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Abstract—This paper presents a new semi-partitioned approach to schedule sporadic tasks on multi-core platforms based on
the Rate Monotonic Scheduling (RMS) policy. To improve the schedulability, our approach exploits the fact that the utilization
bound of a task set increases as task periods become closer to harmonic on single processor platforms. The challenge for our
approach, however, is how to take advantage of this fact to assign and split appropriate tasks on different processors in the semi-
partitioned approach, and how to guarantee the schedulability of real-time tasks. We formally prove that our scheduling approach can
successfully schedule any task set with a system utilization bounded by Liu&Layland bound for N tasks, i.e. N(21/N−1). Our extensive
experimental results demonstrate that the proposed algorithm can significantly improve the scheduling performance compared with
the previous work.
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1 INTRODUCTION

AS embedded applications become more and more

complicated, embedded system designers rely more

on multi-processor or multi-core platforms to obtain high

computing performance [1], [2]. Meanwhile, due to the

power/thermal constraints, the memory bottleneck, as well

as the limitation of the instructional level parallelism in

programs [3], industry is changing its gear toward the

multi-core architecture rather than continuing to pursue high

performance uniprocessor architecture. Conceivably, most

of the future embedded systems will be built upon multi-

core architectures. A major issue in developing multi-core

computing systems is how to utilize the available computing

resources most effectively. This is particularly critical for

real-time systems with stringent timing constraints. It is a

well known fact that scheduling real-time tasks on multipro-

cessor platform is NP-hard [4].

Traditionally, the well-known RT scheduling algorithms,

such as the Rate Monotonic Scheduling(RMS) and Earliest
Deadline First (EDF) scheduling, have been proven to be

optimal for uniprocessor scheduling [5]. However, when

the problem comes to multi-core platform, these optimal

algorithms are no longer optimal any more [6].

There have been extensive literature published on real-

time scheduling for multi-core systems [7], [8], [9], [10].

These scheduling algorithms can be largely categorized into

two classes [6], [11]: the partitioned approach (e.g. [7])
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and the global (or non-partitioned) approach (e.g. [8]). In

the partitioned scheduling approach, each real-time task is

assigned to a dedicated processor. All instances from the

same task will be executed solely on that particular processor.

In the global scheduling approach, all jobs from different

tasks first enter a global queue, and thus each task can be

potentially executed on any processor. Both approaches have

their own pros and cons, and none of them dominates the

other in terms of schedulability [11].

Recently, a new multi-core scheduling approach, i.e.

so called semi-partitioned approach [12], [13], [14], [10],

[9], [15], [16], has been proposed. In the semi-partitioned

scheduling approach, most tasks are assigned to one partic-

ular processor, i.e. the same as the partitioned scheduling

approach. However, a few of tasks (i.e. no more than (M−1)
tasks, where M is the number of processors) are allowed

to be split into several subtasks and assigned to different

processors. From a different perspective, these tasks can

migrate among different processors. The semi-partitioned

approach not only outperforms the traditional partitioned

approach and global approach theoretically [10], [15], [17],

but also has been shown as sound and practical in the

real implementation [16]. Furthermore, by implementing the

semi-partitioned scheduling method in the Linux operating

system, and running experiments on an Intel Core-i7 4-cores

computer, Zhang et al. [18] showed that the overhead in the

task migration can be relatively low, and thus its impact on

the schedulability is small.

In this paper, we present a new semi-partitioned strategy

and related feasibility analysis for sporadic tasks on multi-

core platform based on RMS. Compared with the existing

work on semi-partitioning of real-time tasks, we have made

Digital Object Indentifier 10.1109/TPDS.2013.71 1045-9219/13/$31.00 ©  2013 IEEE

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. X, MONTH YEAR 2

a number of novel contributions. First, we take the harmonic

relation among tasks into consideration for fixed-priority

semi-partitioned scheduling strategy on multi-core platform.

As shown in our motivational example, taking advantage of

harmonic property in semi-partitioned scheduling is non triv-

ial. Two new semi-partitioned algorithms are developed. The

first algorithm, namely Harmonic Semi-Partition for Light
tasks (HSP-light), is intended for task sets with utilization

factor of each task no more than 0.5. The second one, namely

Harmonic Semi-Partition (HSP), is developed for more gen-

eral task sets, i.e. the utilization factor of each task is no more

than 1. Second, we present new feasibility analysis results

for the semi-partitioned scheduling algorithms developed in

this paper. Note that, to maximally utilize a processor such

that adding more high priority tasks will cause deadline miss

does not immediately imply the validity of Liu&Layland’s
bound [5] for semi-partitioned scheduling, since when a

task needs to migrate to a different processor, its deadline

becomes smaller than its period. We formally prove that

the proposed algorithms can guarantee the feasibility for

task sets with utilizations no larger than the Liu&Layland’s
bound. Moreover, different from the approach in [15], task

sets with utilizations higher than the Liu&Layland’s bound
may also be schedulable with our approaches. Third, we

conducted extensive experiments to study the performance

of our approach, and our experimental results demonstrate

that our proposed algorithms can significantly outperform

previous work. A preliminary version of this paper has been

published in [19].

The rest of the paper is organized as follows. Section 2

discusses the related work. Section 3 introduces system

models and other background information necessary for this

paper. Section 4 and 5 present two semi-partitioned algo-

rithms we developed. Experiments and results are discussed

in Section 6, and we present the conclusions in Section 7.

2 RELATED WORK

In this section, we discuss the related work from two aspects:

the work that exploit the harmonic property for periodic tasks

and the work on semi-partitioned scheduling.

The property of harmonic tasks, i.e. the tasks with periods

being integer multiples of each other, has been widely studied

on uniprocessor systems. Compared with the Liu&Layland’s
bound bound, many researchers have proposed more efficient

bound for RMS uniprocessor scheduling. One known result

is that if all tasks are harmonic in a task set, the utilization

bound can be as high as 1 [20]. Han et al. [21] proposed a

polynomial-time method to determine the task set feasibility

through testing the feasibility of a harmonic task set derived

from the original task set. They proved that any task set that

can pass the feasibility test by Liu&Layland’s bound can

pass the proposed test. Kuo et al. [22] presented another

polynomial-time schedulability test method. By combining

harmonic tasks into one task, the method can reduce the

effective number of tasks and then the Liu&Layland’s bound
can be used to test the feasibility. There are also a number of

other researches that study the relationship between system

schedulability and task periods under RMS for uniprocessor

scheduling [23], [24], [25]. For multiple processor RMS

scheduling, Jung [26] et al. studied the problem of schedul-

ing harmonic tasks on a uniform multiprocessor platform.

Müller [27] adopted the feasibility test by Han et al. [21]

to minimize the number of processors, and Fan et al.
[28] proposed a scheduling technique that improves the

system schedulability by taking advantage of the harmonic

relation among tasks. All these work indicate that system

schedulability can be greatly improved if harmonic relations

among different tasks can be appropriately exploited for RMS

scheduling on both single and multiple core platforms.

Semi-partitioned scheduling, by splitting a few tasks, has

been shown as an effective and practical scheduling method

to improve the system utilization significantly compared with

the traditional global scheduling and partitioned scheduling

(e.g. [12], [13], [14], [19], [10], [9], [15], [16].) As an

example, the best known utilization bound for either global or

partitioned fixed-priority schedule is no more than 50% [7],

[29], [8], while the utilization bound can reach much higher

using semi-partitioned scheduling. For instance, Lakshmanan

et al. [10] have shown an utilization bound of 65%, and

Guan et al. [15], [30] improved this bound to the traditional

Liu&Layland bound, i.e. 69.3% as the number of tasks

goes to infinite, or any valid utilization bounds (such as

the K-bound [22] or R-bound [31]) established on single

processor platforms. Kandhalu et al. [32] proposed two semi-

partitioned scheduling algorithms. They show that, for task

sets with each individual task utilization factor no more than

0.5, the utilization bound can increase with the number of

cores and approach 100%.

We believe that taking advantage of the harmonic relation-

ship among task periods can greatly improve the schedula-

bility of a semi-partitioned algorithm. Some of the existing

approaches (such as the ones in [30], [32]) exploit this

relationship by using the R-Bound [31], i.e. a utilization

bound that takes the possible harmonic relationship into con-

sideration. However, employing R-bound cannot determine

the feasibility of a task set as accurate as the worst case

analysis. Moreover, in order to use R-bound, all tasks have

to go through a period transformation process. After the

transformation, Kandhalu et al. [32] proposed to allocate the

tasks with the smallest periods together. Unfortunately, these

tasks do not necessarily form a task set closest to harmonic.

In our approach, we developed a metric to quantitatively

measure how harmonic a task set is, and based on this

metric, to effectively allocate tasks closer to harmonic to

the same processor. In addition, we can still employ the
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worst case analysis to determine the maximal capacity of a

processor when adding a task to it and thus has a much better

scheduling performance. The proposed scheduling algorithm

can guarantee a utilization bound the same as Liu&Laylands
bound.

3 PRELIMINARY
We are interested in the problem of semi-partitioned schedul-

ing of sporadic tasks on multicore platform based on RMS,

which is known as an NP-hard problem [4]. In this section,

we first present our system models used in this paper, and

then we introduce some pertinent background information

and concepts necessarily for our research. We then use an

example to motivate our research.

3.1 System models
The real-time system considered in this paper consists of N
sporadic tasks, denoted as Γ = {τ1,τ2, ...,τN}, and executed

on M identical processors, i.e. P = {P1,P2, ...,PM}. Each task

τi ∈ Γ, is characterized by a tuple (Ci,Ti), where Ci is the

worst-case execution time of τi, and Ti is the minimum inter-
arrival time between any two consecutive jobs of τi. Ti is

also called the period of τi in this paper. For the sake of

simplicity, we use ΓPm to denote the task set on processor

Pm. For the rest of this paper, we make two assumptions:

1) the deadline of each task is equal to its period; 2) Γ is

sorted with decreasing priority order, i.e. task τi has a higher

priority than τ j if i < j.
The utilization factor of a task τi is denoted as ui where

ui =
Ci

Ti
. (1)

Based on its utilization factor, a task can be light or heavy,

which we formally defined below:

Definition 1: Task τi is called a light task if ui ≤ 1
2 , or a

heavy task otherwise.

Note that, even though we used the same terminology as that

in [15], our definitions of light and heavy tasks are totally

different. The total utilization of a task set Γ is denoted as

U(Γ) where

U(Γ) = ∑
τi∈Γ

ui, (2)

The system utilization of task set Γ on a multi-core platform

with M processors is denoted as UM(Γ), where

UM(Γ) =
U(Γ)

M
. (3)

Liu and Layland [5] showed that a task set Γ can be feasibly

scheduled by RMS on a uniprocessor if

U(Γ)≤Θ(N) = N(21/N −1). (4)

Θ(N) is also traditionally referred to as the Liu&Layland
bound.

3.2 On semi-partitioned scheduling

A semi-partitioned scheduling algorithm consists of two

phases: the partitioning phase and the scheduling phase.

In the partitioning phase, most tasks will be assigned to

one processor and can be executed only at that particular

processor during running time. These tasks are called non-
split tasks [15]. A few other tasks, so called split tasks, are

allowed to be split into several subtasks and assigned to

different processors with the purpose of maximally utilizing

the processor. Let task τi be a task that is split into three

subtasks, i.e. τb1
i , τb2

i and τt
i , executed on processor P1, P2

and P3, respectively. The total execution time of τb1
i , τb2

i and

τt
i equals to Ci. Specifically, the last subtask of τi, i.e. τt

i is

called tail task, and other subtasks of τi, i.e. τb1
i and τb2

i , are

called body tasks. For ease of presentation, we use CB
i and

uB
i to represent the total execution time and utilization of all

body tasks from a split task τi, respectively. Note that, once

the partitioning phase is done, the assignment of a subtask

to a processor is permanent and the subtask can only run on

that designated processor.

In the scheduling phase, the scheduling strategy for each

processor is determined. In our case, all tasks assigned to

the same processor are scheduled strictly conforming to RMS

policy, i.e. the task with a smaller period always has a higher

priority. One complexity, however, is to execute multiple

subtasks assigned to different processors according to the

original logical order sequentially. Since the scheduler at the

operating system level does not necessarily know the nature

of a real-time process, to execute multiple subtasks from

the same task concurrently may violate the data or control

dependency and thus leads to invalid computing results.

Therefore, it is vital to make sure that each subtask is exe-

cuted according to its logical order and without overlapping

with other subtasks.

We adopt an existing approach [9], [15], [17] to solve this

problem and assume that an appropriate timer is available

to monitor the execution of body/tail tasks. Specifically, the

scheduler will assign a timer to a split task, e.g. τi in the

above example. When τi arrives, the scheduler dispatches τb1
i

to processor P1 immediately and sets the timer to Cb1
i . After

the timer expires, the scheduler then dispatches τb2
i to pro-

cessor P2 and sets the timer to Cb2
i . Then if the timer expires

again, the scheduler releases τt
i to processor P3. As such, all

subtasks split from the same task can only run sequentially

following their logical orders to ensure the correctness of

program. Therefore, the body/tail tasks from the same task

can be viewed as tasks with the same periods but different

starting times, and the synchronization problem for split tasks

from the same task can be easily resolved in practice. For

more details about the semi-partitioned scheduling, readers

can refer to [15], [9], [10], [33].
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TABLE 1
A task set with five real-time tasks

τi Ci Ti ui

1 2 6 0.33
2 5 10 0.50
3 3 12 0.25
4 4 20 0.20
5 15 25 0.60
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2 2
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Fig. 1. Allocation fails when simply grouping harmonic
tasks and assigning them to the same processor.

3.3 Motivation examples

Before we present our approach in detail, we first use an

example to motivate our research. Since tasks with harmonic

relationship have much higher feasibility on a single pro-

cessor, an intuitive approach would therefore be the one

that groups harmonic tasks together and assigns them to

one processor. Unfortunately, such a naive approach may not

work in the semi-partitioned approach.

Consider a two-processor platform with a task set shown in

Table 1. Since τ1 and τ3 are harmonic, we can group τ1 and

τ3 to one processor, i.e. Processor 1. Similarly, we can group

τ2 and τ4 to the other processor, i.e. Processor 2. Since no

processor can accommodate τ5 entirely, we have to split τ5

between these two processors. There are two problems with

this assignment. First, as shown in Figure 1(a), the maximum

capacity that can be accommodated in Processor 1 is 10.

Since the subtasks from τ5 cannot be executed concurrently

on two processors, at most 4 time units from Processor 2

can be utilized by τ5 as shown in Figure 1(b). As a result,

τ5 cannot complete before its deadline even if all available

time units are used for its execution. Second, in order to

use all 4 time units on Processor 2, we need complicated

process migration controls and synchronization mechanisms,

which increase not only the switching overhead, but also the

control complexity among different processors. Note that, if

we assign τ1 and τ5 to one processor, and the other tasks to

another processor, it is not difficult to verify that the schedule

is feasible.

As indicated by this example, to take the advantage of

harmonic relationship among tasks to improve the feasibility

a critical problem is how to judiciously choose the task

to split and to synchronize among different processors. To

solve this problem, we present two novel semi-partitioned

algorithms, i.e. HSP-light and HSP, in the following sections.

4 THE HSP-LIGHT ALGORITHM

The HSP-light algorithm is a harmonic semi-partitioned

algorithm developed for light tasks. When employing the har-

monic relationship to improve the scheduling performance, it

is not necessary that all tasks in the same task set are strictly

harmonic. To this end, we first introduce a metric, namely

the harmonic index, to quantify the degree of harmonicity for

a task set. We then discuss our new algorithm that employs

this metric. Finally, we study the feasibility of this algorithm.

4.1 Quantifying the harmonicity
Since not all tasks in a given task set are harmonic, it is

desirable that we can quantify the harmonicity of a task

set, i.e. how close a task set is to a harmonic task set.

Conceivably, the higher the harmonicity of a task set, the

higher the system utilization can be. To achieve this goal,

we first introduce the following concept.

Definition 2: Given a task set Γ = {τ1,τ2, ...,τN} sorted

with decreasing priority order under RMS, where τi =(Ci,Ti),
let Γ′ = {τ′1,τ′2, ...,τ′N} where τ′i = (Ci,T ′i ), T ′i ≤ Ti, and T ′i |T ′j
if i < j. (Note a|b means “a divides b” or “b is an integer

multiple of a”.) Then Γ′ is called a sub harmonic task set of

Γ.

Moreover, for any sub harmonic task set of Γ, let

ΔU ′ =

{
U(Γ′)−U(Γ), if U(Γ′)≤ 1,

+∞, otherwise.
(5)

From equation (5), ΔU ′ defines the “distance” of a task set to

the corresponding sub harmonic task set in terms of its total

utilization factor. If the utilization of that sub harmonic task

set is greater than 1, then the “distance” is set to be infinity.

Given a task set, there may be more than one sub harmonic

task sets. One type of sub harmonic task sets that is of most

interest to us, which we call the primary harmonic task set,
is formally defined as follows.

Definition 3: Let Γ′ be a sub harmonic task set of Γ. Then

Γ′ is called a primary harmonic task set of Γ if there exists

no other sub harmonic task set Γ′′ such that T ′i ≤ T ′′i for all

1≤ i≤ N.
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We are now ready to define a metric, i.e. the harmonic index,

to measure the harmonicity of a real-time task set.

Definition 4: Given a task set Γ, let G(Γ) represent all

primary harmonic task sets of Γ. Then the harmonic index
of Γ, denoted as H (Γ), is defined as

H (Γ) = min
Γ′∈G(Γ)

ΔU ′ (6)

From equation (6), the harmonic index essentially defines

the minimal “distance” of a task set to its primary harmonic

task sets in terms of its total utilization factor. If no primary

harmonic task set satisfies U(Γ′)≤ 1, then the “distance” is

set to infinity. In this paper, we adopt the DCT algorithm [21]

to find primary harmonic task sets with a complexity of

O(N2).

For a real-time task set and its primary harmonic task sets,

it is not difficult to prove the following theorem [21].

Theorem 1: [21] Let Γ′ be a primary harmonic task set of

Γ. Then Γ is feasible on uniprocessor under RMS if U(Γ′)≤
1.

In what follows, we introduce how we develop the HSP-light

algorithm based on this index.

4.2 Algorithm details
HSP-light algorithm assigns tasks to processors from lower

priority to higher priority ones. A task is assigned to a

processor that can accommodate it and also with the resulting

task set having the lowest harmonic index. In other words, a

task will be assigned to a feasible processor with the highest

harmonic relationship for the resulting task set. The feasibil-

ity of the result task set can be guaranteed by performing the

exact timing analysis [34] on the corresponding synchronized

task set, i.e. assuming all tasks start at the same time. If a

task cannot be accommodated entirely by any processor, then

split occurs.

To split a task, we adopt a simple heuristic that assigns

subtasks to the processor with the highest available capacity.

There are two advantages using this splitting strategy: 1) It

reduces the total split times by efficiently maximizing the

workload for each split subtask. 2) It guarantees the priority

of each body task to be the highest one on its host processor.

After the split is done, the value to set up the timer for

enabling the sub-task is also determined. Algorithm 1 shows

the salient aspects of the HSP-light algorithm.

Given a task set Γ and a multiprocessor system P , HSP-

light makes the assignment decision for each task through the

“while” loop from line 1 to line 17. Among all unassigned

tasks left in Γ, the task τi with the lowest priority is selected

(line 2). τi is assigned to the processor with the minimum

harmonic index as long as that processor has enough capacity

for the task on each processor (from line 4 to line 7). If this

assignment fails, we split task τi and make the assignment

(from line 8 to line 16). We choose the processor with the

Algorithm 1 HSP-light Algorithm

Require: ∀τi ∈ Γ, ui <= 1/2;

1: while Γ �= /0 do
2: τi := the task with the lowest priority in Γ;

3: Pm := the processor with minimum H (ΓPm +τi) in P ;

4: if ΓPm + τi is feasible then
5: Assign τi to processor Pm;

6: Continue;

7: end if
8: Pm := the processor with the maximum capacity

(greater than 0) for τi;

9: if Pm does not exist, then break, end if
10: if ΓPm + τi is feasible then
11: Assign τi to processor Pm;

12: else
13: Split τi into τi1 and τi2 such that ΓPm + τi1 can

maximally utilize Pm;

14: Assign τi1 to processor Pm;

15: Replace τi by τi2, and move τi back to Γ;

16: end if
17: end while
18: if Γ = /0 then
19: Return “Succeed!”;

20: else
21: Return “Failed!”;

22: end if

maximum execution capacity for τi. If the corresponding

capacity is large enough, then τi is assigned entirely. Oth-

erwise, we split τi and assign part of τi to the processor

until it is maximally utilized, i.e. no other higher priority

tasks can be assigned to that processor without causing other

tasks to miss deadlines. Note that, to check the feasibility

of a task set (line 4, line 10) and to calculate the maximum

execution capacity available for splitting a task (line 13), we

can use the traditional exactly timing analysis method [34]

on the corresponding synchronized task set, i.e. tasks with

the same starting time. The algorithm succeeds if all tasks

are allocated, and fails otherwise. In what follows, we further

study the feasibility of Algorithm 1.

4.3 Feasibility analysis of HSP-light
In this subsection, we are interested in examining how effec-

tive the algorithm HSP-light can be when scheduling real-

time tasks on multi-core platforms. From the Algorithm 1, it

is easy to conclude the following property.
Lemma 1: If a task set Γ is successfully partitioned by

HSP-light on M processors, then there is at most one body
task on each processor; and on all processors, there are at

most (M−1) tasks to be split.
Proof: In HSP-light, splitting occurs only when no processor

can accommodate one task completely. After splitting and
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assigning a task, the processor that accommodates the body

task becomes full for higher priority tasks, and no other

higher priority tasks can be assigned to it any more. The body

task is the last task assigned to its host processor. Therefore,

there is at most one body task on each processor. Since there

are M processors, at most (M−1) tasks will be split. �

Lemma 1 constrains the maximum number of tasks that can

be split and migrated among different processors, and thus,

the extra cost associated with the migrations. From Lemma 1,

we can derive the following property.

Lemma 2: Each body task has the highest priority on its

host processor.

Proof: According to Lemma 1, we know that there is at most

one body task on each processor. Moreover, Algorithm 1

guarantees that any body is the last task assigned to its host

processor. Since tasks are assigned from the lowest priority

to the highest priority, the priority of any body task is higher

than any other tasks on its host processor. �

More importantly, if a task set can be successfully allocated

by HSP-light, all tasks can satisfy their deadlines. The

conclusion is formally formulated in the following theorem.

Theorem 2: If a task set Γ is successfully partitioned by

HSP-light on M processors and scheduled according to RMS,

then all tasks can meet their deadlines.

Proof: For each body task, it has the highest priority at its

host processor (Lemma 2). Therefore, it can always meet its

deadline unless the worst case execution time of the original

task is larger than its deadline, which is impossible. For

tail tasks or any other regular tasks added to a processor,

the feasibility of the entire task set is guaranteed based on

the worst case response time analysis for the corresponding

synchronous task set as stated above (line 4, 10 and 13). �

From Theorem 2, HSP-light is not only an allocation method

but also can serve as a feasibility test method as well. It is

not surprising HSP-light is only a sufficient feasibility test

method due to the NP-hard nature of this scheduling problem.

On the other hand, however, HSP-light is too complex to be

used effectively as a feasibility checking method. Theorem 3

presents a faster feasibility checking method for our proposed

algorithm.

Theorem 3: Given a light task set Γ consisting of N tasks

to be scheduled on M processors, if

UM(Γ)≤Θ(N), (7)

then Γ is feasible by HSP-light under RMS.

The proof of Theorem 3 is rather complicated. Interested

readers can refer to Appendix A for details. Theorem 3

shows that a light task set with system utilization bounded

by the well-known Liu&Layland’s bound is guaranteed to be

feasible using our proposed approach, i.e. Algorithm 1.

It is worthy of mentioning that Theorem 2 is valid for

any general task set, which implies that if a task set can

be successfully allocated using HSP-light, all tasks can meet

τ1

τ3
b

48

0 50 100

τ3
t

τ4

τ2 4
0 50 100

48

2

2

arrive

2

2
1

miss deadline

(a) Failed Schedule

τ3
0 50 100

τ2

τ4

τ1 4
0 50 100

2

49

2

49

4 2

(b) Successful Schedule

Fig. 2. (a) The task set is failed to be scheduled
according to HSP-light; (b) The task set is schedulable if
the heavy task τ2 is pre-assigned.

their deadlines. However, Theorem 3 works only for light task

sets. In other word, HSP-light cannot guarantee the feasibility

of a general task set (which contains heavy tasks), even if

its total utilization is less than Liu&Layland’s bound. In the

next section, we introduce a more advanced algorithm, i.e.

HSP, that can guarantee the feasibility for any task sets with

system utilizations no more than the utilization bound.

5 THE HSP ALGORITHM
The reason that HSP-light cannot guarantee the feasibility of

an arbitrary task set with utilization lower than the utilization

bound is that, if a split task is a heavy task and the tail task

is very light, the overall system utilization can be very low.

We use an example to explain this observation.

Consider a task set with four tasks, τ1 = (2,50),τ2 =
(49,50),τ3 = (4,90),τ4 = (4,100), to be scheduled on 2

processors. As shown in Figure 2(a), even though the sys-

tem utilization is very small, i.e. (2/50 + 49/50 + 4/90 +
4/100)/2 = 0.55 < 0.69, HSP-light cannot schedule this task

set successfully. Note that the tail task from τ2 can be viewed

as a task with worst case execution time of 1 and deadline

of 2. Adding any higher priority task with execution time

more than 1 will make τ2 infeasible. On the other hand,

if we pre-assign the heavy task τ2 to a processor, we can

see that the task set can be successfully scheduled as shown

in Figure 2(b). Therefore, in order to take the advantage of

harmonic property to schedule general task sets, a special
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operation, i.e. the pre-assignment, needs to be performed for

heavy tasks.

As discussed before, HSP-light can guarantee all tasks

(light or heavy) meet their deadlines if all tasks can be

assigned to a processor successfully. At the same time,

Figure 2 implies that heavy task pre-assignment can greatly

improve the feasibility of the scheduling algorithm. The

question becomes which heavy tasks should be pre-assigned

and how other tasks should be assigned accordingly.

In HSP, the pre-assignment for heavy tasks follows the

same strategy as introduced in [15]. Specifically, for any

heavy task τi, let P Emp
i denote the set of empty processors

before τi’s assignment and |P Emp
i | denote the number of

processors in this set. Then a heavy task τi needs to be pre-

assigned to an empty processor if

∑
j>i

u j ≤ (|P Emp
i |−1) ·Θ(N). (8)

The detailed procedure of HSP is shown in Algorithm 2.

HSP is very similar to HSP-light, except for two important

differences:

• At the beginning of semi-partitioning procedure, heavy

tasks are pre-assigned to empty processor set, denoted

as P Pre, if they satisfy the criteria as stated in equation

(8) (from line 1 to line 8);

• To ensure that a body task always has the highest

priority on a processor, a processor with heavy task pre-

assignment may be excluded from the semi-partitioning

process. According to Algorithm 2, a task can be as-

signed to a processor with heavy task assignment only

after the heavy task pre-assigned in the processor has a

lower priority (from line 12 to line 15).

Similar to Theorem 2, for HSP, the feasibility of tasks are

guaranteed as stated in the following theorem.

Theorem 4: If a task set Γ is successfully partitioned by

HSP on M processors and scheduled according to RMS, then

all tasks can meet their deadlines.

Moreover, the Liu&Layland’s bound for single processor

can also be applied to HSP for feasibility checking. This

conclusion is formally formulated in Theorem 5.

Theorem 5: Given a task set Γ consisting of N tasks to be

scheduled on M processors, if

UM(Γ)≤Θ(N), (9)

then Γ is feasible by HSP under RMS.

For the proof of Theorem 5, please refer to Appendix B.

Theorem 5 provides a very efficient feasibility checking

method for real-time task sets scheduled by HSP. Given any

task set Γ, if the total utilization of Γ satisfies equation

(9), then Γ can be successfully scheduled by HSP on M

processors. Different from Theorem 3, Theorem 5 works

for arbitrary task sets instead of light task sets alone. It

Algorithm 2 HSP Algorithm

Require:
1) Task set :Γ = {τ1,τ2, ...τN};
2) Multiprocessor : P = {P1,P2, ...,PM};

1: // pre-assign heavy tasks;

2: P Pre = /0;

3: for i = 1 to N do
4: if ui > 1/2 and ∑ j>i u j ≤ (|P Emp

i |−1) ·Θ(N) then
5: Assign τi to processor Pm, where m = |P |;
6: Move Pm from P to P Pre;

7: end if
8: end for
9: // assign other tasks;

10: while Γ �= /0 do
11: τi := the task with the lowest priority in Γ;

12: τ j := the task with the lowest priority in ΓP Pre ;

13: if τi has higher priority than τ j then
14: Move P(τ j) from P Pre to P ;

15: end if
16: Pm := the processor with minimum H (ΓPm +τi) in P ;

17: if ΓPm + τi is feasible then
18: Assign τi to processor Pm;

19: Continue;

20: end if
21: Pm := the processor with maximum capacity for τi in

P ;

22: if Pm does not exist, then Break, end if
23: if ΓPm + τi is feasible then
24: Assign τi to processor Pm;

25: else
26: Split τi into τi1 and τi2 such that ΓPm + τi1 can

maximally utilize Pm;

27: Assign τi1 to processor Pm;

28: Replace τi by τi2, and move τi back to Γ;

29: end if
30: end while
31: if Γ = /0 then
32: Return “success”;

33: else
34: Return “fail”;

35: end if

is worthy of mentioning that, based on our proofs in the

appendix, Theorem 3 and Theorem 5 hold true even without

the consideration of period relationships, i.e. lines 3-7 of

Algorithm HSP-ligh and lines 16-19 of Algorithm HSP. To

study if our approach can lead to a better utilization bound

is an interesting problem and will be our future study. In

what follows, we use experiments to study the potential

improvement that can be achieved using our methods.
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Fig. 3. Experimental results for general task sets by different number of tasks

6 EXPERIMENTS AND RESULTS
In this section, we investigate the performance of our pro-

posed algorithms with experiments. Five algorithms are im-

plemented in our experiments.

• SPA: The SPA algorithm [15] assigns the priority of each

task by RMS, and splits a task to feed the processor

until “full” (e.g. utilization equal to the Liu&Layland’s
bound). However, as long as the utilization of a task set

exceeds the Liu&Layland’s bound, it simply aborts.

• DM PM: The DM PM algorithm [9] assigns task pri-

orities by deadline monotonic scheduling (DMS) policy,

and splits a task and assigns as large portion of the task

as possible to a processor by computing the maximum

interference to the task on each processor.

• PUB: The PUB algorithm [30], similarly to SPA, assigns

tasks based on a parametric utilization bound, but uses

exact timing analysis method for task splitting. In the

following experiments, R-Bound [31] is applied with this

algorithm.

• pCOMPATS: The pCOMPATS algorithm [32] explores

the R-Bound [31] for task partitioning and splitting. R-

Bound can only be applied to task sets with ratio of

any two periods no smaller than 1 and no larger than 2.

In our experiments, we used the same algorithm as that

in [32] to scale a general task set.

• HSP: Our proposed algorithm. Note that HSP is the

same as HSP-light when the task set is light, and can

accommodate task sets containing heavy tasks.

We conducted two groups of experiments to study how

performance of each algorithm changes with different num-

bers of tasks and different system utilizations, respectively.

For each group of experiments, we tested on different number

of processors, i.e. M = 4, 8, and 16. For each testing point

in the experiments, we randomly generated 500 task sets as

test cases. The utilization of each task set varied from 0.5
to 1 (since task sets with smaller utilizations could be easily

schedulable by all approaches). The minimum inter-arrival

time of each task was set to have a uniform distribution

within [50,1000]. The scheduling performance for different

approaches are compared using the success ratios, i.e. the

number of feasible tasks over the number of total tasks

generated under a specific test point.

6.1 Performance vs. number of tasks
In this group of experiments, we varied the number of tasks,

i.e. N, in a task set from 2×M to 10×M with an increment

of M (where M is the number of processors). The success

ratios of all five approaches were recorded and plotted in

Figure 3.

From Figure 3, we can observe that HSP can achieve

success ratios much better than other four approaches. For

example, in Figure 3(a), when the number of tasks is equal to

20, HSP can achieve a success ratio of 78%, an improvement

of 1.7 times of that by SPA (45%), 1.1 times of that by

DM PM (71%), 1.2 times of that by PUB (64%), and 1.1
times of that by pCOMPATS (68%). The improvement of

HSP comes from the fact that HSP takes the harmonic rela-

tionship among tasks aggressively into consideration and tries

to allocate tasks closer to harmonic together among multiple

processors. While other existing approaches (such as [32])

allocate tasks to processors one by one. The exploitation

of harmonicity is limited to that the utilization bounds for

different processors may be different depends on how existing

tasks are close to harmonic.

From Figure 3, we can see that, for the same number of

processors (M), the success ratio of HSP in general decreases

with the increase of task numbers (N). For example, in

Figure 3(c) (as M = 16), the success ratio of HSP achieves

91% when N = 32, but it decreases to 71% when N increases

to 160. The larger the number of task is, the lower the

utilization bound can be. As a result, a task set becomes

more difficult to be schedulable. From Figure 3, it is also

interesting to see that, if we assume similar average number

of tasks for each processor (i.e. assuming N/M as a constant),

the success ratio by HSP largely increases in general. For

example, when N/M = 5, the success ratios for M = 4,8,16
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Fig. 4. Experimental results for light task sets, u ∈ [0,0.5].
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Fig. 5. Experimental results for general task sets, u ∈ [0,1].

are 78% (see Figure 3(a) at N = 20), 80% (see Figure 3(b) at

N = 40) and 83% (see Figure 3(c) at N = 80), respectively.

The reason for this is that the more processors are available,

there are more opportunities that can be exploited by HSP
to take advantage of the harmonic property among tasks to

improve the processor utilization.

6.2 Performance vs. system utilizations

To study the performance differences by different scheduling

approaches under different system utilizations, we conducted

three sub-groups of experiments, for light and general task

sets, respectively. In light task sets, the utilization of each task

was evenly distributed within [0,0.5], while in general task

sets, the utilization of each task was evenly distributed within

[0,1]. For each experiment, we varied the system utilization

from 0.5 to 1.0 with an increment of 0.025. The experimental

results for all approaches are collected and shown in Figure 4

and Figure 5.

Figure 4 shows our experimental results for task sets

containing only light tasks. From Figure 4, we can observe

that HSP can achieve success ratios significantly better than

other four approaches. Compared with SPA, all other four

approaches, i.e. DM PM, PUB, pCOMPATS and HSP can

guarantee the feasibility of any task set with utilization below

Liu&Layland’s bound, the same as SPA. The success ratio

by SPA drops sharply when system utilization around 0.7.

This is because that while SPA can guarantee any task sets

with utilizations no more than the Liu&Layland’s bound, it

rejects any task set with system utilization exceeding the

Liu&Layland’s bound. While DM PM, PUB and pCOMPATS
may potentially schedule task sets with utilization higher than

the Liu&Layland’s bound, HSP can achieve a much higher

performance, especially when the system utilization is high.

For example, in Figure 4(a), when the system utilization

is around 0.9, HSP can still achieve a success ratio up

to 30%, while that of DM PM is 10%, and that of PUB
and pCOMPATS are no more than 5%. Similar to our first

group of experiments, we can see that the performance

improvement by HSP tends to increase as the number of

processors increases. Under the system utilization of 0.9,

HSP can achieve a success ratio of 30% with 4 processors,

40% with 8 processors, and increased up to 60% with 16

processors.
Figure 5 shows our experimental results for general task

sets containing both heavy and light tasks. From Figure 5,

we can also observe that HSP performs significantly better

than other four approaches. In Figure 5(c), HSP can achieve

a success ratio four times of that by DM-PM and PUB when

the system utilization is around 0.925.
Our experimental results clearly show, by exploiting

the harmonic relationship among tasks more aggressively,

HSP can significantly improve the schedulability of semi-

partitioned scheduling compared with the existing algorithms.
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7 CONCLUSIONS

In this paper, we have presented a new semi-partitioned

approach for scheduling real-time sporadic tasks on multi-

core platform based under RMS. Our approach can take

advantage of the harmonic relations among task periods and

improve the feasibility. To achieve this goal, we introduced a

metric to quantify how close a task set is to a harmonic task

set. Two algorithms, i.e. HSP-light and HSP, were presented

to schedule light and general task sets, respectively. We

have formally analyzed the feasibility for both algorithms,

and presented a simple feasibility test method for each

one. Specifically, we formally proved that our scheduling

algorithms can successfully schedule any task set with a

system utilization bounded by the Liu&Layland’s bound. The

experimental results demonstrated that the proposed algo-

rithm can significantly improve the scheduling performance

compared with previous work.
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sion Control and Its Application to Multiprocessor Scheduling. In
IPPS/SPDP Parallel Processing Symposium, Mar. 1998.

[32] A. Kandhalu, K. Lakshmanan, Junsung Kim, and R. Rajkumar. pCOM-
PATS: Period-Compatible Task Allocation and Splitting on Multi-
core Processors. In IEEE Real-Time and Embedded Technology and
Applications Symposium (RTAS), Apr. 2012.

[33] S. Kato and N. Yamasaki. Portioned Static-Priority Scheduling on
Multiprocessors. In IEEE International Symposium on Parallel and
Distributed Processing (IPDPS), Apr. 2008.

[34] J. Lehoczky, L. Sha, and Y. Ding. The Rate Monotonic Scheduling
Algorithm: Exact Characterization and Average Case Behavior. In
Proc. Real Time Systems Symposium (RTSS), Dec. 1989.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. X, MONTH YEAR 11

Ming Fan is a PhD candidate in the Depart-
ment of Electrical and Computer Engineer-
ing at the Florida International University, FL.
He received both the BS and MS degrees in
computer engineering from Bei Hang Univer-
sity, Beijing, China, in 2006 and 2009, respec-
tively. His research interests include real-time
systems, power-/thermal-aware computing and
fault-tolerant systems.

Gang Quan received his Ph.D. from the De-
partment of Computer Science & Engineering,
University of Notre Dame, USA, his M.S. from
the Chinese Academy of Sciences, China, and
his B.S. from the Department of electronic En-
gineering, Tsinghua University, Beijing, China.
He is currently an associate professor at the
Department of Electrical and Computing Engi-
neering, Florida International University. Before
he joined the department, he was an assistant
professor at the Department of Computer Sci-

ence and Engineering, University of South Carolina.
His research interests include real-time systems, embedded system

design, power-/thermal-aware computing, advanced computer archi-
tecture, reconfigurable computing.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.


