
Leakage Aware Scheduling On Maximum Temperature Minimization For Periodic
Hard Real-Time Systems

Vivek Chaturvedi Huang Huang Gang Quan

Electrical & Computer Engineering Department
Florida International University

Miami, Fl, USA, 33174
Email:{vchat001, hhuan001, gang.quan}@fiu.edu

Abstract

Thermal management is becoming a critical issue in
computing system design as the processor power continues
to grow exponentially. Since high power consumption
leads to high temperature, and high temperature in turn
dramatically increases the leakage power consumption, a
thermal management technique becomes ineffective if this
temperature/leakage relation is not properly addressed in
the deep sub-micron domain. This paper incorporates the
leakage/temperature dependency into real-time scheduling
analysis and presents a novel real-time scheduling method
that can reduce the peak temperature when scheduling
a hard real-time periodic task set. We formally prove
the correctness of the proposed algorithm based on a
processor model that can effectively account for the
leakage/temperature relationship. The experimental results
validate the assumptions of our scheduling method and
also demonstrate its effectiveness in terms of feasibility
improvement and peak temperature reduction.

I. Introduction

As semiconductor technology continues to scale down,
the chip temperature increases rapidly due to the expo-
nentially growing power consumption. The escalating heat
has directly led to high packaging and cooling costs,
and threaten to significantly degrade the performance, life
span, and reliability of future computing systems [18],
[22]. Hence, the thermal issues have become increasingly
prominent in the design of modern computing systems.

When dealing with the power consumption and thermal
constraints in the deep sub-micron domain, the leakage
plays a critical role. Based on the UC Berkeley’s BSIM

device model, Liao et al. [10] showed that the leakage
power consumption can be 2-3 times higher than the
dynamic power consumption for processors using the
65nm technology. Furthermore, they showed that when
changing the temperature from 65oC to 110oC, the leakage
power can increase as much as 38% [10]. High power
consumption causes high temperature, and high tempera-
ture increases leakage power and thus the overall power
consumption. Evidently, a thermal-conscious or power-
conscious technique becomes ineffective if this tempera-
ture/leakage relation is not properly addressed in the deep
sub-micron domain.

Researchers have already studied in depth the complex
relationship between the leakage and temperature at the
circuit and micro architecture level [10], [25], where the
leakage current can be formulated as

Ileak = Is · (A ·T 2 · e((α·Vdd+β)/T)+B · e(γ·Vdd+δ)) (1)

where Is is the leakage current at certain reference temper-
ature and supply voltage, T is the operating temperature,
Vdd is the supply voltage, A ,B,α,β,γ,δ are empirically
determined technology constants. In addition, the variation
of circuit delay (or the maximal processor speed that can
be used) with temperature is also formulated as well [10].
Based on these results, a temperature modeling tool called
“HotSpot” [1] was developed, which can be effectively
used to simulate and study the processor thermal phenom-
ena at the architecture level. However, such a model is
too complex and cumbersome to be used for the purpose
of system level analysis, such as real-time analysis and
scheduling technique development.

In this paper, we present a novel real-time scheduling
technique, i.e. the m-oscillating algorithm, that oscillates
the high and low processor speeds to minimize the peak
temperature for periodic task sets. We formally proved
the correctness of this algorithm based on a processor

978-0-7695-4108-2/10 $26.00 © 2010 IEEE

DOI 10.1109/CIT.2010.312

1802

2010 10th IEEE International Conference on Computer and Information Technology (CIT 2010)

978-0-7695-4108-2/10 $26.00 © 2010 IEEE

DOI 10.1109/CIT.2010.312

1802

2010 10th IEEE International Conference on Computer and Information Technology (CIT 2010)

978-0-7695-4108-2/10 $26.00 © 2010 IEEE

DOI 10.1109/CIT.2010.312

1802

power model that can capture the leakage/temperature
dependency in reasonable accuracy yet simple enough and
thus suitable for system level analysis. Furthermore, we
validated the effectiveness of our algorithm based on the
technology parameters derived from the 65nm technology.
The experimental results demonstrate that our proposed
scheduling technique can greatly reduce the peak temper-
ature and, as a result, significantly improve the feasibility
when scheduling periodic task sets under the maximum
temperature constraints. Our work clearly shows that a
more vigorous and analytical system level analysis of
leakage/temperature relationship is not only possible but
necessary.

The rest of the paper is organized as follows. Section II
discusses the related work. System models are described
in Section III. The m-oscillating scheduling algorithm is
introduced in Section IV. Empirical results are presented
in Section V, and Section VI concludes the paper.

II. Related Work

There have been an increasing number of research
results published on thermal aware real-time scheduling,
for both single and multiple processor platforms (e.g. [2],
[6], [15], [24]). Some approaches (e.g. [2], [6]) try to
identify the upper bound of the maximum temperature.
Some others (e.g. [2], [8], [4], [21]) intend to minimize
the peak temperature or to guarantee the given maximum
temperature constraints when scheduling a job set or a
single copy of a task graph. While it is a common practice
to repeat a real time schedule developed for jobs within
the first hyperperiod of a periodic task set, as indicated
in [7], [15], this approach is not applicable anymore if the
temperature constraint is taken into consideration.

For periodic task sets, Wang et al. [19], [20] studied
the maximum delay for periodic tasks when scheduling
real-time tasks based on a two-speed scheduling policy.
Zhang et al. [24] proposed to guarantee the temperature
feasibility of a periodic system by forcing the temperature
at the end of its first hyperperiod to be equal or less than the
starting temperature. Quan et al. [15] developed a closed
formula for the feasibility analysis under the maximum
temperature constraint. None of these researches has taken
the temperature/leakage dependency into consideration.

Some researches, such as that by Bao et al. [3],
have applied equation (1) directly to capture the leak-
age/temperature dependency for the scheduling analysis.
However, due to the non-linear and high-order magnitude
terms in equation (1), such a model or tool can be too
complex and cumbersome to be used for more rigorous
real-time analysis and scheduling technique development.
For example, Yuan et al. [23] also studied how to di-
rectly incorporate equation (1) into scheduling decisions.

However, due to the complexity of equation (1), their
approach can only be applied for soft real-time systems.
There are also a number of other approaches formulate
the temperature-constrained problem as a convex opti-
mization problem [12], [13], [4]. The leakage/temperature
dependency (equation (1)) may be incorporated into the
optimization formulation [12]. The problem is that the
computational complexity of the convex optimization prob-
lem is very high. Therefore these approaches can only
work at system level when the design solution space is
small.

A number of recent researches try to simplify the
leakage/temperature dependency model. Liu et al. observed
that the leakage current changes super linearly with tem-
perature [11]. Based on this observation, a number of
researches (such as [7], [9], [5] adopt a simple tempera-
ture/leakage dependency model that assumes the leakage
current changes linearly only with temperature. However,
as can be seen from equation (1), leakage varies not only
with temperature but also supply voltage as well. Quan
et al. [14] introduced a leakage/temperature model that is
more practical. According to their model, a processor has
different running modes, and leakage varies at different
rates with temperature when running at different modes.
Based on this model, they presented several conditions to
verify the feasibility of a given real-time schedule. How-
ever, how to develop a feasible and effective schedule for
a given periodic task set under the maximum temperature
constraint remains the problem. In what follows, with
leakage/temperature dependency in mind, we develop a
novel and scheduling technique that can effectively reduce
the maximum temperature.

III. The system models

In this section, we introduce the system models that are
used in this paper.

The real-time model The real-time system we consider
consists of a number of real-time tasks with the same
period (such as the MPEG decoder). We can thus simplify
this model by assuming that the real-time system has only
one periodic task. The period of the task is denoted as
p and its worst-case workload is c. We assume that the
deadline of the task equals its period.

The thermal model We use the RC thermal model
that has been widely used in the similar research (e.g. [5],
[7], [13], [14]). Specifically, assuming a fixed ambient
temperature (Tamb), let T (t) be the temperature at time t.
Then we have

RC
dT (t)

dt
+T (t)−RP(t) = Tamb, (2)

where P(t) denotes the power consumption (in Watt) at
time t, and R, C denote the thermal resistance (in J/oC)

180318031803

and thermal capacitance (in Watt/oC). We can then scale
T such that Tamb is zero and get

dT (t)
dt

= aP(t)−bT (t), (3)

where a = 1/C and b = 1/RC.
The processor and its power model The processor

can run in n different modes, with each mode as (vi, fi),
i = 0,1, ...,n−1. where vi is the supply voltage and fi is
the working frequency in mode i. We assume that vi <
v j, if i < j. We also assume that the processor speed is
proportional to the supply voltage. In what follows, we
use processor speed and supply voltage interchangeably.

Given a voltage level v, the power consumption is
composed of dynamic Pdyn and leakage Pleak, i.e. P =
Pdyn + Pleak. According to Liao et al. [10], the leakage
power consumption can be estimated by the following,

Pleak = Ngate · Ileak · v (4)

where Ngate represents the number of gate, v is the voltage
level, and Ileak can be formulated using equation (1).
As leakage current changes super linearly with temper-
ature [11], we can simplify Pleak and define the leakage
power for the processor running in mode k as

Pleak(k) =C0(k)vk +C1(k)T vk, (5)

where C0(k) and C1(k) are constants. As we can see from
equation (5), the leakage power depends on both the supply
voltage and temperature.

The dynamic power consumption is independent of
temperature, and can be formulated Pdyn = C2vξ

k(ξ > 0).
We choose ξ= 3 [16] in this paper1. Hence the total power
consumption at processor mode k is

P(k) =C0(k)vk +C1(k) ·T vk +C2v3
k . (6)

Based on equation (6) and (3), when a processor running
in mode k, the temperature dynamics can be formulated as

dT (t)
dt

= A(k)−BT (t) (7)

where
A(k) = a(C0(k)vk +C2v3

k) (8)

B(k) = b−aC1(k)vk (9)

For interval [t0, te], let the starting temperature be T0,
by solving equation (7), the ending temperature can be
formulated as below:

Te =
A(k)
B(k)

+(T0−
A(k)
B(k)

)e−B(k)(te−t0)

= G(k)+(T0−G(k))e−B(k)(te−t0). (10)

1Choosing other values will not change the conclusions in this paper.

where

G(k) =
A(k)
B(k)

. (11)

In what follows, we use Ak, Bk and Gk to denote A(k),
B(k) and G(k) respectively when there is no confusion.
Equation (6) to (10) form the basis of our system level
thermal analysis with leakage/termpature interplay taken
into account.

IV. Scheduling for peak temperature reduc-
tion

In this section, we study how to minimize the maximum
temperature when scheduling a periodic task set. Thermal-
aware scheduling problems have distinct characteristics in
comparison with the power aware scheduling problem as
illustrated below.

Consider a simple two-speed schedule, as illustrated in
Figure 1, that can finish a real-time job at its deadline. Note
that, the dynamic energy consumption by the two-speed
schedule shown in Figure 1 remains the same as long as
the length for each individual speed keeps the same, i.e.
t1 and t2 are constants. However, the temperature at t = 1
varies with the value of x. The following theorem captures
this characteristic.

Fig. 1. A two-speed schedule that uses speed
s1 for t1 time units and speed s2 for t2 time
units. t1 + t2 = 1.

Theorem 1: Given a two-speed schedule as shown in
Figure 1, and letting s2 > s1, if for any s2 > s1, we have
G2 > G1 and B1,B2 > 0 (with Gk, Bk defined in equation
(11) and (9), respectively), then the temperature at t = 1,
i.e.Te is a monotonically increasing function of x.
Proof sketch: Based on equation (10), let Ta be the
temperature at point a, then we have

Te = G1 +(Ta−G1)e−B1(t1−x) (12)

Therefore,

d(Te)

dx
= ...

= (G2−G1)(1− e−B2t2)B1e−B1(t1−x). (13)

180418041804

So Te decreases with decreasing x if G2 > G1 and B1,B2 >
0. 2

Fig. 2. A two-speed schedule that uses speed
s2 for t1 time units and speed s1 for t2 time
units. t1 + t2 = 1.

Similarly, for the two-speed schedule illustrated in
Figure 2, we have Theorem 2.

Theorem 2: Given a two-speed schedule as shown in
Figure 2, and letting s2 > s1, if for any s2 > s1, we have
G2 > G1 and Bk > 0 (with Gk, Bk defined in equation (11)
and (9), respectively), then the temperature at t = 1, i.e.Te
is a monotonically decreasing function of x.
Proof sketch: Based on equation (10), Ta be the temper-
ature at a, then we have

Te = G2 +(Ta−G2)e−B2(t1−x) (14)

Therefore,

d(Te)

dx
= ...

= −(G2−G1)(1− e−B1t2)B2e−B2(t1−x). (15)

So Te decreases with increasing x if G2 > G1 and Bk > 0.
2

Theorem 1 and 2 indicate that temperature at the end of
a schedule depends on locations where different running
modes are applied. They help to reduce the temperature
at the end of schedule, but do not necessarily reduce
the maximum temperature within the entire interval. In
addition, Theorem 1 and 2 are applied for a single
job rather than a periodic task set. In what follows, we
introduced a novel scheduling algorithm (we call it the m-
oscillating algorithm) to minimize the peak temperature
for a periodic hard real-time task. We assume that, when a
processor runs a periodic task, the temperature will not run
away and eventually reach a stable status. The temperature
stable status is defined below.

Definition 1: When running a periodic task with period
p, the temperature at the processor is called to be stable
if for a given threshold, i.e. 0 < ε << 1,

|T ((n+1)p)−T (np)|< ε, (16)

where n≥ 0,n ∈ Z, and T (t) is the temperature at t.

Fig. 3. A two-speed schedule and its corre-
sponding m-oscillating schedule.

Our m-oscillating algorithm works as follows: given a
two-speed schedule, we can divide the high speed interval
and the low speed interval evenly into m sections, and
run the processor with the low speed and high speed
alternatively. Apparently, an m-oscillation schedule will
complete the same workload as the original schedule in one
period and thus guarantee the deadline. At the same time,
the maximum temperature can be significantly reduced as
stated in the following theorem.

Theorem 3: Let S(t) be a two-speed schedule and
S̃(m, t) be the corresponding m-oscillating schedule. Also
let Tmax(S) represent the maximum temperature that a
processor can reach when running schedule S. If for any
v2 > v1, we have G2 > G1 and Bi > 0, i = 1,2, then
• Tmax(S̃(m, t))≤ Tmax(S(t));
• Tmax(S̃(n, t))≤ Tmax(S̃(m, t)) if m≤ n.

Proof sketch: Here we only present the partial proof, i.e.
for the case shown in Figure 3.

For S̃(m, t) shown in Figure 3, base on equation (10),
the temperature at t = x and t = y can be formulated as

Tx = G1(1− e−B1t1/m), Ty = G2 +(Tx−G2)e−B2t2/m

From [14], when the temperature reaches the stable status,
we have

Tmax(S̃(m, t)) = T ∞
y = Ty +

Ty

1−Ky
Ky

where
Ky = e−

(B1t1+B2t2)
m .

Expand T ∞
y , we have

T ∞
y = (G2−G1)

1− e−
B2t2

m

1− e−
(B1t1+B2t2)

m

+G1

180518051805

Let B2t2 = m(m+1)p and B1t1 = m(m+1)q, p,q > 0 and
let

f (m) =
1− e−mp

1− e−m(p+q)
.

Then

Tmax(S̃(m, t)) = (G2−G1) f (m+1)+G1

Tmax(S̃(m+1, t)) = (G2−G1) f (m)+G1

To show that f (m+1)> f (m), we only need to note that

f (m) =
1− e−p

1− e−(p+q)
· ∑

m−1
i=0 e−ip

∑
m−1
i=0 e−i(p+q)

.

Also,

∑
m−1
i=0 e−ip

∑
m−1
i=0 e−i(p+q)

<
∑

m
i=0 e−ip

∑
m
i=0 e−i(p+q)

⇐= e−m(p+q) ·
m−1

∑
i=0

e−ip < e−mp ·
m−1

∑
i=0

e−i(p+q)

⇐= e−mq ·
m−1

∑
i=0

e−ip <
m−1

∑
i=0

e−i(p+q)

⇐=
m−1

∑
i=0

e−ip <
m−1

∑
i=0

e−ip · e(m−i)q.

With i ≤ m, e(m−i)q ≥ 1, therefore f (m+ 1) > f (m), and
so

Tmax(S̃(m, t))> Tmax(S̃(m+1, t)). (17)

2

Theorem 3 implies that, by dividing the high speed
interval and the low speed interval each into m equal
sections and running them alternatively, an m-oscillating
schedule can always reduce the maximum temperature
when a processor reaches its stable status. The larger the
m is, the lower the maximum temperature becomes.

Note that the conclusion in Theorem 3 and its proof are
contingent upon two important assumptions, i.e. (i) G2 >
G1 for any v2 > v1 and (ii) Bi > 0, i = 1,2. It is difficult,
however, to analytically validate these two assumptions
since the temperature invariants C0 and C1 in equation (9)
and (11) depend on the technology parameters. In addition,
C0 and C1 are obtained through curve-fitting rather than
from a closed analytical formula. In section V, we vali-
date these assumptions empirically. Moreover, it is worth
mentioning that Theorem 3 ignores the voltage transition
overhead which can be very significant in certain scenarios.
When the overhead is non-negligible, conceivably, there
exists an optimal value of m to balance the impact of
the transition overhead and the potential of m-oscillating
algorithm in peak temperature reduction. How to identify
this optimal value by incorporating transitional model such
as that proposed in [5] is an interesting problem and will
be our future work.

Fig. 4. Linear approximation of leakage power
consumptions.

V. Experiments and results

In this section, we use experiments to examine the
m-oscillating scheduling algorithm. First, we validate the
processor model as well as the assumptions that the
algorithm is built upon. We then evaluate its performance
by comparing it with a previous work, i.e. the two-speed
scheduling method [20], in terms of the feasibility and
peak temperature.

A. Verification of the processor model and
assumptions

To verify the processor model and assumptions made
in Theorem 1 to 3, we built our processor models based
on the work by Liao et al. [10] using the 65nm technology
from the UC Berkeley’s BSIM device model. Specifically,
we used equation (1) to compute the leakage currents for
temperature from 40oC to 110oC with a step size of 5oC,
and supply voltage from 0.60 Volt to 1.30 Volt with a
step size of 0.05V. These results were used to determine
the temperature invariants C0(k) and C1(k) in equation (5)
through curve-fitting.

We set the frequency for each mode according to the
formula [10]

f =
1

delay
=

(v− vt)
µ

vT η
×4.2824×1014 (18)

with µ = 1.19, η = 1.2, vt = 0.3, and T is set to the
highest temperature as 100oC, and we also normalized
the frequency with highest equal to 1.0. To obtain the
leakage power consumption, we set Ngate in equation
(4) to be 106. The dynamic power consumption (and
thus constant C2) was determined based on experimental
results reported in [10] on a common benchmark gcc. For

180618061806

(a) Rth = 0.8J/oC.
(b) Rth = 0.067J/oC.

Fig. 5. Function G(v) with different temperatures and thermal resistances.

thermal constants, we considered two different options,
first is the conventional air cooling with Rth = 0.8K/W ,
Cth = 340J/K [18] and second is the water spray-cooling
with Rth = 0.8K/W , Cth = 340J/K [17]. The ambient
temperature was set to 25oC.

Figure 4 compares the estimated leakage power con-
sumptions using two different leakage/dependency models
(namely,Model 1 and Model 2) with the ”actual leakage”,
which is calculated based on equation (1). Model 1 is
the leakage/temperature model used in this paper (i.e.
section III), assuming that the leakage varies with both
temperature and supply voltage. Model 2, used in [7],
[9], [5], assumes leakage changes with the temperature
linearly but not with the supply voltage. As we can see
from Figure 4, the linear approximated leakage power
consumptions based on Model 1 match very closely to
that calculated based on equation (1), with the maximum
relative error no more than 7%. On the other hand, when
using Model 2, the leakage approximation errors can be
very significant: the actual leakage power consumption can
be as high as 4.5 times or as low as 29% of the estimated
results, depends on the supply voltage that is applied.

We also examined the assumptions made in Theorem 1
to 3. Figure 5 and Figure 6 plot the characteristics of
function Gk and Bk under different supply voltages and
thermal constants. As illustrated in these two figures, we
can clearly see that, under both representative cooling
options (i.e. Rth = 0.8J/oC and Rth = 0.067J/oC), function
Gk is a positive and monotonically increasing function
of the supply voltage, and function Bk is also a positive
function for the given settings. These results validate
assumptions made in Theorem 1 to 3.

B. Performance evaluation

We next study the performance of m-oscillating
scheduling by comparing with the existing approaches. The
proactive scheduling method introduced in [7] intends to
minimize the task response time under given maximum

TABLE I. The equilibrium speeds and the cor-
responding maximum temperatures

VEquil(V) Tmax(
oC)

0.80 33.99
0.90 38.88
1.0 46.16

temperature constraints. However, it is developed based on
a processor model with continuously changeable speed,
and to extend the proposed scheduling technique to a
more practical processor model (i.e. with discrete supply
voltages) as we used in this paper is far from a trivial
and straight forward effort. Therefore, we compare our ap-
proach with a more general one, i.e. the reactive two-speed
scheduling approach introduced in [20]. The reactive two-
speed schedule [20] work as follows. For a given maximum
temperature constraint, the processor works at the highest
speed until it reaches the maximum temperature. Then it
runs at an equilibrium speed to maintain the temperature.

First, we want to investigate the feasibility of the two
scheduling policies, i.e. the m-oscillating schedule and the
reactive two-speed schedule, under the same maximum
temperature constraints and workloads. Note that for a
given maximum temperature and a processor with discrete
speeds, the equilibrium speed is not necessarily one of the
available speeds. We therefore fixed the equilibrium speed
to one of the available speeds of the processor, and then
used the stable temperature as the maximum temperature
constraint to test both scheduling policies.

We randomly generated real-time tasks with period of
2000 seconds and workload evenly distributed within range
of [0, 100%], with 100% indicating that the processor has
to run at the maximum speed all the time (i.e. 100%)
to complete the workload. We divided the task workload
into 10 equal intervals, i.e. 0-10%,10-20% and so on, and
100 random tasks were generated within each interval. The
equilibrium voltages were set to be 0.8V, 0.9V and 1.0V,
and the corresponding stable temperature were set as the

180718071807

(a) Rth = 0.8J/oC. (b) Rth = 0.067J/oC.

Fig. 6. Function B(v) with different temperatures and thermal resistances.

Fig. 7. Feasibility comparison between the
m-oscillation scheme and the reactive two-
speed scheme under different maximum tem-
perature constraints

maximum temperature constraint. Table I lists the values
of the equilibrium voltages and their corresponding stable
temperatures. For m-oscillating schedule, we first calcu-
lated the constant speed that will guarantee workload. Then
the two neighboring speeds were used to construct our m-
oscillating schedule algorithm described in section IV.

Figure 7 presents the feasibility differences between
active two-speed scheduling and m-oscillating scheduling
with m=1, 2, 5, and 8. When the randomly generated
workload is very low, all above scheduling policies can
schedule the task feasibly; and when the workload is
high, none four scheduling policies can make the task
feasible. Therefore Figure 7 only depicts the workload
regions that there exist differences in terms of feasibility
among different scheduling choices. From Figure 7, we
can clearly see that m-oscillating scheduling shows higher
feasibility as compared to reactive two-speed schedule.

The larger the m is, the higher the feasibility can be.
At the equilibrium voltage of 0.8V, the feasibility by the
active two-speed scheduling policy is very close to the
m-oscillating scheduling algorithm. However, when m is
increased to 5, the feasibility is improved over 13%, and
up to 20% when m= 8. At the equilibrium voltage of 0.9V
and 1.0V, we can see the feasibility improvement of 35%
and 10%, respectively, by m-oscillating algorithm to the
two-speed scheduling algorithm.

Even though a task can be feasibly scheduled, a higher
peak temperature is not desirable since it increases pack-
aging and cooling costs, degrade the performance, life
span, and reliability of a computing system. We therefore
collected the maximum temperatures of all feasible tasks
under different scheduling policies and compared their
average maximum temperatures as shown in Figure 8.
Figure 8 clearly demonstrates that the m-oscillating algo-
rithm is very effective in reducing the peak temperature.
Note that at the equilibrium voltage of 0.8V, the average
maximum temperature of reactive two-speed schedule is
31.84oC, and is reduced to 28.64oC when m = 1 for the
m-oscillating scheduling algorithm. It is further reduced
to 27.85oC for m = 5. At equilibrium voltage of 0.9V and
1.0V, the average maximum temperatures are reduced by
7.78oC and 14.0oC, respectively.

VI. Summary

As semiconductor technology continues to scale down,
the positive feedback loop between temperature and leak-
age exacerbates not only the power/energy minimization
problem but also the thermal management problem. In
this paper, we incorporate the leakage/temperature depen-
dency into the real-time scheduling analysis that aims at
minimizing the maximum temperature. We presented and
proved a number of theorems and exhibit the distinct char-
acteristics of thermal aware real-time scheduling. We also

180818081808

Fig. 8. Average maximum temperature com-
parison between the m-oscillation scheme
and the reactive two-speed scheme

proposed a new scheduling technique, i.e. the m-oscillating
scheduling that can effectively reduce the peak temperature
when executing a hard real-time periodic task set. These
theorems and techniques form a solid basis for further
leakage-aware temperature-constrained researches in de-
sign and development of practical real-time systems. Our
future research will be based on the theorems presented in
this paper and extended in a number of ways, including
more complex real-time system models, processors with
non-trivial transition overhead, and multiple-core type of
architectures.

Acknowledgement

This work is supported in part by NSF under projects
CNS-0545913 and CNS-0917021.

References

[1] Hotspot 4.2 temperature modeling tool. University of Virgina, page
http://lava.cs.virginia.edu/HotSpot, 2009.

[2] N. Bansal, T. Kimbrel, and K. Pruhs. Speed scaling to manage
energy and temperature. Journal of the ACM, 54(1):1–39, 2007.

[3] M. Bao, A. Andrei, P. Eles, and Z. Peng. On-line thermal
aware dynamic voltage scaling for energy optimization with fre-
quency/temperature dependency consideration. In Design Automa-
tion Conference, pages 490–495, 2009.

[4] T. Chantem, R. P. Dick, and X. S. Hu. Temperature-aware schedul-
ing and assignment for hard real-time applications on mpsocs. In
DATE, pages 288–293, 2008.

[5] T. Chantem, X. S. Hu, and R. Dick. Online work maximization
under a peak temperature constraint. In ISLPED, pages 105–110,
2009.

[6] J. Chen, C. Hung, and T. Kuo. On the minimization fo the
instantaneous temperature for periodic real-time tasks. RTAS, pages
236–248, 2007.

[7] J.-J. Chen, S. Wang, and L. Thiele. Proactive speed scheduling for
real-time tasks under thermal constraints. RTAS, 0:141–150, 2009.

[8] A. Cohen, F. Finkelstein, A. Mendelson, R. Ronen, and D. Rudoy.
On estimating optimal performance of cpu dynamic thermal man-
agement. IEEE Computer Architecture Letter, 2(1):6–9, 2003.

[9] N. Fisher, J.-J. Chen, S. Wang, and L. Thiele. Thermal-aware global
real-time scheduling on multicore systems. RTAS, 0:131–140, 2009.

[10] W. Liao, L. He, and K. Lepak. Temperature and supply voltage
aware performance and power modeling at microarchitecture level.
IEEE Transactions on Computer-Aided Design of Integrated Cir-
cuits and Systems, 24(7):1042 – 1053, 2005.

[11] Y. Liu, R. P. Dick, L. Shang, and H. Yang. Accurate temperature-
dependent integrated circuit leakage power estimation is easy. In
DATE, pages 1526–1531, 2007.

[12] Y. Liu, H. Yang, R. P. Dick, H. Wang, and L. Shang. Thermal
vs energy optimization for dvfs-enabled processors in embedded
systems. In ISQED, pages 204–209, 2007.

[13] S. Murali, A. Mutapcic, D. Atienza, R. Gupta, S. Boyd, and G. D.
Micheli. Temperature-aware processor frequency assignment for
mpsocs using convex optimization. In CODES+ISSS, pages 111–
116, 2007.

[14] G. Quan and Y. Zhang. Leakage aware feasibility analysis for
temperature-constrained hard real-time periodic tasks. ECRTS,
pages 207–216, 2009.

[15] G. Quan, Y. Zhang, W. Wiles, and P. Pei. Guaranteed scheduling
for repetitive hard real-time tasks under the maximal temperature
constraint. ISSS+CODES, 2008.

[16] J. Rabaey, A. Chandrakasan, and B. Nikolic. Digital Integrated
Circuits: A Design Perspective. Prentice Hall, 2003.

[17] M. Shaw, J. R. Waldrop, S. Chandrasekaran, B. Kagalwala, X. Jing,
E. Brown, V. Dhir, and M. Fabbeo. Enhanced thermal management
by direct water spray of high-voltage, high power devices in a three-
phase. ITHERM, pages 1007–1014, 2002.

[18] K. Skadron, M. Stan, W. Huang, S. Velusamy, K. Sankaranarayanan,
and D. Tarjan. Temperature-aware microarchitecture. ICSA, pages
2–13, 2003.

[19] S. Wang and R. Bettati. Delay analysis in temperature-constrained
hard real-time systems with general task arrivals. RTSS, pages 323–
334, 2006.

[20] S. Wang and R. Bettati. Reactive speed control in temperature-
constrained real-time systems. ECRTS, pages 161–170, 2006.

[21] J. Yang, X. Zhou, M. Chrobak, Y. Zhang, and L. Jin. Dynamic
thermal management through task scheduling. In International
Symposium on Performance Analysis of Systems and Software,
pages 191–201, 2008.

[22] L.-T. Yeh and R. C. Chu. Thermal Management of Microelectronic
Equipment: Heat Transfer Theory, Analysis Methods, and Design
Practices. ASME Press, New York, NY, 2002.

[23] L. Yuan and G. Qu. Alt-dvs: Dynamic voltage scaling with
awareness of leakage and temperature for real-time systems. Adap-
tive Hardware and Systems, NASA/ESA Conference on, 0:660–670,
2007.

[24] S. Zhang and K. S. Chatha. Approximation algorithm for the
temperature-aware scheduling problem. In ICCAD, pages 281–288,
2007.

[25] Y. Zhang, D. Parikh, K. Sankaranarayanan, K. Skadron, and
M. Stan. Hotleakage: a temperature-aware model of subthreshold
and gate leakage for architects. University of Virginia Dept. of
Computer Science Technical Report, 2003.

180918091809

