
Harmonic Semi-Partitioned Scheduling For
Fixed-Priority Real-Time Tasks On Multi-Core

Platform

Ming Fan Gang Quan

Electrical and Computer Engineering Department

Florida International University

Miami, FL, 33174

{mfan001, gaquan}@fiu.edu

Abstract—This paper presents a new semi-partitioned approach
to schedule sporadic tasks on multi-core platform based on the
Rate Monotonic Scheduling (RMS) policy. Our approach exploits
the well known fact that harmonic tasks have better schedulablil-
ity than non-harmonic ones on a single processor. The challenge
for our approach, however, is how to take advantage of this fact
to assign and split appropriate tasks on different processors in the
semi-partitioned approach. We formally prove that our scheduling
approach can successfully schedule any task sets with system
utilizations bounded by the Liu&Layland’s bound. Our extensive
experiment results demonstrate that the proposed algorithm can
significantly improve the scheduling performance compared with
the previous work.

I. INTRODUCTION

As embedded applications become more and more com-

plicated, embedded system designers rely more on multi-

core platforms to obtain high computing performance [1],

[2]. Meanwhile, due to the power/thermal constraints, the

industry is changing its gear toward the multi-core architec-

ture rather than continuing to pursue high performance under

single processor architecture. One major issue in software

developments for multi-core architecture is how to utilize the

available computing resources most effectively. To this end, we

study the problem of scheduling real-time tasks on multi-core

architecture based on the Rate Monotonic Scheduling (RMS)

policy, i.e. the most commonly used scheduling scheme for

real-time systems [3].

There have been extensive researches published on real-time

scheduling for homogeneous multi-core systems [4], [5], [6],

[7]. These scheduling algorithms can be largely categorized

into two classes [8]: the partitioned approach (e.g. [4]) and

the global (or non-partitioned) approach (e.g. [5]). In the parti-

tioned scheduling, each real-time task is assigned to a dedicated

processor. All instances from the same task will be executed

solely on that particular processor. In global scheduling, all jobs

first enter a global queue, and thus each task can be potentially

executed on any processor. Both approaches have their own

pros and cons, and none of them dominates the other in terms

of schedulability [8].

978-3-9810801-8-6/DATE12/ c© 2012 EDAA

Recently, a new multi-core scheduling approach, i.e. so

called semi-partitioned approach [9], [10], [11], [7], [6], [12],

[13] has been proposed. In semi-partitioned scheduling, most

tasks are assigned to one particular processor while a few of

tasks are allowed to be split into several subtasks and assigned

to different processors. From a different perspective, these tasks

can migrate among different processors. By splitting tasks, the

overall system utilization can be significantly improved. For

example, the best known utilization bound for either global or

partitioned fixed-priority schedule is no more than 50% [4],

[14], [5]. For the semi-partitioned scheduling, Lakshmanan

et al. [7] have shown an utilization bound of 65%, and

Guan et al. [12], [15] improved this bound to the traditional

Liu&Layland’s bound [16], i.e. 69.3%.

In this paper, we present a new semi-partitioned strategy and

related feasibility analysis for sporadic tasks on the multi-core

platform based on RMS. Compared with the existing work on

semi-partitioning of real-time tasks, we have made a number

of novel contributions:

• First, we take the harmonic relation among tasks into

consideration and develop two new semi-partitioned algo-

rithms. The first algorithm, namely HSP-light, is intended

for task sets with utilization factor of each task no more

than 1/2. The second one, namely HSP, is developed for

more general task sets, i.e. the utilization factor of each

task is no more than 1.

• Secondly, we present new feasibility analysis results for

the semi-partitioned scheduling algorithms developed in

this paper. We formally prove that the proposed algorithms

can guarantee the feasibility for task sets with utilizations

no larger than the Liu&Layland’s bound. Moreover, dif-

ferent from the approach in [12], task sets with utiliza-

tions higher than the Liu&Layland’s bound may also be

schedulable with our approaches.

• Thirdly, we conducted extensive experiments to study the

performance of our approach, and our experimental results

demonstrate that our proposed algorithms can significantly

outperform the previous work.

The rest of the paper is organized as follows. Section II

describes system models and other background information

necessary for this paper. Section III and IV present two semi-

partitioned algorithms we developed. Experiments and results

are discussed in Section V, and we present the conclusions in

Section VI.

II. PRELIMINARY

In this section, we first introduce the system models used in

this paper, and then we introduce some background information

and concepts necessary for our research. We then use an

example to motivate our research.

A. System models

The real-time system considered in this paper consists of

N sporadic tasks, denoted as Γ = {τ1,τ2, ...,τN}, and executed

on M identical processors, i.e. P = {P1,P2, ...,PM}. Each task

τi ∈Γ, is characterized by a tuple (Ci,Ti), where Ci is the worst-
case execution time of τi, and Ti is the minimum inter-arrival
time (period) between any two consecutive jobs of τi.

For the rest of this paper, we make two assumptions: 1) the

deadline of each task is equal to its period; 2) Γ is sorted with

decreasing priority order according to RMS, i.e. task τi has a

higher priority than τ j if i < j. For the sake of simplicity, let

ΓPm denote the task set on processor Pm, and P(τi) denote the

host processor of τi.

The utilization factor of a task τi is represented as ui =
Ci
Ti

.

The total utilization of a task set Γ is represented as U(Γ) =
∑τi∈Γ ui. The system utilization of task set Γ on a multi-core

platform with M processors is represented as UM(Γ) = U(Γ)
M .

Based on its utilization factor, a task can be light or heavy,

which are formally defined below:

Definition 1: Task τi is called a light task if ui ≤ 1
2 , or a

heavy task otherwise.

Note that, even though we used the same terminology as that

in [12], our definitions of light and heavy tasks are totally

different from those in the previous work.

Liu and Layland [16] showed that a task set Γ can be feasibly

scheduled by RMS on a single processor if

U(Γ)≤ Θ(N) = N(21/N −1). (1)

Θ(N) is also traditionally referred to as the Liu&Layland
bound.

In this paper, we adopt the same terms, i.e. non-split task and

split task, as that in [12] to present our proposed algorithms.

Specifically, non-split tasks are the ones assigned to one

processor and executed only on that particular processor during

run time. Split tasks are the ones split into several subtasks and

assigned to different processors. The last subtask of a split task

τi is called the tail task, denoted as τt
i , and other subtasks of

τi are called body tasks, denoted as τb j
i , where j ∈ [1,B] and

B ≥ 1. We also assume that an appropriate timer is available

to monitor the execution of body tasks. All body tasks from

the same task can only run sequentially following their logical

orders to ensure the correctness of the program. Therefore, the

body/tail tasks from the same task can be viewed as tasks with

the same periods but different deadlines. Moreover, we use CB
i

and uB
i to represent the total execution time and utilization of

all body tasks of τi, respectively.

TABLE I
ANOTHER TASK SET WITH FIVE REAL-TIME TASKS

τi Ci Ti ui

1 2 6 0.33
2 5 10 0.50
3 3 12 0.25
4 4 20 0.20
5 15 25 0.60

(a) Processor 1

(b) Processor 2

Fig. 1. Allocation fails when simply grouping harmonic tasks and assigning
them to the same processor.

B. Motivation example

As a well known fact, a harmonic task set, i.e. the tasks

with periods being integer multiples of each other, can utilize

the system more efficiently than other non-harmonic task sets

on a single processor [17], [18]. Thus, an intuitive approach

would therefore be the one that groups harmonic tasks together

and assigns them to the same processor. Unfortunately, such a

naive approach may not work in semi-partitioned scheduling.

Consider a two-processor platform with a task set shown

in Table I. Since τ1 and τ3 are harmonic, we can group τ1

and τ3 to one processor, i.e. Processor 1. Similarly, we can

group τ2 and τ4 to the other processor, i.e. Processor 2. Since

no processor can accommodate τ5 entirely, we have to split

τ5 between these two processors. There are two problems

with this assignment. First, as shown in Figure 1(a), the

maximum capacity in terms of execution time that can be

accommodated in Processor 1 is 10. Since the subtasks from τ5

cannot be executed concurrently on two processors, at most 4

time units from Processor 2 can be utilized by τ5 as shown

in Figure 1(b). As a result, τ5 cannot complete before its

deadline even if all available time units could be used for

its execution. Second, in order to use all 4 time units on

Processor 2, we need complicated process migration controls

and synchronization mechanisms, which increase not only the

the switching overhead, but also the control complexity among

different processors. Note that, if we assign τ1 and τ5 to one

processor, and the other tasks to another processor, it is not

difficult to verify that the schedule is feasible.

As indicated by this example, to take the advantage of

harmonic relationship among tasks to improve the feasibility

in semi-partitioned approach, a critical problem is how to

judiciously choose the task to split and to synchronize among

different processors. To solve this problem, we present two

novel semi-partitioned algorithms, i.e. HSP-light and HSP, in

the following.

III. THE HSP-LIGHT ALGORITHM

The HSP-light algorithm is a harmonic semi-partitioned

algorithm developed for light tasks. When employing the

harmonic relationship to improve the scheduling performance,

it is not necessary that all tasks are strictly harmonic. To this

end, we first introduce a metric, namely the harmonic index, to

quantify the degree of harmonic for a task set. We then discuss

our new algorithm that employs this metric. Finally, we give

the feasibility analysis.

A. Quantifying the harmonicity

Since not all tasks in a given task set are harmonic, it is

desirable that we can quantify the harmonicity of a task set.

We first introduce the following two concepts.

Definition 2: Given a task set Γ = {τ1,τ2, ...,τN}, let Γ′ =
{τ′1,τ

′
2, ...,τ

′
N} where τ′i = (Ci,T ′

i), T ′
i ≤ Ti, and T ′

i |T ′
j if i < j.

(Note a|b means “a divides b” or “b is an integer multiple of

a”.) Then Γ′ is called a sub harmonic task set of Γ.

Given a task set, there may be more than one sub harmonic

task sets. There is one type of sub harmonic task sets that is

of most interest to us, which we call the primary harmonic
task set and is formally defined as follows.

Definition 3: Let Γ′ be a sub harmonic task set of Γ. Then

Γ′ is called a primary harmonic task set of Γ if there exists

no other sub harmonic task set Γ′′ such that T ′
i ≤ T ′′

i for all

1 ≤ i ≤ N.

Moreover, for any sub harmonic task set of Γ, let ΔU ′
represent as

ΔU ′ =

{
U(Γ′)−U(Γ), if U(Γ′)≤ 1,

+∞, otherwise.
(2)

From equation (2), ΔU ′ defines the “distance” of a task set to

the corresponding sub harmonic task set in terms of its total

utilization factor. If the utilization of that sub harmonic task

set is greater than 1, then the “distance” is set to be infinity.

We are now ready to define a metric, i.e. the harmonic index,

to measure the harmonicity of a real-time task set.

Definition 4: Given a task set Γ, let G(Γ) represent all the

primary harmonic task sets of Γ. Then the harmonic index of

Γ, denoted as H (Γ), is defined as

H (Γ) = min
Γ′∈G(Γ)

ΔU ′ (3)

It is worthy of mentioning that, when given a real-time task

set, the Sr or DCT algorithm [19], [17] can be employed to

find primary harmonic task sets with a complexity as low as

N log(N). For a real-time task set and its primary harmonic task

sets, it is not difficult to prove the following theorem [17].

Theorem 1: [17] Let Γ′ be a primary harmonic task set

of Γ. Then Γ is feasible on single processor under RMS if

U(Γ′)≤ 1.

B. Algorithm details
HSP-light algorithm assigns tasks to processors from lower

priority to higher priority ones. A task is assigned to a

processor such that processor can accommodate it entirely and

also the result task set has the lowest harmonic index. When a

task cannot be put in any processor as a whole, it is split with

its subtask assigned to the processor with the highest available

capacity to accommodate the task. Algorithm 1 shows the

salient aspects of the HSP-light algorithm. For the HSP-light

algorithm, we shall first ignore the Heavy-Task-Preassignment
function (line 4) and other heavy task related statements (from

line 4 to line 7).

Algorithm 1 HSP-light Algorithm

Require:
1) Task set :Γ = {τ1,τ2, ...τN};

2) Multiprocessor : P = {P1,P2, ...,PM};

1: //P Pre = Heavy-Task-Preassignment(Γ,P);
2: while Γ �= /0 do
3: τi := the task with the lowest priority in Γ;

4: // τ j := the task with the lowest priority in ΓP Pre ;
5: // if τi has higher priority than τ j then
6: // Move P(τ j) from P Pre to P ;
7: // end if
8: Pm := the processor with minimum H (ΓPm + τi) in P ;

9: if ΓPm + τi is feasible then
10: Assign τi to processor Pm;

11: Continue;

12: end if
13: Pm := the processor with maximum capacity for τi in

P ;

14: if Pm = /0, then Break, end if
15: if ΓPm + τi is feasible then
16: Assign τi to processor Pm;

17: else
18: Split τi into τi1 and τi2 such that ΓPm + τi1 can fully

utilize Pm;

19: Assign τi1 to processor Pm;

20: Replace τi by τi2, and move τi back to Γ;

21: end if
22: end while
23: if Γ = /0 then return “success”; else return “fail”, end if

From Algorithm 1, it is easy to derive the following property.
Lemma 1: If a task set Γ is successfully partitioned by HSP-

light on M processors, then there is at most one body task on

each processor; and on all processors, there are at most (M−1)
tasks to be split.

Lemma 1 constrains the maximal number of tasks that needs

to be split and migrated among different processors, and thus

the extra cost associated with the migrations. More importantly,

if a task set can be successfully allocated by HSP-light, all

tasks can satisfy their deadlines. The conclusion is formally

formulated in the following theorem.
Theorem 2: If a task set Γ is successfully partitioned by

HSP-light on M processors and scheduled according to RMS,

then all tasks can meet their deadlines.

Fig. 2. Illustration of Ut
H and Ut

L

The theorem can be proved by noting that whenever a task

is assigned to a processor, the feasibility of the task set on

that processor is guaranteed based on the exact timing analysis

method [20], i.e. line 9, line 15 and line 18.

C. Feasibility test analysis of HSP-light

In this subsection, we develop a more effective feasibil-

ity test method for HSP-light. We formally prove that any

light task set with utilization no larger than the well-known

Liu&Layland’s bound, can be successfully partitioned by HSP-

light.

Before discussing the feasibility of HSP-light, we first in-

troduce the critical task concept:

Definition 5: Let Γ = {τ1, ...,τi, ...,τN} be a task set that

is schedulable by RMS on a single processor. τi is called

the critical task if when increasing the execution time of the

highest priority task τ1, τi is the first task to miss its deadline.

There are only three type of tasks in the semi-partitioned

system, i.e. non-split task, body task and tail task. Since any

body task always has the highest priority on its host processor,

from Definition 5, we know body tasks can not be the critical

tasks. Thus the critical task on each processor can only be a

non-split task or a tail task. In what follows, we want to study

the feasibility characteristic for processors containing non-split

or tail tasks as critical tasks. In the rest of this paper, we assume

that any split task τi is split into Bi body tasks and one tail

task, denoted as τb j
i (j ∈ [1,Bi]) and τt

i , respectively.

For two different type of critical tasks, i.e. non-split tasks

and tail tasks, we introduce two important properties, which

are formulated in the following lemmas.

Lemma 2: Let ΓPm be the task set allocated to processor Pm
in HSP-light. If the critical task is a non-split task and Pm is

fully utilized, then U(ΓPm)> Θ(N).
Lemma 2 can be easily proved by contradiction.

Lemma 3: Let ΓPm be the task set allocated to processor Pm
in HSP-light. If the critical task is a tail task and Pm is fully

utilized, then U(ΓPm)> Θ(N).
Proof sketch: Let Ut

L (Ut
H) denote the total utilization of

tasks with priorities lower (higher) than τi on Pm, i.e. see

Figure 2. Since τb1
i ’s host processor has the largest capacity

to accommodate τi, thus

Ut
L +ub1

i ≥ Θ(N). (4)

On the other hand, since τt
i is the critical task on its host

processor Pm, we have

∑
j<i

Cj�Ti −CB
i

Tj
�+Ct

i ≥ Ti −CB
i

Fig. 3. Schedule task set with heavy task.

Divide (Ti−CB
i) on both side of the above, then apply

Tj
Ti−CB

i
<

Ti
Ti−CB

i
≤ 2, we can derive that

Ut
H +ut

i >
1

2
(5)

Finally, sum up equation (4) and (5), and replace (Ut
L+Ut

H +ut
i)

by U(ΓPm), we can obtain that

U(ΓPm)> Θ(N)

�

Based on Lemma 2 and Lemma 3, we can derive the

following property.

Theorem 3: Given a light task set Γ consisting of N tasks

to be scheduled on M processors, if

UM(Γ)≤ Θ(N), (6)

then Γ is feasible by HSP-light under RMS.

Theorem 3 can be proved by contradiction based on Lemma 2

and Lemma 3. The detailed proof is omitted due to page limit.

Note that while Theorem 2 is valid for any general task

set, Theorem 3 works only for light task sets. To deal with

the general task sets, we develop a more advanced algorithm

(HSP) in the next section.

IV. THE HSP ALGORITHM

The reason that HSP-light cannot guarantee the feasibil-

ity of an arbitrary task set with utilization lower than the

Liu&Layland’s bound is that, if a split task is a heavy task and

the tail task is very light, the overall system utilization can be

very low. We use an example to explain this observation.

Consider a task set with four tasks, τ1 = (2,50),τ2 =
(49,50),τ3 = (4,90),τ4 = (4,100), to be scheduled on 2 pro-

cessors. As shown in Figure 3(a), even though the system uti-

lization is very small, i.e. (2/50+49/50+4/90+4/100)/2 =
0.55 < 0.69, HSP-light cannot schedule this task set success-

fully. Note that the tail task from τ2 can be viewed as a

task with worst case execution time of 1 and deadline of 2.

Adding any higher priority task with execution time more

than 1 will make τ2 infeasible. On the other hand, if we pre-

assign the heavy task τ2 to a processor, all tasks are feasible,

see Figure 3(b). Therefore, in order to take the advantage

of harmonic property to schedule general task sets, special

operation, i.e. pre-assignment, needs to be performed for heavy

tasks.

In HSP, the heavy task pre-assignment algorithm, Algo-

rithm 2, follows the same strategy as introduced in [12].

Specifically, for any heavy task τi, let P Emp
i denote the set

of empty processors before τi’s assignment and |P Emp
i | denote

the number of processors in this set. Then a heavy task τi needs

to be pre-assigned to an empty processor if

∑
j>i

u j ≤ (|P Emp
i |−1) ·Θ(n). (7)

Algorithm 2 Heavy-Task-Preassignment(Γ,P)

Require:
1) Task set :Γ = {τ1,τ2, ...τN};

2) Multiprocessor : P = {P1,P2, ...,PM};

1: P Pre = /0;

2: for i = 1 to N do
3: if ui > 1/2 and ∑ j>i u j ≤ (|P Emp

i |−1) ·Θ(N) then
4: Assign τi to processor Pm, where m = |P |;
5: Move Pm from P to P Pre;

6: end if
7: end for
8: Return P Pre;

Algorithm HSP is very similar to HSP-light, which can be

obtained by replacing the function Heavy-Task-Preassignment
in Algorithm 2 into line 4 of Algorithm 1, and removing the

comment sign (“//”) from line 4 to line 7. For algorithm HSP,

we have the following lemma.

Lemma 4: Let ΓPk be the task set allocated to processor Pk
in HSP. If the critical task is a tail task from a heavy task τi
and Pk is fully utilized, then

∑
Pm∈P R

U(ΓPm)> |P R| ·θ(N) (8)

where P R = {P(τ j)| j ∈ [i,N]}.

Proof sketch: For all tasks assigned to processors in P R, let ΓL
(ΓHE) denote the tasks with priorities lower (higher or equal)

than τi. Since τi is heavy but not pre-assigned, we have

∑
τ j∈ΓL

u j > (|P R|−1) ·Θ(N) (9)

Since τt
i is the critical task on its host processor Pq, we have

∑
j<i,τ j∈ΓPq

Cj�Ti −CB
i

Tj
�+Ct

i ≥ Ti −CB
i

By applying 1) Tj ≤ Ti for j < i, 2) and Ti −CB
i ≤ 1

2 Ti (since

uB
i ≥ 1

2) into the above, we can derive

∑
τ j∈ΓHE

u j ≥ 1 (10)

Fig. 4. Performance versus task number.

Finally, sum up equation (10) and (9), and apply Θ(N) ≤ 1,

we can get

∑
Pm∈P R

U(ΓPm)> |P R| ·θ(N)

�

From Lemma 2, Lemma 3, and Lemma 4, the following

theorem can be proved. (The detailed proof is omitted due to

page limit.)

Theorem 4: Given a task set Γ consisting of N tasks to be

scheduled on M processors, if

UM(Γ)≤ Θ(N), (11)

then Γ is feasible by HSP under RMS.

Thus, HSP can guarantee that as long as the system utiliza-

tion of a task set is less than the Liu&Layland’s bound, the

task set is feasible by HSP.

V. EXPERIMENTS

In this section, we investigate the performance of our pro-

posed algorithms with experiments. We compare HSP with

two most recent semi-partitioned algorithms, i.e. the SPA [12]

and the DM PM(opt) [6]. The SPA assigns the priority of

each task by RMS, and splits a task to feed the processor

to “full” (e.g. utilization equal to the Liu&Layland’s bound).

The DM PM(opt) assigns the priorities by deadline monotonic

scheduling (DMS) policy, and splits a task by exact timing

analysis. We compare the performance of the two approaches

with our SPA algorithm.

In our experiments, we randomly generated the test cases

for an 8-core system. For each test point, 500 task sets were

generated with utilizations evenly distributed within [0.5,1.00].
The minimum inter-arrival time of each task was set to have a

uniform distribution within [50,1000]. We set up experiments

for general task sets (ui ∈ [0.02,1.00]), which contained both

light and heavy tasks. The scheduling results for different

approaches were represented by success ratios, i.e. the number

of feasible tasks over the number of total tasks generated.

Two groups of experiments were conducted. In the first

experiment, we tested the performance versus task number. We

varied the task numbers in our test cases from 20 to 200 with an

increment of 20. The experimental results for three approaches

were recorded and plotted in Figure 4. From Figure 4, we can

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 10

0.2

0.4

0.6

0.8

1

su
cc

es
s

ra
tio

system utilization

SPA
DM_PM(opt)
HSP

Fig. 5. Performance versus task set utilization.

observe that HSP in general can get success ratios significantly

better than other two approaches. In addition, the performance

improvement by HSP tends to increase as the task number

increases. For example, when task number is equal to 40,

HSP can achieve a success ratio of 83%, an improvement

of 1.7 times of that by SPA (48%) and 1.1 times of that by

DM PM(opt) (70%). When the task number is 140, HSP can

achieve a success ratio of 71%, an improvement of 2.5 times

over SPA and 1.8 times over DM PM(opt). The improvement

of HSP comes from two factors: first, HSP does not limit the

total utilization of each processor by the Liu&Layland’s bound

as that in SPA; second, HSP takes the harmonic relationship

among tasks into consideration for partitioning, and thus can

obtain extra benefit to utilize system more efficiently. The more

tasks are available, the more opportunities can be exploited by

HSP to take advantage of the potential harmonic property and

to improve the processor utilization.

In the second experiment, we tested the performance changes

with different system utilizations for each approach. We varied

the system utilization within [0.5,1.00] with an increment of

0.025. The results are shown in Figure 5. Figure 5 shows

that the success ratio by SPA drops sharply around 0.7.

This is because that while SPA can guarantee any task sets

with utilizations no more than the Liu&Layland’s bound,

it cannot schedule any task set with system utilization ex-

ceeding the Liu&Layland’s bound. While DM PM(opt) may

potentially schedule task sets with utilization higher than

the Liu&Layland’s bound, HSP can achieve a much higher

performance than DM PM(opt) as demonstrated in Figure 5.

For example, HSP can achieve a success ratio two times that

of DM PM(opt) when the system utilization is around 0.9.

Overall, the experimental results show clearly the effectiveness

of our proposed algorithm.

VI. CONCLUSIONS

In this paper, we present a new semi-partitioned approach for

scheduling sporadic tasks on multi-cores based on RMS. Our

approach can take advantage of the harmonic relations among

the tasks and improve the feasibility. Two algorithms, i.e. HSP-

light and HSP, are developed to schedule light and general task

sets, respectively. We formally analyze the feasibility as well

as the utilization bound for both algorithms. The experimental

results demonstrate that the proposed algorithm can signifi-

cantly improve the scheduling performance compared with the

previous work.

ACKNOWLEDGMENT

This work is supported in part by NSF under projects CNS-

0969013, CNS-0917021, and CNS-1018108.

REFERENCES

[1] S. Chaudhry, R. Cypher, M. Ekman, M. Karlsson, A. Landin, S. Yip,
H. Zeffer, and M. Tremblay, “Rock: A high-performance sparc cmt
processor,” Micro, IEEE, vol. 29, no. 2, pp. 6 –16, March-April 2009.

[2] W. Wolf, “Multiprocessor system-on-chip technology,” Signal Processing
Magazine, IEEE, vol. 26, no. 6, pp. 50 –54, November 2009.

[3] J. Liu, Real-Time Systems. NJ: Prentice Hall, 2000.
[4] B. Andersson, S. Baruah, and J. Jonsson, “Static-priority scheduling on

multiprocessors,” in Real-Time Systems Symposium, 2001. (RTSS 2001).
Proceedings. 22nd IEEE, Dec 2001, pp. 193 – 202.

[5] B. Andersson, “Global static-priority preemptive multiprocessor
scheduling with utilization bound 38%,” in Principles of Distributed
Systems, ser. Lecture Notes in Computer Science, T. Baker, A. Bui,
and S. Tixeuil, Eds. Springer Berlin / Heidelberg, 2008, vol.
5401, pp. 73–88, 10.1007/978-3-540-92221-6 7. [Online]. Available:
http://dx.doi.org/10.1007/978-3-540-92221-6 7

[6] S. Kato and N. Yamasaki, “Semi-partitioned fixed-priority scheduling on
multiprocessors,” in Real-Time and Embedded Technology and Applica-
tions Symposium, 2009. RTAS 2009. 15th IEEE, April 2009, pp. 23 –32.

[7] K. Lakshmanan, R. Rajkumar, and J. Lehoczky, “Partitioned fixed-
priority preemptive scheduling for multi-core processors,” in Real-Time
Systems, 2009. ECRTS ’09. 21st Euromicro Conference on, July 2009,
pp. 239 –248.

[8] J. Carpenter, S. Funk, P. Holman, A. Srinivasan, J. Anderson, and
S. Baruah, “A categorization of real-time multiprocessor scheduling
problems and algorithms,” in Handbook on Scheduling Algorithms,
Methods, and Models. Chapman Hall/CRC, Boca, 2004.

[9] J. Anderson, V. Bud, and U. Devi, “An edf-based scheduling algorithm
for multiprocessor soft real-time systems,” in Real-Time Systems, 2005.
(ECRTS 2005). Proceedings. 17th Euromicro Conference on, July 2005,
pp. 199 – 208.

[10] S. Kato and N. Yamasaki, “Real-time scheduling with task splitting on
multiprocessors,” in Embedded and Real-Time Computing Systems and
Applications, 2007. RTCSA 2007. 13th IEEE International Conference
on, Aug. 2007, pp. 441 –450.

[11] B. Andersson, K. Bletsas, and S. Baruah, “Scheduling arbitrary-deadline
sporadic task systems on multiprocessors,” in Real-Time Systems Sym-
posium, 2008, Dec 2008, pp. 385 –394.

[12] N. Guan, M. Stigge, W. Yi, and G. Yu, “Fixed-priority multiprocessor
scheduling with liu and layland’s utilization bound,” in Real-Time and
Embedded Technology and Applications Symposium (RTAS), 2010 16th
IEEE, April 2010, pp. 165 –174.

[13] A. Bastoni, B. Brandenburg, and J. Anderson, “Is semi-partitioned
scheduling practical?” in Real-Time Systems (ECRTS), 2011 23rd Eu-
romicro Conference on, july 2011, pp. 125 –135.

[14] B. Andersson and J. Jonsson, “The utilization bounds of partitioned and
pfair static-priority scheduling on multiprocessors are 50%,” in Real-Time
Systems, 2003. Proceedings. 15th Euromicro Conference on, July 2003,
pp. 33 – 40.

[15] N. Guan, M. Stigge, W. Yi, and G. Yu, “Fixed-priority multiprocessor
scheduling: Beyond liu and layland’s utilization bound,” in Real-Time
Systems Symposium, 2010, Work In Progress, Dec 2010.

[16] C. L. Liu and J. W. Layland, “Scheduling algorithms
for multiprogramming in a hard-real-time environment,” J.
ACM, vol. 20, pp. 46–61, January 1973. [Online]. Available:
http://doi.acm.org/10.1145/321738.321743

[17] C.-C. Han and H.-Y. Tyan, “A better polynomial-time schedulability test
for real-time fixed-priority scheduling algorithms,” in Real-Time Systems
Symposium, 1997. Proceedings., The 18th IEEE, Dec 1997, pp. 36 –45.

[18] T.-W. Kuo and A. Mok, “Load adjustment in adaptive real-time systems,”
in Real-Time Systems Symposium, 1991. Proceedings., Twelfth, Dec 1991,
pp. 160 –170.

[19] C.-C. Han, K.-J. Lin, and C.-J. Hou, “Distance-constrained scheduling
and its applications to real-time systems,” Computers, IEEE Transactions
on, vol. 45, no. 7, pp. 814 –826, Jul 1996.

[20] J. Lehoczky, L. Sha, and Y. Ding, “The rate monotonic scheduling
algorithm: exact characterization and average case behavior,” in Real
Time Systems Symposium, 1989., Proceedings., Dec 1989, pp. 166 –171.

