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Abstract—This paper presents a new partitioned scheduling
approach to schedule fixed-priority periodic real-time tasks
on multi-core platforms under Rate Monotonic Scheduling
(RMS) policy. We first develop a novel method to scale task
periods, as well as execution times, to improve the utilization
bound (i.e. RBound [7]). We further apply the task set scaling
method and the enhanced utilization bound to multi-core
scheduling to improve the system utilization and at the same
time guarantees the satisfaction of all timing constraints. We
empirically evaluate the proposed techniques and the results
show clear evidence of the proposed approach outperforming
earlier work existed in the literature.

Index Terms—Multi-core partitioned scheduling, real-time
tasks, RMS, RBound

I. Introduction
Multi-core architecture has been widely accepted as the

most important technology in the future industrial market.

By providing multiple processing cores on a single chip,

multi-core systems, compared with the traditional single-

core systems, can significantly increase the computing

performance while relaxing the power requirement. Most

of the major chip manufactures have already launched 16-

core chips into the market, i.e. AMD OpteronT M 6300
Series [1]. It is not surprising that in the coming future,

hundreds or even thousands of cores will be integrated into

a single chip [2]. The quickly emerging trend towards multi-

core platform brings urgent needs for effective and efficient

techniques for the design of different types of computing

systems, e.g. real-time systems.

One key problem in the design of multi-core real-time

systems is how to utilize the available computing resource

most efficiently while satisfying the timing constraints of

all real-time tasks. One direct and effective way to address

this problem is to develop appropriate scheduling algo-

rithms. However, finding an optimal scheduling algorithm

for multi-core systems is an NP-hard [3] problem. Al-

though there exist optimal scheduling algorithms on single-

core systems (e.g. Rate Monotonic Scheduling (RMS) and

Earliest Deadline First (EDF) [4]), none of them remains

optimal any more [5] when moving to multi-core systems.

The reason is that, different from single-core scheduling,

multi-core scheduling needs to decide not only when (the

priority problem) but also where (the allocation problem)

to execute a real-time task. Therefore, developing a sub-

optimal heuristic for scheduling strategy on multi-core

systems is needed.

In this paper, we are interested in studying the problem of

partitioned scheduling for periodic tasks under RMS policy.

Compared with the existing work on fixed-priority parti-

tioned scheduling, we have made a number of significant

contributions,

• We develop a novel method (i.e. TSS method) to scale

task sets, and based on which, we develop an enhanced

utilization bound (i.e. RBounden) that improves upon

an existing utilization bound (i.e. RBound [7]);

• We develop a new partitioned scheduling algorithm

(i.e. PSER algorithm) with consideration of the rela-

tionship between periods of tasks;

• We have conducted extensive experiments to evaluate

the performance of our proposed techniques.

The rest of this paper is organized as follows. Sec-

tion II discusses the related work. Section III describes

the preliminaries and presents an example to motivate our

work. Section IV introduces a new task set scaling method,

and presents an enhanced utilization bound based on the

scaling method. Section V introduces a novel partitioned

scheduling algorithm for fixed-priority periodic tasks on

multi-core systems. Experiments and results are discussed

in Section VI, and we conclude this work in Section VII.

II. Related work

A. Parametric utilization bounds for single-core systems

A parametric utilization bound f (Γ) for a task set Γ
is a function of the parameters of Γ, and can be used to

determine the schedulability for Γ under certain specific

scheduling policy (e.g. RMS). By applying the parameters

of Γ into f (Γ), all tasks in Γ can be guaranteed to meet

their deadlines if the task set utilization is no more than

that parametric utilization bound, i.e. U(Γ)≤ f (Γ).
For single-core systems, there are several parametric

utilization bounds proposed under RMS policy [4], [6], [7].
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• LLBound [4]: The LLBound is a function with respect

to the number of tasks, and is formulated as

LLBound(Γ) = N(21/N −1), (1)

where N is the number of tasks in the task set Γ. When

N goes to infinity, the LLBound achieves its worst-case

as 69%.

• KBound [6]: The KBound has a similar form as the

LLBound, and is formulated as

KBound(Γ) = K(21/K −1), (2)

where K, instead of being the number of all tasks as

that used by LLBound, is the number of harmonic task

sets1 derived from the task set Γ.

• RBound [7]: The RBound takes not only the number

of tasks but also the relationship among periods into

consideration, i.e.

RBound(Γ) = (N −1)(r1/N−1 −1)+2/r−1 (3)

where N is the number of tasks in the task set, and r is

the ratio between the maximum and minimum periods

and need to satisfy 1 ≤ r < 2.

Among all three utilization bounds shown in the above, it

has been proved that for RMS-based single-core scheduling,

the RBound can potentially outperform the other two (i.e.

the LLBound and the KBound) [7]. However, the RBound
can only be applied when a given task set satisfies the

period constraint (i.e. 1 ≤ r < 2). Hence, in order to use

the RBound for checking the schedulability of an arbitrary

task set which may not satisfy the period constraint, we

need to first transform the task set so that it satisfies the

period constraint.

There are a few methods proposed to transform a task

set to satisfy the condition of 1 ≤ r < 2, such as [7], [8].

In particular, Lauzac et al. [7] proposed a task set scaling

method by scaling all tasks with respect to the maximum

period. Specifically, given a task set Γ, ∀τi ∈ Γ, the period

as well as the execution time of τi was scaled by⎧⎨⎩C′
i =Ci ·2�log Tmax

Ti
�

T ′
i = Ti ·2�log Tmax

Ti
� (4)

where Tmax represents the maximum period among all tasks.

Their method scaled all task periods with respect to, but no

larger than Tmax. They formally proved that as long as the

scaled task set was feasible then the original task set was

also feasible.

Kandhalu et al. [8] presented another method by scaling

the task set with respect to the minimum period. Specif-

ically, given a task set Γ, ∀τi ∈ Γ, the period and the

execution time of τi was scaled by{
C′

i =Ci/� Ti
Tmin

�
T ′

i = Ti/� Ti
Tmin

� (5)

1A harmonic task set is a task set in which any two tasks are period
dividable.

where Tmin is the minimum period among all tasks. This

method scaled all task periods with respect to, but no

smaller than Tmin. However, this approach cannot always

guarantee the schedulability of the original task set once

the scaled task set is schedulable. For example, consider

a task set Γ consisting of four tasks with execution time

and periods as {(3,24),(32,100),(40,135)} and (15,140).
According to the scaling method introduced in [8], we

can transform the task set to a new task set Γ′ as

{(3,24),(8,25),(8,27),(3,28)}. It is not difficult to verify

that the new task set Γ′ is schedulable while the original

task set Γ is not schedulable. In our approach, we develop

a new method to scale the task periods as well as the

execution times, and establish a new utilization bound.

B. Scheduling approaches for multi-core systems

The multi-core scheduling approaches can be largely

categorized into three paradigms [5], [9]: global scheduling,

partitioned scheduling and semi-partitioned scheduling. In

global scheduling (e.g. [12]), all jobs (or instances) from

different tasks first enter a global queue, and thus each

task can be potentially executed on any core. In partitioned

scheduling (e.g. [15]), each task is assigned to a dedicated

core. All jobs from the same task will be executed solely

on that particular core. In semi-partitioned scheduling (e.g.

[16], [19]), most tasks are assigned to one particular core,

and a few of tasks (i.e. usually no more than (M−1) tasks,

where M is the number of cores) are allowed to be split

into several subtasks and assigned to different cores.

In this paper, we focus on partitioned scheduling for

fixed-priority periodic tasks. In what follows, we first

introduce some preliminary concepts for our work.

III. Basic concepts
In this section, we first introduce the system models this

research is based upon, then introduce a traditional RBound

feasibility test method.

A. System models

We assume a multi-core platform consists of M iden-

tical cores, M ≥ 2, denoted as P = {P1,P2, ...,PM}. Our

task model consists of N periodic tasks, represented as

Γ = {τ1,τ2, ...,τN}. Each task τi is characterized by a two-

parameter tuple (Ci,Ti). Ci is the worst case execution time
of τi, and Ti is the inter-arrival time (period) between any

two consecutive jobs of τi. We assume that Γ is sorted by

non-decreasing period order, i.e. for ∀τi,τ j ∈ Γ, Ti ≤ Tj if

i < j.
The task utilization of τi, denoted as ui, is defined as

ui =
Ci

Ti
(6)

The task set utilization of Γ, denoted as U(Γ), is defined

as

U(Γ) =
N

∑
i=1

ui (7)



where N is the number of tasks in task set Γ. Moreover,

let Γk denote the task set assigned to core Pk, then U(Γk)
represents the total utilization of all tasks assigned to Pk.

The system utilization of P , denoted as UM(Γ), is defined

as

UM(Γ) =
U(Γ)

M
(8)

Intuitively, UM(Γ) represents the average CPU utilization

among all M cores.

B. RBound feasibility test

The RBound [7], as what we have introduced in Sec-

tion II-A, can be used as a feasibility test method for

scheduling fixed-priority periodic tasks on single-core sys-

tems. We formally present the RBound feasibility test

approach with Theorem 1.

Theorem 1: [7] Given a task set Γ, let Γ′ be the task set

by scaling all tasks in Γ (i.e. ∀τi ∈ Γ) through⎧⎨⎩C′
i =Ci ·2�log Tmax

Ti
�

T ′
i = Ti ·2�log Tmax

Ti
� (9)

where Tmax = max∀τi∈Γ Ti. Then Γ is schedulable on a

single-core system under RMS if

U(Γ)≤ RBound(Γ′) (10)

The RBound(∗) is given by equation (3).

From Theorem 1, we can see that the RBound feasi-

bility test first scales all tasks in Γ with respect to the

maximum period, and then predicts the schedulability of

Γ by comparing its utilization with the value of RBound

under Γ′. In what follows, we present a new task set

transformation method, based on which, we then develop a

novel partitioned scheduling algorithm.

IV. Task set scaling with respect to the period of an
arbitrary task

In order to apply the RBound to test the schedulability

of a task set, one key point is to develop an effective and

efficient method to transform the task set to a new one

such that the ratio of the maximum and minimum period

is between 1 and 2 [7]. In addition, we need to guarantee

that once the new task set is schedulable, so is the original

task set.

To transform a task set, one approach [7] is to fix

Tmax and scale up the rest task periods towards Tmax so

that the maximum/minimum period ratio is between 1 and

2. Another effort [8] is to keep the Tmin unchanged and

scale down task periods such that the maximum/minimum

period ratio is between 1 and 2. Unfortunately, as explained

before(see Section II-A), this approach cannot guarantee the

schedulability of the original task set even though the new

task set can be schedulable. In this section, we introduce

a new method to scale task periods based on the period of

any task in the task set, and most importantly, we guarantee

that the original task set is schedulable if the new task set

is schedulable.

A. Task set scaling (TSS)

Instead of using a restricted transformation, such as

scaling the entire task set only with respect to a unique

task (i.e. the task with the maximum period), we introduce

a more general and flexible task set transformation method,

denoted as the TSS method, which can scale a task set with

respect to the period of an arbitrary task in a given task set.

Algorithm 1 TSS(Γ,τk)

Require:
1) Γ: input task set, sorted with non-decreasing period

order;

2) τk: the kth task in Γ, based on which the task set is

scaled.

1: N = |Γ|;
2: T ′

k = Zk = Tk, and C′
k =Ck;

3: // step 1: transform LOWER-priority tasks into har-
monic;

4: for i = k+1 to N Zi = Zi−1 · � Ti
Zi−1

� end for;

5: // step 2: scale all tasks with respect to τk;

6: for i = 1 to k−1 do
7: Ri = 2

�log2
Tk
Ti
�

8: T ′
i = Ti ·Ri

9: C′
i =Ci ·Ri

10: end for
11: for i = k+1 to N do
12: Ri = Zi/Tk;

13: T ′
i = Zi/Ri;

14: C′
i =Ci/Ri;

15: end for
16: return Γ′;

Algorithm 1 shows the details of our proposed Task Set
Scaling (TSS) method. We assume that the input task set

Γ is sorted with non-decreasing period order, i.e. for any

two tasks τi and τ j, it holds Ti ≤ Tj if i < j. TSS method

transforms the entire task set Γ into another task set Γ′ by

scaling all tasks with respect to τk’s period, i.e. Tk, where

τk is an arbitrary task in Γ.

There are two major steps in Algorithm 1: 1) Tasks

with priorities lower than τk are transformed into harmonic

tasks with their periods being integer multiples of Tk (line

4); 2) Tasks with priorities higher than τk are scaled up

(line 6-10), and tasks with priorities lower than or equal

to τk are scaled such that the new period is equal to Tk
(line 11-15). After all tasks in Γ are scaled appropriately,

the corresponding task set Γ′ is returned. In what follows,

we discuss the relationship between Γ′ and Γ in terms of

schedulability.

B. Feasibility relationship between Γ and Γ′

In this subsection, we discuss the relationship between a

transformed task set Γ′ and its original task set Γ in terms

of feasibility. we show that if Γ′ is schedulable under RMS,

then Γ must be schedulable under RMS. This is essential

to the application of our utilization bound in schedulability

test.
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Fig. 1. Proof of Theorem 2: given a task set Γ with T1 ≤ T2... ≤ TN
and τN = (CN ,TN), transform Γ into Γ∗ such that τ∗N = (kCN ,kTN) and
τ∗i = τi,∀i < N.

Theorem 2: Given a task set Γ = {τ1,τ2, ...,τN−1,τN}
with T1 ≤ T2... ≤ TN , let Γ∗ = {τ1,τ2, ...,τN−1,τ∗N}, such

that τ∗N = (C∗
N ,T

∗
N ) satisfies that

C∗
N = k ·CN , T ∗

N = k ·TN (11)

where k is an arbitrary positive integer. If Γ is schedulable

on a single-core system under RMS, then Γ∗ must be

schedulable on a single-core system under RMS.

Proof: Since the first N−1 tasks always have higher prior-

ities than the Nth task in either Γ or Γ∗, their schedulability

does not change. Thus, we only need to prove that τ∗N is

schedulable in Γ∗. Consider the kth instance of task τN in Γ.

Since Γ is schedulable, we know that the kth instance of task

τN must be able to meet its deadline. In other words, there

must exist a time point tk, where tk ∈ ((k− 1) ·TN ,k ·TN ],
such that (see Figure 1)

N−1

∑
i=1

Ci · 
 tk
Ti
�+N ·CN ≤ tk (12)

According to equation (11), we have that C∗
N = k ·CN . Thus,

the above can be rewritten as

N−1

∑
i=1

Ci · 
 tk
Ti
�+C∗

N ≤ tk (13)

The above inequality means that at time point tk, τ∗N as well

as all other higher priority tasks can completely finish their

execution requirements. Note that tk ≤ k · TN = T ∗
N . Thus,

τ∗N is schedulable in Γ∗. Therefore, we can see that if Γ is

schedulable, then Γ∗ must be schedulable. �

Next, for any given task set Γ, let Γ′ be the task set

obtained by applying TSS method given by Algorithm 1. We

prove that the ratio between the maximum and minimum

periods of all tasks in Γ′ is less than 2. We formally

conclude this property in Lemma 1.

Lemma 1: Given a task set Γ sorted with non-decreasing

period order and a task τk representing the kth task in Γ, let

Γ′ be the scaled task set obtained by applying TSS method

(see Algorithm 1). Then we have

1 ≤ T ′
max

T ′
min

< 2 (14)

where T ′
max = max∀τ′i∈Γ′ T ′

i and T ′
min = min∀τ′i∈Γ′ T ′

i .

Proof: We prove this property by showing that T ′
k (same as

Tk) in the transformed task set Γ′ is the maximum period

and the ratio between Tk and any other period is less than

2. On one hand, for any task τi with priority higher than

τk, i.e. i < k, according to Algorithm 1, we have

T ′
k

T ′
i
=

Tk

Ti ·2�log
Tk
Ti
�

(15)

from which we can derive that

1=
Tk

Ti ·2log
Tk
Ti

≤ T ′
k

T ′
i
<

Tk

Ti ·2(log
Tk
Ti
−1)

=
2Tk

Ti ·2log
Tk
Ti

= 2 (16)

On the other hand, for any task τi with priority lower than

or equal to τk, i.e i > k, according to Algorithm 1, its

transformed period can be represented as

T ′
i =

Zi

Zi/Tk
= Tk (17)

Based on the above, we can immediately get

T ′
k

T ′
i
=

T ′
k

Tk
= 1 (18)

where i > k. Thus far, we show T ′
k (Tk) is the maximum

period in Γ′, i.e. ∀i, T ′
k

T ′
i
≥= 1, and the ratio of T ′

k over

any other period T ′
i is less than 2. Therefore, Lemma 1 is

proved. �

Now we are ready to show that after applying TSS
method, the schedulability of the original task set Γ can

be predicted by that of Γ′. We formulate this property in

Theorem 3
Theorem 3: Given a task set Γ, let Γ′ be the scaled task

set obtained by applying the TSS method with respect to

any task τk in Γ. If U(Γ′) ≤ RBound(Γ′), then Γ must be

schedulable on a single-core system under RMS.
Proof: According to Lemma 1, we have that Γ′ =
{τ′1, ...,τ

′
k−1,τ

′
k,τ

′
k+1, ...,τ

′
N} satisfies that 1≤ r < 2, where r

is the ratio between the maximum and minimum periods in

Γ′. Thus, if U(Γ′)≤ RBound(Γ′), according to Theorem 1,

Γ′ is schedulable on a single-core system under RMS.
Next, for ∀i > k, according to line 11-15 in Algorithm 2,

we have that

T ′
i = Zi/Ri = Zi/(Zi/Tk) = Tk = T ′

k (19)

Thus, τ′k,τ
′
k+1, ...,τ

′
N have the same as well as the lowest

priority in Γ′. Moreover, τ′1, ...,τ
′
k−1 are tasks with priorities

higher than τ′k before as well as after the transformation.

Based on Lemma 2 in work [7], if Γ′ is schedulable, we

know that the following task set Γ̂′ must be schedulable.

Γ̂′ = {τ1, ...,τk−1,τk,τ′k+1, ...,τ
′
N} (20)

Then we construct task set Γ∗ from Γ̂′ by replacing τ′i
with τ∗i , where i = k+1, ...,N, such that T ∗

i = Zi (based on

line 4 in Algorithm 2) and C∗
i =C′

i · (T ∗
i /T ′

i ).

Γ∗ = {τ1, ...,τk−1,τk,τ∗k+1, ...,τ∗N} (21)

For i = k, ...,N−1, we have that T ∗
i+1 is an integer multiple

of T ∗
i , thus according to Theorem 2, if Γ̂′ is schedulable,

Γ∗ must be schedulable.
Finally, since T ∗

k+1 ≤ ...≤ T ∗
N and Tk+1 ≤ ...≤ TN , thus by

extending T ∗
i to Ti, where i = k+1, ...,N, the schedulability

of all tasks do not change. In other words, if Γ∗ is schedu-

lable, the original task set Γ = {τ1, ...,τk−1,τk,τk+1, ...,τN}
must be schedulable.

In sum, after applying the TSS method on a given task

set Γ, if the scaled task set Γ′ satisfies that U(Γ′) ≤
RBound(Γ′), then Γ is schedulable on a single-core system

under RMS. �



C. Enhanced RBound

In this part, we propose an enhanced utilization bound

based on our TSS method, and then introduce a new

feasibility test method.

First, after the transformation by TSS, we can apply the

RBound function given by equation (3) to evaluate the

schedulability of the transformed task set, and therefore

that of the original task set. By applying TSS with different

initial tasks, we can possibly attain a higher utilization

bound. Subsequently, we derive our enhanced utilization
bound in the following equation,

RBounden(Γ) = max
∀τi∈Γ

{
RBound(Γ′

i) |Γ′
i = TSS(Γ,τi)

}
(22)

where RBound(∗) is the utilization bound function given by

equation (3) and TSS(*, *) is our task set scaling method

shown in Algorithm 1.

Next, in light of Theorem 3, we know that the task

set Γ is guaranteed to be schedulable if there exists a

task τi ∈ Γ such that the condition U(Γ′)≤ RBound(Γ′) is

satisfied. The feasibility test method based on our RBounden

is concluded with Theorem 4 in light of Theorem 1, Lemma

1 and Theorem 3.

Theorem 4: Given a task set Γ, if ∃τi, τi ∈ Γ, such that

U(Γ′)≤ RBound(Γ′) (23)

where Γ′ = TSS(Γ,τi), then Γ is schedulable on a single-

core system under RMS.

Theorem 4 provides a new feasibility test method by

applying our proposed TSS method to obtain an enhanced

RBound to predict the schedulability for a given task set.

It is not surprising to see that our proposed feasibility test

(given by Theorem 4) can always outperform the previous

RBound feasibility test[7].

Corollary 1: Given a task set Γ, if Γ can successfully

pass the traditional RBound feasibility test given by Theo-

rem 1, then Γ must be able to successfully pass the enhance

RBound feasibility test given by Theorem 4.

Proof: If Γ can pass the traditional RBound feasibility test

successfully, according to Theorem 1, we must have that

U(Γ)≤ RBound(Γ′
1)

where Γ′
1 is obtained by using equation (9). Note that

U(Γ)=U(Γ′
1). On other hand, let τN represent the task with

the maximum period in Γ, by using τN to our TSS method,

we can get a scaled task set, denoted as Γ′
2. According

to TSS method given by Algorithm 1, we have that Γ′
2 is

exactly the same as Γ′
1. Thus, we have

U(Γ′
2) =U(Γ)≤ RBound(Γ′

1) = RBound(Γ′
2)

According to Theorem 4, we get that Γ is schedulable.

Therefore, if Γ can successfully pass the traditional RBound

feasibility test given by Theorem 1, then Γ must be able to

successfully pass the enhance RBound feasibility test given

by Theorem 4. �

From Corollary 1, we can see that our proposed feasibil-

ity test method can always outperform the previous RBound

feasibility test method. In fact, the traditional feasibility

test condition (given by equation (10)) is only one of the

conditions tested in our enhance feasibility test. In other

words, we proposed feasibility test method completely

covers the case of the traditional RBound feasibility test.

For example, consider the following three tasks, τ1 =
(7,10), τ2 = (1,11) and τ3 = (1,15). According to the

traditional RBound feasibility test (see Theorem 1), we get

that

U(Γ) = 0.858 > RBound(Γ′
1) = 0.783

Thus Γ is not schedulable under the traditional RBound

test. However, by transforming Γ with respect to τ2 under

our T SS method, i.e. Γ′
2 = T SS(Γ,τ2), we can get the Γ′

2 =
{(7,10),(1,11),(1,11)}. Directly, we can derive that

U(Γ′
2) = 0.882 < RBound(Γ′

2) = 0.916

According to Theorem 4, our proposed feasibility test can

guarantee that Γ is schedulable on a single-core system

under RMS.

V. Partitioned scheduling with enhanced utilization
bound

In this section, we first present a new multi-core

scheduling algorithm, Partitioned Scheduling with En-
hanced RBound (PSER), then we prove its schedulability

after a successful partition.

A. Algorithm detail

PSER is a multi-core partitioned scheduling algorithm,

which adopts our proposed TSS to make the partitioning

decisions for a task set.

We show the details of PSER in Algorithm 2. During

each iteration, we assign a group of tasks to a core such that

the core utilization is maximized and the tasks are deemed

to be schedulable according to the RBound. The algorithm

is terminated when either all the tasks are successfully

assigned or a schedulable partition can not be found.

Note that in order to find the best combination of tasks in

each iteration, the unassigned task set Γ is transformed with

respect to each of tasks in Γ (i.e. line 6). Thus, by exploring

all transformations with different initial conditions, we can

optimize the grouping decisions and as a result, maximize

the system utilization.

B. Schedulability analysis

After successfully partitioning all tasks by PSER, we

apply the RMS on each core as the local scheduling policy.

We prove that the schedulability of any task set after a

successful partitioning by PSER can be guaranteed.

Theorem 5: If a task set Γ is successfully partitioned by

PSER on M cores and scheduled under RMS, then all tasks

can meet their deadlines.

Proof: Assume that a task set Γ is successfully partitioned

by PSER, then we prove that each core can guarantee

the schedulability of all tasks assigned to it. Consider an

arbitrary core Pm ∈ P , and let Γm be the corresponding

task set assigned to Pm. Once PSER finishes successfully,



Algorithm 2 Partitioned Scheduling with Enhanced

RBound (PSER)

Require:
1) Task set :Γ = {τ1,τ2, ...τN};

2) Multi-core : P = {P1,P2, ...,PM};

1: sort Γ with non-decreasing period order;

2: for m = 1 to M do
3: if Γ == /0 then break, end if;
4: Uopt = 0;

5: for i = 1 to |Γ| do
6: Γ′ = TSS(Γ,τi);

7: sort Γ′ with non-increasing period order (for tasks

with same periods, sort them with non-increasing

utilization order);

8: Γ′
sub = /0;

9: for j = 1 to |Γ′| do
10: if U(Γ′

sub
⋃{τ′j})≤ RBound(Γ′

sub
⋃{τ′j}) then

11: Γ′
sub = Γ′

sub
⋃{τ′j};

12: end if
13: end for
14: if U(Γsub)>Uopt then
15: Γopt = Γsub;

16: Uopt =U(Γsub);
17: end if
18: end for
19: assign Γopt to core Pm, and remove Γopt from Γ;

20: end for
21: if Γ = /0 then return “success”; else return “failure”,

end if;

according to line 9-17 in Algorithm 2, we know that there

must exist τi ∈ Γm, such that

U(Γ′
m)≤ RBound(Γ′

m) (24)

where Γ′
m = T SS(Γ,τi). According to Theorem 4, Γm is

schedulable on core Pm under RMS policy. Therefore, for

an arbitrary core Pm, after the partitioning procedure PSER
is successfully completed, all tasks assigned to Pm can meet

their deadline. Thus far, this theorem is proved. �

In what follows, we will evaluate the performance of our

proposed algorithms with experiments.

VI. Experimental evaluations
In this section, we evaluate our proposed techniques with

experiments. We conducted two groups of experiments to

study the performance of our enhanced utilization bound

(i.e. RBounden) and the multi-core scheduling algorithm

(i.e. PSER), respectively.

A. Experiment 1 : efficiency of our enhanced utilization
bound RBounden

In this group of experiments, we evaluate the efficiency

of our proposed utilization bound, i.e. RBounden, on a

single-core platform. Three different utilization bounds

were implemented:

• LLBound [4]: See equation (1).

• RBound [7]: Calculate the utilization bound by equa-

tion (3) under the traditional task set transformation

method as given by equation (9).

• RBounden (our method): Calculate the utilization

bound by equation (22).

We tested the above three utilization bounds with re-

spect to the system utilization and the number of tasks,

respectively. In the first experiment, we varied the sys-

tem utilization (see equation (8)) from 0.5 to 1 with an

increment of 0.025. In the second experiment, we varied

the number of tasks from 4 to 16 with an increment of

2, and the total utilization of all tasks at each test point

is randomly generated with [0.5,1]. The task periods are

randomly generated within [10,500]. For each testing point,

we generated 500 task sets, and the performance was

evaluated by using the metric success ratio, which is the

fraction of the number of feasible task sets over the number

of total task sets. The experimental results were collected

and plotted in Figure 2.
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Fig. 2. Efficiency of our enhanced utilization bound on a single core.

Figure 2 shows the performance of three different utiliza-

tion bounds with respect to system utilization and number

of tasks, respectively. From Figure 2(a) and 2(b), we

can observe that our proposed RBounden outperforms the

others, i.e. LLBound and RBound. For example, in Figure



2(a), when system utilization is 0.8, RBounden can achieve

a success ratio around 0.49, an improvement of 29% over

RBound (0.38), and an improvement of 2.7 times over

LLBound (0.13). In Figure 2(b), when the number of tasks

is 12, the success ratio of RBoundem is 52%, while that ratio

of LLBound and RBound are 47% and 46%, respectively.

Compared with RBound, the improvement of our pro-

posed utilization bound (i.e. RBounden) comes from the fact

that, instead of choosing only one task period as the task

set transformation standard, RBounden takes all periods into

consideration, and find the optimal transformation among

all task set scalings. Thus our proposed RBounden always

outperforms the traditional RBound.

B. Experiment 2 : performance of our proposed multi-core
partitioning algorithm PSER

In this group of experiments, we evaluate the perfor-

mance of our proposed multi-core scheduling algorithm, i.e.

PSER algorithm, by comparing with other three different

algorithms.

• LLBound-WF: Partitions each task based on the Worst-

Fit (WF) bin-packing method (which assigns each task

to the core with the largest remaining capacity that

can accommodate the task), and checks the capacity

of each local core with the LLBound (see equation

(1)).

• LLBound-BF: Partitions each task based on the Best-

Fit (BF) bin-packing method (which assigns each task

to the core with the smallest remaining capacity that

can successfully accommodate that task), and checks

the capacity of each local core with the LLBound.

• RBOUNDMP [7]: Exploits the RBound with traditional

task set scaling method (see equation (9)), and allo-

cates each task based on the Best-Fit strategy under

the RBound.

• PSER: Our proposed partitioned scheduling algorithm

(see Algorithm 2).

To study the performance of different multi-core schedul-

ing approaches, we conducted two sub-sets of experiments,

for light and general task sets, respectively. In light task

sets, the utilization of each task was randomly generated

within [0,0.5], while in general task sets, the utilization of

each task was randomly generated within [0,1]. For both

experiments, we tested all four approaches with different

number of cores, i.e. M = 4, 8, and 16. For each testing

point, we generated 500 task sets, each of which has a

utilization randomly generated within [0.5,1]. The exper-

imental results are collected and shown in Figure 3 and

Figure 4.

Figure 3 shows the experimental results for task sets

containing only light tasks (ui ∈ [0,0.5]). From Figure 3(a),

3(b) and 3(c), we can observe that the proposed PSER
approach outperforms all other three approaches. For ex-

ample, in Figure 3(a), when the system utilization is 0.8,

PSER can achieve a success ratio up to 0.97, while that

of RBOUNDMP, LLBound-BF and LLBound-WF are only

0.78, 0.05 and 0, respectively.

Figure 4 shows the experimental results for general task

sets containing both heavy (ui ∈ [0.5,1]) and light (ui ∈
[0,0.5]) tasks. From Figure 4, we can also observe that

PSER outperforms the other three approaches. For example,

in Figure 4(c), when the system utilization is 0.85, PSER
can achieve a success ratio of 0.69, which is 1.49 times of

that by RBOUNDMP (0.47), 6.9 times of that by LLBound-
BF(0.10) and 11.5 times of that by LLBound-WF (0.06).

In summary, our experimental results clearly show that

the proposed PSER approach, which exploits our task

set scaling (TSS) method and enhanced utilization bound

(RBounden), can effectively improve the schedulability of

multi-core partitioned scheduling compared with the previ-

ous related work.

VII. Conclusions
Multi-core scheduling problem is the most fundamental

problem in real-time embedded system design. Partitioned

scheduling, as one of the major types in multi-core schedul-

ing design, becomes more important as the multi-core

platform emerging as the dominant technology in both

research and industry fields.

In this paper, we first introduced a novel task set scaling

method (i.e. TSS) which scales a task set with respect

to any given task period in the task set. Based on our

task set scaling method, we further presented an enhanced

utilization bound for checking the schedulability of fixed-

priority periodic tasks on single-core systems. In addition,

we proposed a novel partitioned scheduling algorithm (i.e.

PSER) to optimize the system utilization by assigning tasks

group by group based on our task set scaling method and

the enhanced utilization bound. We formally proved that

our scheduling algorithm could guarantee the feasibility of

any task set successfully passed the partitioning procedure.

Our extensive experimental results demonstrated that the

proposed algorithm could effectively improve the schedul-

ing performance compared with the previous work.
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