We formally proved that our scheduling algorithms could guaran-
tee the feasibility of any task set successfully passed the partitioned
procedures. Our extensive experimental results demonstrated that
the proposed algorithm can significantly improve the scheduling
performance compared with previous work.

References

AMD [link]. URL http://www.amd.com/US/PRODUCTS/SERVER/PROCESSORS/6000-
SERIES-PLATFORM/6300/Pages/6300-series-processors.aspx

Andersson, B., Jonsson, J., 2003. The utilization bounds of partitioned
and pfair staticpriority scheduling on multiprocessors are 50%. In:
15th Euromicro Conference on Real-Time Systems, 2003, pp. 33–40,
http://dx.doi.org/10.1109/EMRTS.2003.1212725.

Andersson, B., Tovar, E., 2007. Competitive analysis of static-priority partitioned
scheduling on uniform multiprocessors. In: 13th IEEE International Conference
on Embedded and Real-time Computing Systems and Applications. RTCSA 2007,
August, pp. 111–119, http://dx.doi.org/10.1109/RTCSA.2007.31.

Andersson, B., Baruah, S., Jonsson, J., 2001. Static-priority scheduling on multipro-
cessors. In: 22nd IEEE Real-Time Systems Symposium, 2001 (RTSS 2001), pp.
193–202, http://dx.doi.org/10.1109/REAL.2001.990610.

Burchard, A., Liebeherr, J., Oh, Y., Son, S., 1995. New strategies for assigning real-
time tasks to multiprocessor systems. IEEE Trans. Comput. 44 (December (12)),
1429–1442, http://dx.doi.org/10.1109/12.477248.

Coffman Jr., E.G., Garey, M.R., Johnson, D.S., 1997. Approximation Algorithms
for Bin Packing: A Survey. PWS Publishing Co., Boston, MA, USA, pp. 46–93
http://portal.acm.org/citation.cfm?id=241938.241940

Darera, V., Jenkins, L., 2006. Utilization bounds for RM scheduling on uni-
form multiprocessors. In: 12th IEEE International Conference on Embed-
ded and Real-Time Computing Systems and Applications, pp. 315–321,
http://dx.doi.org/10.1109/RTCSA.2006.63.

Dhall, S.K., Liu, C.L., 1978. On a real-time scheduling problem. Oper. Res. 26 (1),
127–140 http://www.jstor.org/stable/169896

Fan, M., Quan, G., 2011. Harmonic-fit partitioned scheduling for fixed-priority
real-time tasks on the multiprocessor platform. In: IFIP 9th International Con-
ference on Embedded and Ubiquitous Computing (EUC), October, pp. 27–32,
http://dx.doi.org/10.1109/EUC.2011.41.

Fan, M., Han, Q., Quan, G., Ren, S., 2014. Multi-core partitioned scheduling for
fixed-priority periodic real-time tasks with enhanced RBound. In: 2014 15th
International Symposium on Quality Electronic Design (ISQED), pp. 284–291,
http://dx.doi.org/10.1109/ISQED.2014.6783338.

Han, C.-C., Tyan, H.-Y., 1997. A better polynomial-time schedulability test for real-
time fixed-priority scheduling algorithms. In: Proc. IEEE Real-Time Systems
Symposium (RTSS), http://dx.doi.org/10.1109/REAL.1997.641267.

Han, C., Lin, K., Hou, C., 1996. Distance-constrained scheduling and its
applications to real-time systems. IEEE Trans. Comput. 45 (7), 814–826,
http://dx.doi.org/10.1109/12.508320.

Kandhalu, A., Lakshmanan, K., Kim, J., Rajkumar, R., 2012. pCOMPATS: period-
compatible task allocation and splitting on multi-core processors. In: IEEE
Real-Time and Embedded Technology and Applications Symposium (RTAS),
http://dx.doi.org/10.1109/RTAS.2012.18.

Kuo, T.-W., Mok, A., 1991. Load adjustment in adaptive real-time systems.
In: Proc. Real-Time Systems Symposium, 1991, Twelfth, pp. 160–170,
http://dx.doi.org/10.1109/REAL.1991.160369.

Lauzac, S., Melhem, R., Mossè, D., 1998. An efficient RMS admission control and
its application to multiprocessor scheduling. In: IPPS/SPDP Parallel Processing
Symposium, http://dx.doi.org/10.1109/IPPS.1998.669964.

Liu, C.L., Layland, J.W., 1973. Scheduling algorithms for multipro-
gramming in a hard-real-time environment. J. ACM 20, 46–61,
http://dx.doi.org/10.1145/321738.321743.

Lopez, J., Diaz, J., Garcia, D., 2001. Minimum and maximum utilization bounds for
multiprocessor RM scheduling. In: 13th Euromicro Conference on Real-Time
Systems, pp. 67–75, http://dx.doi.org/10.1109/EMRTS.2001.934003.

Lopez, J., Diaz, J., Garcia, D., 2004. Minimum and maximum utilization bounds for
multiprocessor rate monotonic scheduling. IEEE Trans. Parallel and Distributed
Systems 15 (July (7)), 642–653, http://dx.doi.org/10.1109/TPDS.2004.25.

Shin, K., Ramanathan, P., 1994. Real-time computing: a new disci-
pline of computer science and engineering. Proc. IEEE 82 (1), 6–24,
http://dx.doi.org/10.1109/5.259423.

Yeh, D., Peh, L.-S., Borkar, S., Darringer, J., Agarwal, A., Hwu, W., 2008.
Thousand-core chips [roundtable]. IEEE Des. Test Comput. 25 (3), 272–278,
http://dx.doi.org/10.1109/MDT.2008.85.

Dr. Ming Fan received his Ph.D. from the Department of Electrical and Computer
Engineering at Florida International University, Florida, USA, in 2014. He received
both B.S. and M.S. from the Department of Software Engineering at Beihang Univer-
sity, Beijing, China, in 2006 and 2009, respectively. His research interests include
rity real-time scheduling on multi-core platforms by exploiting
1016/j.jss.2014.09.010

Qiushi Han is a Ph.D. candidate in the Department of Electrical and Computer
Engineering at the Florida International University, Florida, USA. He received his
B.S. from the Department of Software Engineering, Beijing Jiaotong University. His

dx.doi.org/10.1016/j.jss.2014.09.010
http://www.amd.com/US/PRODUCTS/SERVER/PROCESSORS/6000-SERIES-PLATFORM/6300/Pages/6300-series-processors.aspx
http://www.amd.com/US/PRODUCTS/SERVER/PROCESSORS/6000-SERIES-PLATFORM/6300/Pages/6300-series-processors.aspx
dx.doi.org/10.1109/EMRTS.2003.1212725
dx.doi.org/10.1109/RTCSA.2007.31
dx.doi.org/10.1109/REAL.2001.990610
dx.doi.org/10.1109/12.477248
http://portal.acm.org/citation.cfm?id=241938.241940
dx.doi.org/10.1109/RTCSA.2006.63
http://www.jstor.org/stable/169896
dx.doi.org/10.1109/EUC.2011.41
dx.doi.org/10.1109/ISQED.2014.6783338
dx.doi.org/10.1109/REAL.1997.641267
dx.doi.org/10.1109/12.508320
dx.doi.org/10.1109/RTAS.2012.18
dx.doi.org/10.1109/REAL.1991.160369
dx.doi.org/10.1109/IPPS.1998.669964
dx.doi.org/10.1145/321738.321743
dx.doi.org/10.1109/EMRTS.2001.934003
dx.doi.org/10.1109/TPDS.2004.25
dx.doi.org/10.1109/5.259423
dx.doi.org/10.1109/MDT.2008.85

 ING Model
J

1 ems a

r
a

S
n
t
2
s
a

D
U
i
P
J
w
o
p
r

D
E

ARTICLESS-9381; No. of Pages 12

2 M. Fan et al. / The Journal of Syst

esearch interests include real-time systems, power-/thermal- aware computing
nd reliable/fault-tolerant system designs.

huo Liu is a Ph.D. candidate in the Department of Electrical and Computer Engi-
eering at Florida International University, Florida, USA. He received his M.S. from
he Department of Electrical Engineering at Utah State University, Utah, USA, in
009, and his B.S from the Department of Electrical Engineering at Beihang Univer-
ity, Beijing, China, in 2006. His research interests include real-time systems, parallel
nd distributed systems and cloud computing.

r. Shaolei Ren received the B.E. degree in Electronic Engineering from Tsinghua
niversity in July 2006, the M.Phil. degree in Eletronic and Computer Engineer-

ng from Hong Kong University of Science and Technology in August 2008, and the
h.D. degree in Electrical Engineering from University of California, Los Angeles, in
une 2012. Since August 2012, he has been with Florida International University,

here he currently holds a joint appointment of Assistant Professor in the School
f Computing and Information Sciences and the Department of Electrical and Com-
Please cite this article in press as: Fan, M., et al., Enhanced fixed-prio
task period relationship. J. Syst. Software (2014), http://dx.doi.org/10.

uter Engineering. His research centers around cloud computing and data center
esource management, with an emphasis on sustainability.

r. Gang Quan received his Ph.D. from the Department of Computer Science &
ngineering, University of Notre Dame, USA, his M.S. from the Chinese Academy
 PRESS
nd Software xxx (2014) xxx–xxx

of Sciences, Beijing, China, and his B.S. from the Department of Electronic Engineer-
ing, Tsinghua University, Beijing, China. He is currently an associate professor in the
Electrical and Computer Engineering Department, Florida International University.
Before he joined the department, he was an assistant professor at the Department
of Computer Science and Engineering, University of South Carolina. His research
interests and expertise include real-time systems, embedded system design, power-
/thermal-aware computing, advanced computer architecture and reconfigurable
computing. Dr. Quan is the recipient of a National Science Foundation Faculty Career
Award. He also won the Best Paper Award from the 38th Design Automation Con-
ference. His paper was also selected as one of the Most Influential Papers of 10 Years
Design, Automation, and Test in Europe Conference (DATE) in 2007. Dr. Quan is a
senior member of IEEE.

Dr. Shangping Ren is an Associate Professor at the Department of Computer Sci-
ence, Illinois Institute of Technology. She obtained her Ph.D. in CS from UIUC in 1997.
Before she joined IIT in 2003, she worked as a software engineer in software indus-
rity real-time scheduling on multi-core platforms by exploiting
1016/j.jss.2014.09.010

try for six years. Her main research focus is in the area of software development of
time critical distributed systems, including software architecture, system reliability
under resource constraints, scheduling algorithms for meeting reliability and dead-
line constraints that are critical in time critical systems, such as military command
control systems, automotive systems, and some types of health care systems.

dx.doi.org/10.1016/j.jss.2014.09.010

	Enhanced fixed-priority real-time scheduling on multi-core platforms by exploiting task period relationship
	1 Introduction
	2 Related work
	2.1 Different utilization bounds for single-core systems
	2.2 Partitioned scheduling

	3 Preliminary
	3.1 System models
	3.2 Two feasibility test methods
	3.2.1 RBound feasibility test
	3.2.2 CBound feasibility test

	4 Motivational examples
	5 Task partition with an enhanced RBound
	5.1 Task set scaling (TSS)
	5.2 Property of TSS transformation
	5.3 Enhanced RBound
	5.4 The partitioning algorithm

	6 Harmonic advantage exploration with CBound
	6.1 Quantifying harmonic property
	6.2 Harmonic Aware Partitioned Scheduling
	6.3 Schedulability analysis for HAPS

	7 Experimental evaluations
	7.1 Experimental setup
	7.2 Experiment 1: efficiency of our enhanced utilization bound
	7.3 Experiment 2: performance of our partitioned scheduling algorithms

	8 Conclusions
	References

