
Cache Allocation for Fixed-Priority Real-Time
Scheduling on Multi-Core Platforms

Gustavo A. Chaparro-Baquero∗, Soamar Homsi∗, Omara Vichot∗, Shaolei Ren∗, Gang Quan∗ and Shangping Ren†

∗Electrical and Computer Engineering Department. Florida International University (FIU). Miami, FL, 33174. U.S.A.

e-mail: {gchap002,shoms001,ovich001,sren,gaquan}@fiu.edu
†Department of Computer Science. Illinois Institute of Technology (IIT). Chicago, IL, 60616. U.S.A

e-mail: ren@iit.edu

Abstract—The increased resource sharing on multi-core plat-
forms has posed significant challenges on the predictability of
real-time systems. Cache memory partitioning has proven to be
one of the most effective methods to improve the predictability
and also the schedulability of real-time systems. In this paper,
we study how to allocate cache memory of a multi-core platform
when scheduling fixed-priority hard real-time tasks. As the
bounded worst-case execution time (WCET) of a real-time task
varies with its cache allocation, the challenges of this problem
are twofold: how to judiciously allocate the cache memory among
all real-time tasks and how to map real-time tasks to each core
to improve the schedulability. To address these challenges, we
develop an approach that takes into consideration not only the
WCET variations with cache allocations but also the task period
relationship and thus can significantly improve the schedulability
of real-time tasks. Our simulation results, based on the SPEC
CPU2000 benchmarks suite, show that our approach can increase
the schedulability of real-time tasks up to four times when
compared to other similar scheduling mechanisms.

I. INTRODUCTION

Real-time systems used to be developed on single-core

platforms, but a high increase in processing demands has led

the industry to develop them on multi-core platforms in the

past few years. The increase in processing demands comes

from the fact that today’s real-time applications, like intelligent

cruise control and unmanned vehicles control, process signifi-

cant amounts of sensor data with real-time constraints. These

applications not only generate large amounts of I/O workloads,

but also become more and more memory intensive. Thus,

multi-core architectures have become an attractive option for

developing real-time systems due to their potential to handle

the newly increased workloads.

In the meantime, however, the large inter-task interferences

due to increased resource sharing (such as shared buses and

memory) on multi-core platforms have severely undermined

the predictability of real-time systems [1], [2]. For the sake

of scalability, flexibility, and to deal with power limitation in

the era of “dark silicon,” it has become mainstream to group

multiple cores sharing a local cache memory [3].

The sharing of local cache memory helps to improve the

average case execution time of each task, but can be hazardous

This work is supported in part by the National Science Foundation (NSF)
under projects CNS-1423137 and CNS-1018108.

to the estimation of the worst-case execution time (WCET).

One major problem in estimating the WCET bounds on multi-

core systems is the unpredictability of the workload on other

cores. Therefore, the number of memory accesses, locations

in time, and bus loads originated from other concurrent tasks

are difficult to determine precisely [2]. To assume the worst

case scenario for each factor can be extremely pessimistic and

nullifies the extra computational capacity of the multi-core

platforms in the design of real-time systems.

Since a major source of pessimism in WCET estimation

comes from shared cache memories, cache memory parti-

tioning has proven to be one of the most effective methods

to improve the predictability and schedulability of real-time

systems [4]–[9]. This method partitions cache memory among

programs and cores to reduce cache contention. By isolating

real-time task memory accesses, cache memory partitioning

can avoid or considerably reduce the inter-task interferences,

and therefore reduce the uncertainty when bounding the

WCET and improve the core utilization.

In this paper, we are interested in studying the problem of

how to allocate the cache memory that is accessible by multi-

ple processing cores when scheduling fixed-priority real-time

tasks based on the rate monotonic scheduling (RMS) policy.

The fixed-priority multi-core partitioned scheduling scheme is

one of the most commonly used scheduling mechanisms for

real-time system design [10], due to its advantage of better

predictability. Besides, it is supported by almost all real-time

operating systems available on the market due to its low

overhead and simplicity in implementation, and it is still the

method of choice in industry. We assume that each real-time

task will be executed on a dedicated processing core, and its

WCET, for a specified cache size, can be estimated beforehand

using strategies such as those presented in [11].

Since the WCET of a real-time task varies with its cache

allocation, our research problem involves two intertwined

problems: i) how to allocate the available cache memory

partitions among all tasks, and ii) how to map each task to

a core in the multi-core platform. One simple approach to

partition the cache memory is to allocate the cache memory

in such a way that it minimizes the normalized resource
usage [12] —which includes both CPU utilization and memory

utilization— for each task. However, the cache allocation

589978-1-4673-7166-7/15/$31.00 c©2015 IEEE

that optimizes the resource usage for a single task does not

necessarily optimize that for the entire task set. To map tasks to

multiple cores and optimize CPU resource usage is a classical

NP-hard problem. While it has been a well-known fact that

harmonic tasks can utilize CPU resource more effectively,

i.e. with CPU utilization as high as 1 [13], how to take the

interplay of cache partitioning, execution time variations and

task harmonic relationship into considerations to deal with

cache allocation and task mapping in an integrated manner

is the challenging problem we want to study in this paper.

We propose two algorithms in this paper. The first algorithm

combines two existing works: one based on fast local mem-

ory partitioning [12], and the other one, on harmonic-based

scheduling [14]. The second algorithm is a more elaborated

approach that can judiciously choose the cache size for each

task and also exploit task harmonic relationships. Therefore, it

can significantly improve the system resource usage and task

set schedulability. We use a third party data report of the cache

performance for the SPEC CPU2000 benchmarks suite [15] to

validate our approaches. The results show that our approach

can significantly improve the schedulability of real-time tasks,

i.e. up to four times, when compared with other scheduling

mechanisms.

II. PRELIMINARY

In this section, we introduce the architecture and the real-

time system model used in this paper. We also show an

example to motivate our research.

A. Architecture and System Model

The multi-core platform consists of a set of P homogeneous

processing cores, denoted as Pk with k = 1,2, ...,P. The cache

memory is divided into a finite number of allocation units of

the same size called cache units. The total number of cache

units is denoted as B.

The task set consists of N independent implicit-deadline pe-

riodic tasks, denoted as Γ = {τ1,τ2, ...,τN}, scheduled accord-

ing to RMS. Each task τi, where 1 ≤ i ≤ N, is characterized

by its minimum inter-arrival time Ti. A finite number, denoted

as mi, of cache units are assigned privately to a single task τi
executed by a core of the system, and its WCET varies with

mi, which is denoted as Cmi
i . Therefore, the task set Γ may

be characterized by a matrix like the one shown Table I. In

this table, the rows indicate each task belonging to the task

set (four tasks for the example), and each column (except for

the last one) indicates the number of assigned cache units mi
to each task (1 ≤ mi ≤ 16). The numbers shown in the matrix

correspond to each Cmi
i of each task. The last column indicates

the period of each task.

Each task τi ∈ Γ is characterized by a CPU-utilization and

a memory-utilization. We define Umi
i as the CPU-utilization

of τi, where Umi
i = Cmi

i /Ti and Bi as the Memory-utilization

of τi where Bi = mi/B. In the same way, we also define the

CPU-utilization of a task set Γ as U(Γ) = ∑τi∈Γ Umi
i , and the

total number of cache units used by a task set q(Γ) =∑τi∈Γ mi.

Table I: Example of Task Set and the WCET values for different mi

mi
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Ti

Cm1
1 5 5 4 4 3 3 3 3 3 3 3 3 3 3 3 3 10

Cm2
2 20 18 10 6 6 6 6 2 1 1 1 1 1 1 1 1 25

Cm3
3 10 8 6 6 6 5 5 5 4 4 4 4 4 4 4 4 13

Cm4
4 10 9 8 7 6 5 5 5 5 5 5 5 5 5 5 5 25

When task τ j ∈ Γ is assigned with a specific value of m j, we

reference its CPU utilization as Uj.

B. Cache Allocation Example

Before we present our algorithms, we first show an example,

i.e. Example 1, of a cache allocation problem along with

two possible solution methods: the first one, using a previous

proposed technique, and the second one, using a simple

inspection.

Example 1: Consider a task set consisting of four tasks, as

shown in Table I, to be scheduled in a platform consisting of

two cores, sharing a cache memory with 16 cache units.

The problem defined in Example 1 has proven to be NP-

hard. One solution for this problem, i.e. IBRT-MCI-RMS pre-

sented by Chang et al. [16], is to first allocate the cache space

that can optimize the resource usage for a single task, and then

transform this problem to the traditional bin-packing problem.

To this end, they first define a metric, called normalized
resource usage, to balance CPU and cache resource usage,

as shown in the following definition.

Definition 1: The minimum normalized resource usage [16]

of task τi ∈ Γ, denoted as λi, is defined as:

λi = min
0≤mi≤B

(
Umi

i
P

+
mi

B

)
(1)

Essentially, the minimum normalized resource usage of a

task is the minimum sum of its normalized processor utiliza-

tion and the normalized cache allocation. With task execution

times and cache allocations given, the minimum normalized

resource usage of a task can be readily identified. Table II

shows the cache allocation results based on this approach.

Columns mi and Ci, and thus Ui are obtained based on Def. 1.

Then, IBRT-MCI-RMS sorts tasks in a non-decreasing order

with respect to their values of mi, and packs tasks to cores with

utilization bounded by the traditional Liu&Layland upper-

bound [17]. In the case of a task set of two tasks, such bound

is of 0.83. For this example, as shown in Table II, the total

utilization for the subtask set with τ2 and τ3 (a value of 0.70)

is less than the upper bound. However, the value of total

utilization for the subtask set τ1 and τ4 (a value of 0.90) is

larger than the utilization bound. Therefore, IBRT-MCI-RMS

fails to schedule the task set of Example 1.

For the problem defined above, a feasible solution does

exist. As shown in Table III, by assigning 3 cache units to

τ1 and 2 cache units to τ4, τ1 and τ4 would decrease their

WCETs from 5 to 4 and from 10 to 9, respectively, making

the task set comply with the schedulability condition defined

by the Liu&Layland upper-bound. Besides, the total number

590 2015 33rd IEEE International Conference on Computer Design (ICCD)

Table II: Motivation Example Solution Using IBRT-MCI-RMS [16]

τi Ti Ci mi Ui Sub Task Set Utilization Sched. Cond. Feasibility

2 25 6 4 0.24

3 13 6 3 0.46 U(Γ2,3) = 0.70 U(Γ2,3)
?≤ 0.83 Core 1 - YES

1 10 5 1 0.50

4 25 10 1 0.40 U(Γ1,4) = 0.90 U(Γ1,4)
?≤ 0.83 Core 2 - NO

Table III: Motivation Example Solution by Inspection

τi Ti Ci mi Ui Sub Task Set Utilization Sched. Cond. Feasibility

2 25 6 4 0.24

3 13 6 3 0.46 U(Γ2,3) = 0.70 U(Γ2,3)
?≤ 0.83 Core 1 - YES

1 10 4 3 0.40

4 25 9 2 0.36 U(Γ1,4) = 0.76 U(Γ1,4)
?≤ 0.83 Core 2 - YES

of cache units used by the task set would be increased from

9 to 12, which is still less than 16. The numbers underlined

in Table III represent the changed values from the solution

shown in Table II. This shows that, even though IBRT-MCI-

RMS allocates cache space to optimize the resource usage

(according to λi of Def. 1) of a single task, the local optimum

solution cannot guarantee that the solution is globally optimal.

In addition, it is well-known that period relationship of real-

time tasks has a significant impact on their schedulability on

a processor [13], [18]. The question is how to take it into

consideration in cache allocation and task mapping to improve

system resource usage and schedulability of real-time task sets.

III. SIMPLE HARMONIC-BASED CACHE ALLOCATION

APPROACH (HBCA1)

One way to exploit the period relationship among tasks is to

simply incorporate the task period into the task mapping phase

only. During the cache allocation phase, we can search a local

optimal value for the parameters Ci and mi for each τi ∈ Γ
based on the metric λi described in Def. 1 [16]. Note that, after

λi is defined, the WCET for each task is also defined. Then, we

can employ the harmonic-based task mapping method (such

as the one in [14]) to map tasks to multi-core platforms. We

call this approach HBCA1 (Harmonic-Based Cache Allocation

1), which is shown in Alg. 1. In Alg. 1, we assume that all

processing cores share the same cache memory. The algorithm

can be easily extended to deal with the scenario of when

processing cores share multiple cache memories.

While a harmonic task set can be schedulable with total

utilization reaching as high as 1, not all tasks are harmonic.

Therefore, to better exploit the harmonic relationship among

tasks, one critical question is how harmonic a task set is. To

this end, Fan et al. [14] introduce the concept of primary sub-
harmonic task set and, based on it, they develop the harmonic
index to quantify the harmonicity.

Definition 2: [14] Given a task set Γ = {τ1,τ2, ...,τN}
where τi = (Ci,Ti), let Γ′ = {τ′1,τ

′
2, ...,τ

′
N} be a harmonic task

set with τ′i = (Ci,T ′
i) and T ′

i ≤ Ti. Then, Γ′ is called a Primary
Sub-Harmonic (PSH) task set of Γ if there exists no harmonic

task set Γ′′ = {τ′′1 ,τ
′′
2 , ...,τ

′′
N}, τ′′i = (Ci,T ′′

i) and T ′′
i ≤ Ti, such

that for T ′
i ≤ T ′′

i for all 1 ≤ i ≤ N.

Algorithm 1 Simple Harmonic-Based Cache Allocation Ap-

proach (HBCA1)

Input: Γ, P, B, WCET Task Matrix
Output: Cache Allocation && Task Partition Results

1: rem cacheunits = B /*Remaining cache units in memory*/
2: rem Cores = P /*Remaining idle cores sharing mem.*/
3: ΓT S = /0; P = {P1,P2, ...,P};
4: for all τi ∈ Γ do

5: Find mi such that:

(
Umi

i
P

+
mi

B

)
is minimum; Ci = Umi

i · Ti;

6: end for
7: while Γ �= /0 && |P | �= 0 do
8: Sort τi increasing order with respect to Ti;
9: n = |Γ|; UT S =−∞; Bth =

rem cacheunits
rem Cores ;

10: for i = 1 to n do
11: Construct Γ′ (PSH task set of Γ) using DCT [18] with τi as base;
12: Sort all τ j ∈ Γ in increasing order with respect to ΔUj =U ′

j −Uj;
13: Γk j = pick up k j tasks from Γ such that:

(1) U(Γ′
k j
)≤ 1; (2) U(Γk j) is maximized; (3) q(Γk j) ≤ Bth;

14: if {U(Γ′
k j
)≤ 1} AND {U(Γk j)>U(ΓT S)} then ΓT S = Γk j ; end if

15: end for
16: Assign ΓT S to Pk ∈ P ; P = P −Pk; Γ = Γ−ΓT S;
17: Recalculate rem cacheunits and rem Cores;
18: end while
19: if Γ �= /0 then Return: Γ is not schedulable; end if=0

Definition 3: [14] Given a task set Γ = {τ1,τ2, ...,τN}
where τi = (Ci,Ti), let P SH (Γ) denote the set of all PSH task

sets for Γ. The harmonic index, denoted as H(Γ), is defined

as:

H(Γ) = min
Γ′∈P SH (Γ)

(U(Γ′)−U(Γ)), (2)

where U(Γ′) and U(Γ) are the overall system utilizations for

Γ′ and Γ, respectively.

The lower a task set’s harmonic index is, the closer it is to

one of its primary sub-harmonic task sets and therefore more

harmonic. As discussed by Fan et al. [14], one approach to

identify sub-harmonic task sets for a given task set is to employ

the DCT algorithm [18]. In addition, the schedulability of a

real-time task set can be predicted based on its sub-harmonic

task sets, as stated in the following theorem:

Theorem 1: [18] Let Γ′ be a sub-harmonic task set of Γ.

Then, Γ is feasible on a single processing unit under RMS, if

U(Γ′)≤ 1.

Alg. 1 first determines the local optimal cache allocation

based on the metric λi described in Def. 1 (lines 4 to 6). Then,

it packs tasks that are most harmonic to the reference task (τi)

in a sub task set Γk j and maximizes the task utilization (line

13, condition 2). To prevent “greedy” tasks from hoarding

all the available memory cache units, we set a cache units
allocation threshold (CUAT), i.e. Bth, requiring that the total

cache units allocated to tasks on the same sub task set Γk j

should not exceed Bth (line 13, condition 3). In our approach,

we define Bth as the average available cache units for each

core. This procedure is repeated by taking each τi ∈ Γ as the

reference task (for loop line 10). The schedulable task set with

the highest utilization, i.e. ΓT S, is allocated to a processing

core (line 16). The CUAT is recalculated and the procedure is

repeated for the rest of the tasks and cores, until there are no

2015 33rd IEEE International Conference on Computer Design (ICCD) 591

Table IV: Solution to Example 1 using HBCA1

CHOOSE SUB TASK SET FOR CORE 1
1 τi Ti Ci mi Ui T ′

i U ′
i ΔTi ΔUi Cum.U ′

i Cum.Ui
τ1 10 5 1 0.50 10 0.50 0 0 0.5 0.50 �
τ2 25 6 4 0.24 20 0.30 5 0.06 0.8 0.74 �
τ4 25 10 1 0.40 20 0.50 5 0.10 1.3 1.14
τ3 13 6 3 0.46 10 0.60 3 0.14 1.9 1.60

2 τi Ti Ci mi Ui T ′
i U ′

i ΔTi ΔUi Cum.U ′
i Cum.Ui

τ3 13 6 3 0.46 13 0.46 0 0 0.47 0.46
τ2 25 6 4 0.24 13 0.46 12 0.22 0.92 0.70
τ1 10 5 1 0.50 6.5 0.77 3.5 0.27 1.69 1.20
τ4 25 10 1 0.40 13 0.77 12 0.37 2.46 1.60

3 τi Ti Ci mi Ui T ′
i U ′

i ΔTi ΔUi Cum.U ′
i Cum.Ui

τ2 25 6 4 0.24 25 0.24 0 0 0.24 0.24
τ4 25 10 1 0.40 25 0.40 0 0 0.64 0.64
τ3 13 6 3 0.46 12.5 0.48 0.50 0.02 1.12 1.10
τ1 10 5 1 0.50 6.26 0.80 3.75 0.30 1.92 1.60

4 τi Ti Ci mi Ui T ′
i U ′

i ΔTi ΔUi Cum.U ′
i Cum.Ui

τ2 25 6 4 0.24 25 0.24 0 0 0.24 0.24
τ4 25 10 1 0.40 25 0.40 0 0 0.64 0.64
τ3 13 6 3 0.46 12.5 0.48 0.50 0.02 1.12 1.10
τ1 10 5 1 0.50 6.25 0.80 3.75 0.30 1.92 1.60

CHOOSE SUB TASK SET FOR CORE 2
1 τi Ti Ci mi Ui T ′

i U ′
i ΔTi ΔUi Cum.U ′

i Cum.Ui
τ3 13 6 3 0.46 13 0.46 0 0 0.46 0.46
τ4 25 10 1 0.40 13 0.77 12 0.37 1.23 0.86

2 τi Ti Ci mi Ui T ′
i U ′

i ΔTi ΔUi Cum.U ′
i Cum.Ui

τ4 25 10 1 0.40 25 0.40 0 0 0.40 0.40 �
τ3 13 6 3 0.46 12.5 0.48 0.5 0.02 0.88 0.86 �

more tasks left or no more cores are available in the system

(while loop line 7).

As an example, Table IV shows the solution to the problem

described in Example 1 using HBCA1. The two sections in the

table correspond to the procedures to find the sub task sets for

Core 1 and Core 2, respectively. Columns labeled as Ci, mi, Ti
corresponds to the WCETs, allocated cache units, and periods

of tasks. Columns labeled as T ′
i , U ′

i and Ui show periods and

utilizations of tasks in the PSH task sets. Tasks in Table IV are

sorted based on ΔUi. Columns of ΔTi, ΔUi are the period and

utilization differences between a task with its corresponding

task in the PSH task set. Columns of Cum. Ui and Cum. U ′
i

are the sums of the values for Ui and U ′
i for when each task

in the row is added. For example, in the first PSH task set,

for τ1 the Cum. U ′
i = 0.5, for τ1 + τ2 the Cum. U ′

i = 0.8, and

for τ1 + τ2 + τ4 the Cum. U ′
i = 1.3, which is larger than 1,

indicating that only τ1 and τ2 can be scheduled together in

one core (according to Theorem 1).

At the beginning, there are four tasks in the task set to be

scheduled, and therefore the algorithm generates four different

PSH task sets, as shown in the four rows of the first section

in Table IV. The first one generated is the best candidate to be

scheduled in core 1 since the feasible sub-task set (i.e. τ1,τ2)

has the largest accumulated utilization (i.e. U({τ1,τ2})= 0.74)

among the four. Hence, τ1 and τ2 are scheduled to core 1. The

algorithm continues allocating the remaining tasks, repeating

the process. In this case, the algorithm generates two different

PSH task sets. The second row in the second section of Table

IV shows that U({τ3,τ4}) = 0.86 and U ′({τ3,τ4}) = 0.88 ≤ 1.

This ensures that τ3 and τ4 can be scheduled to core 2.

The complexity of Alg. 1 mainly comes from the loop from

lines 10-15 with a complexity of O(n2log n) . Since the loop

will be executed for P times, the overall complexity of Alg.

1 is O(Pn2log n) . While Alg. 1 can successfully schedule the

task sets in Example 1, one big limitation of this approach is its

local optimum cache allocation, i.e. optimum from each task’s

perspective. In what follows, we develop a more elaborate

cache allocation and task scheduling approach that considers

the task harmonic relationship.

IV. ENHANCED HARMONIC-BASED CACHE ALLOCATION

APPROACH (HBCA2)

In order to increase the schedulability of the system, we

propose a second and more elaborate approach. The second

approach is called the HBCA2 (Harmonic-Based Cache Allo-

cation 2), and is shown in Alg. 2. It does not allocate cache

memory based solely on the relation of WCET and number

of cache units for each individual task. Instead, HBCA2 first

groups tasks according to their harmonic relationship. Then,

it allocates memory cache units to tasks in a way that can

decrease the task set CPU utilization the most, when assigned

with the same or less number of cache units possible.

The first problem for HBCA2 is to identify the candidate

sub-task sets that may be assigned to a single core. Since

the harmonic task sets can better utilize CPU resources, one

intuitive approach is to employ the harmonic index as defined

in Def. 3 and allocate tasks with a high harmonic index to

the same core. However, since the cache allocations have not

been determined, and thus the WCETs are not available, the

harmonic index defined in Def. 3 does not apply. As a result,

we use a different harmonic index (Ht(τi,τ j)) to quantify, for

a given task set, how harmonic a task is to a reference task.

Definition 4: Let Γ′
j = {τ′1,τ

′
2, ...,τ

′
N} be a PSH task set of

a task set Γ= {τ1,τ2, ...,τN} with τ′j = τ j. The harmonic index
of task τi ∈Γ with respect to task τ′i ∈ Γ′

j, denoted as Ht(τi,τ j),
is defined as:

Ht(τi,τ j) =
Ti −T ′

i
Ti

. (3)

Note that the harmonic index defined in Def. 4 is inde-

pendent of its WCET or cache allocation. Therefore, we can

construct the PHS task sets and order tasks based on the new

harmonic index before the cache allocation is performed. The

question becomes how to allocate cache units to the selected

tasks with a high degree of harmonic relationship.

We develop an incremental approach for the cache allo-

cation. Specifically, we first set the number of cache units

to be 1 (i.e. mi = 1) for each task, i.e. the most unbalanced

resource allocation when the CPU utilization is maximized

and the memory utilization is minimized for each task (line

4). Tasks with high harmonic index values are grouped into

one sub-task set Γ′
i, until (i) no task can be added to the sub-

task set while keeping the task set schedulable; (ii) the total

cache units are no more than CUAT, i.e. Bth, as explained

before (line 12).

Since the number of total cache units for the selected tasks

is less than Bth, an opportunity is presented to allocate more

cache units to the selected tasks, i.e. Γ′
i. As these selected

592 2015 33rd IEEE International Conference on Computer Design (ICCD)

Algorithm 2 Enhanced Harmonic-Based Cache Allocation

Approach (HBCA2)

Input: Γ, B, P, WCET Task Matrix
Output: Cache Allocation && Task Partition Results

1: rem cacheunits = B /*Remaining cache units in memory*/
2: rem Cores = P /*Remaining idle cores sharing mem.*/
3: ΓT S = /0; P = {P1,P2, ...,P};
4: for all τi ∈ Γ do mi = 1; Ci =C1

i ; end for
5: while Γ �= /0 && |P | �= 0 do
6: Sort τi ∈ Γ by the increasing order of Ti;
7: n = |Γ|; UT S =−∞; Bth =

rem cacheunits
rem Cores ;

8: for i = 1 to n do
9: Construct Γ′ (PSH task set of Γ) using DCT [18] with τi as base;

10: Sort τ j ∈ Γ by the increasing order of Ht(τ j,τi);
11: step = 1; Γ′

i = /0;
12: Γ′

i = pick up the first j tasks listed from Γ such that:
(1) U(Γ′

i)≤ 1; (2) q(Γ′
i)≤ Bth;

13: while j ≤ n do
14: j = j+1; Γ′

i = Γ′
i + τ j;

15: while U(Γ′
i)> 1 && q(Γ′

i) < Bth do
16: Find τGT ∈ Γ′

i s.t: CRRI(τGT ,mGT ,step) is max.;
17: if τGT is unique then
18: mGT = mGT + step; step = 1; recalculate q(Γ′

i) and U(Γ′
i);

19: else
20: step = step+1;
21: end if
22: end while
23: if U(Γ′

i)> 1 then Γ′
i = Γ′

i − τ j; end if
24: if q(Γ′

i)≥ Bth then break; end if
25: end while
26: if U(Γ′

i)>U(ΓT S) then
27: if {|Γi|> |ΓT S|} OR {|Γi|== |ΓT S| AND q(Γ′

i)≤ q(ΓT S)} then
ΓT S = Γ′

i; end if
28: end if
29: end for
30: Assign ΓT S to Pk ∈ P ; P = P −Pk; Γ = Γ−ΓT S;
31: Recalculate rem cacheunits and rem Cores;
32: end while
33: if Γ �= /0 then Return: Γ is not schedulable; end if=0

tasks decrease their execution times with more cache units,

more tasks can be assigned in the processing core without

compromising the schedulability (while loop line 13).

To this end, we design a new metric CRRI(τ j) (Combined
Resources Ratio Index (CRRI)) as follows:

Definition 5: Let Cmi
i and Cmi+x

i be the WCETs with respect

to the (privately assigned) shared cache size of mi and mi + x
cache units. The Combined Resources Ratio Index (CRRI) of

τi, denoted as CRRI(τi,mi,x), is defined as

CRRI(τi,mi,x) =
ΔUi

ΔBi
(4)

where ΔUi = (Cmi
i −Cmi+x

i)/Ti (the decrement in CPU utiliza-

tion for τi) and ΔBi = x/B (the increase in memory utilization

for τi), B is the total number of cache units in a shared cache.

CRRI is essentially a benefit/cost index for cache allocation

to a task. A higher CRRI value means that the decrement of

WCET of τi is larger with a smaller number of extra cache

units assigned to it. Thus, the higher the value for CRRI, the

better the resource usage efficiency. One by one the next tasks

in line (according to the harmonic index order) are assigned to

Γ′
i (line 14), making the task set unschedulable. Therefore, the

number of cache units for the task with the highest CRRI value,

so called the Guilty-Task(GT), is increased until the task set is

schedulable again, i.e. U(Γ′
i)≤ 1, or the number of total cache

units assigned to the task set exceeds Bth (while loop line 15).

This procedure is then repeated until the maximum number

of cache units allowed for tasks on each core is reached (line

24). If the next task in line cannot be added to the existing

task set, the original cache allocation for the existing task set

is recovered (line 23).

The complexity of Alg. 2 mainly comes from the loop from

lines 8 to 30. Assuming that in the worst case each core can

accommodate n tasks, the complexity of the loop is O(n3) and

the overall complexity of the algorithm is O(Pn3).
Similar to Alg. 1, Alg. 2 constructs the sub-harmonic task

set based on each task using the DCT algorithm. As the DCT
algorithm generates one PSH task set when each τi is taken as

the reference task, the algorithm comes up with n different sub-

task sets to be allocated to a core. These task sets may have

different performances in terms of system utilizations, task

numbers, and total numbers of cache units, which conflict with

each other. To explore all the Pareto optimal solutions may

lead to an extremely large search space and is not realistic. In

our approach, we adopt a simple metric as follows to choose

the best sub-tasks to map to a core: The chosen task set is

the one that has the maximum U(Γ′
i) value with the highest

total number of tasks |Γ′
i|. If the task numbers are the same,

then the one with the smaller total number of used cache units

q(Γ′
i) wins (lines 26 to 28).

As an example, Table V shows the solution to the problem

described in Example 1 using HBCA2. Data is presented in

the same way as in Table IV, but tasks in Table V are sorted

based on ΔTi. Unlike HBCA1, algorithm HBCA2 is able to

notice that by assigning three extra cache units to τ4 (values

underlined in the table), it is possible to schedule tasks τ2, τ3

and τ4 together on core 1, with a CPU utilization of 0.98 and

using 11 memory cache units. Then, τ1 is scheduled to core

2. Although the algorithm still requires two cores to schedule

the task set, it leaves more CPU utilization to be used on core

2 by an additional 5th task. Consequently, we can say that our

second approach is able to improve the system resource usage

and the schedulability. It is noteworthy to mention that for

the first two sub-harmonic task sets generated, the algorithm

notices that τ1 is not schedulable along with τ3 (using the

condition of Alg. 2, line 23). Such unschedulability is shown

in the table with the strikethrough text. Then, the algorithm

proceeds to try to schedule the next task in the list, i.e. τ2.

V. EXPERIMENTS, ANALYSIS AND RESULTS

In sections III and IV, two approaches are proposed. It

is hard to prove if one dominates the other analytically.

Therefore, we use simulation results to study their performance

and compare them with related work.

A. SPEC CPU2000 Benchmarks Cache Simulation

In order to test our scheduling approach, we use the data

presented in [15], corresponding to the simulation results of

the SPEC CPU2000 benchmarks [19] using the Simplescalar

2015 33rd IEEE International Conference on Computer Design (ICCD) 593

Table V: Solution to Example 1 using HBCA2

CHOOSE SUB TASK SET FOR CORE 1
1 τi Ti Ci mi Ui T ′

i U ′
i ΔTi ΔUi Cum.U ′

i Cum.Ui
τ1 10 5 1 0.50 10 0.50 0 0 0.5 0.50
τ3 13 6 3 0.46 10 0.60 3 0.14 1.1 0.96
τ2 25 6 4 0.24 20 0.30 5 0.06 0.8 0.74
τ4 25 7 4 0.28 20 0.35 5 0.07 1.15 1.02

2 τi Ti Ci mi Ui T ′
i U ′

i ΔTi ΔUi Cum.U ′
i Cum.Ui

τ3 13 6 3 0.46 13 0.46 0 0 0.47 0.46
τ1 10 5 1 0.50 6.5 0.77 3.5 0.27 1.23 0.96
τ2 25 6 4 0.24 13 0.46 12 0.22 0.92 0.70
τ4 25 7 4 0.28 13 0.54 12 0.26 1.46 0.98

3 τi Ti Ci mi Ui T ′
i U ′

i ΔTi ΔUi Cum.U ′
i Cum.Ui

τ2 25 6 4 0.24 25 0.24 0 0 0.24 0.24 �
τ4 25 7 4 0.28 25 0.28 0 0 0.52 0.52 �
τ3 13 6 3 0.46 12.5 0.48 0.50 0.02 1 0.98 �
τ1 10 5 1 0.50 6.26 0.80 3.75 0.30 1.32 1.02

4 τi Ti Ci mi Ui T ′
i U ′

i ΔTi ΔUi Cum.U ′
i Cum.Ui

τ2 25 6 4 0.24 25 0.24 0 0 0.24 0.24
τ4 25 7 4 0.28 25 0.28 0 0 0.52 0.52
τ3 13 6 3 0.46 12.5 0.48 0.50 0.02 1 0.98
τ1 10 5 1 0.50 6.25 0.80 3.75 0.30 1.32 1.02

toolset [20]. The SPEC CPU2000 benchmark suite is a col-

lection of 26 compute-intensive, non-trivial programs used

to evaluate the performance of a computer’s CPU, memory

system, and compilers. The benchmarks in this suite were

chosen to represent real-world applications, and thus exhibit a

wide range of runtime behaviors.

In order to test our algorithm, we generated a group of syn-

thetic task sets. Each of the 26 SPEC CPU2000 benchmarks

forms a curve with different points [memory size, execution

time]. An exponential-fit model (with the form of a = exp(b))
can thus be obtained with the 95% confidence interval values

for a and b for each benchmark.

In our simulations, synthetic task sets were generated by

randomly choosing a specific number of tasks n, where each

task corresponds to a curve generated from the exponential-

fit model of one of the 26 SPEC CPU2000 benchmarks. A

thousand task sets are generated for each n. Besides, each

time a new curve for a task set was generated, we used random

values for a and b that fall into the 95% confidence interval

of each of the two parameters.

B. Target Architecture

For the architecture in our experiments, we assume it

contains a total of four cores and one cache memory, which

is accessible to all cores. Similar architectures can be found

commercially [21], [22]. Our cache allocation scheme may

be implemented with any cache management scheme that

can provide a fixed size of cache unit, and enforce strict

isolation guarantees. The implementation is independent of

the associativity or the replacement policy, as long as the

relationship between execution times and number of cache

units are given.

C. Simulation results of testing HBCA1 and HBCA2 ap-
proaches

We compare two approaches, i.e. HBCA1 and HBCA2, with

three different representative scheduling schemes. The first

one is the Partitioned Rate Monotonic Scheduling (P-RMS)

algorithm. This is one of the most commonly used approaches

for partitioned scheduling on multi-core. A drawback for P-

RMS is that it does not take the task period and execution time

relationship into consideration for cache allocation and task

partitioning. We use this approach as our base line approach.

The second approach we investigate is the Harmonic-Fit

Fixed-Priority Scheduling (HFPS) algorithm, proposed by Fan

et al. [23]. This scheme takes period relationship among mul-

tiple tasks into consideration when scheduling fixed-priority

tasks on multi-core platforms. Both P-RMS and HFPS do

not take the variable execution times with cache allocations

into consideration. Therefore, we have to use the WCET

values corresponding to the worst-case scenario when mi = 1.

The third approach is IBRT-MCI-RMS [16] as mentioned

before, which determines cache allocation based on the metric

that optimizes the resource usage for a single task. These

three scheduling algorithms with both HBCA1 and HBCA2

were employed to schedule the task sets on the architecture

discussed above.

We define Schedulability Success Ratio (SSR) as the ratio

between the number of successfully scheduled task sets di-

vided by the total task sets tested. Figures 1 and 2 report the

SSR for the tested task sets with different number of real-time

tasks. Figure 1 shows results using a cache unit size of 1 KB.

Figure 2 shows results using a cache unit size of 4 KB.

In Figure 1(a), when task number is around 14 for the case

of P-RMS and 20 for the case of HFPS, we can see that the

SSR starts decreasing. Also, as the number of cache units

increases, as shown in Figure 1(b) and 1(c), we can see that

the SSRs of P-RMS and HFPS remain almost constant. This

is because they are not memory aware and therefore cannot

take advantage of the increase of the number of memory

cache units. On the other hand, the methods IBRT MCI RMS,

HBCA1 and HBCA2 take advantage of the increase of the

number of cache units. For instance, the schedulability success

ratio of HBCA2 starts decreasing when task number is around

45 in Figure 1(b) (with 256 cache units) and around 60 in

Figure 1(c) (with 512 cache units).

In Figure 2(a), when the task number is around 25 for

cases P-RMS, IBRT MCI RMS and HFPS, we can see that

the SSRs start decreasing. When the task number is around

30, the SSRs start decreasing for HBCA1 and HBCA2. As

the number of cache units increases (Figures 2(b) and 2(c)),

IBR MCI RMS, HBCA1 and HBCA2 starts decreasing their

SSR, for example, with task number values around 37, 49 and

58, respectively (see Figure 2(c)).

From the above-mentioned observations, it can be inferred

that with a larger cache memory size, the memory-aware

mechanisms, and especially our two approaches, are able to

schedule a larger number of tasks in the system. One exception

to the pattern is Figure 2(a). Note that this is because the

number of cache units in this configuration is not large enough

for the memory-aware methods to reduce the WCET values

in order to increase the number of tasks schedulable in the

system.

594 2015 33rd IEEE International Conference on Computer Design (ICCD)

(a) Number of cache units B = 128 (b) Number of cache units B = 256 (c) Number of cache units B = 512

Figure 1: Number of Tasks VS. Scheduling Success Ratio. Cache Unit Size = 1 KB

(a) Number of cache units B = 32 (b) Number of cache units B = 64 (c) Number of cache units B = 128

Figure 2: Number of Tasks VS. Scheduling Success Ratio. Cache Unit Size = 4 KB

Figure 3: 90% Schedulability Ratio. Cache Unit Size = 1 KB

Figure 3 shows the schedulability of each tested mechanism

with cache unit size of 1KB. Each mechanism displays the

value S (maximum number of tasks such that the SSR of the

evaluated method is greater than or equal to 90%) normalized

against the S value obtained with P-RMS. For instance, in

Figure 1(c), the S values for HBCA1 and HBCA2 are 47

and 62, respectively. It can be seen that HFPS always shows

the same improvement, because it is a non-memory-aware

mechanism. The remaining mechanisms that are memory-

aware show an increasing improvement with the increment of

memory cache units available per cache memory. The HBCA2

approach is able to schedule up to 4.1 times more tasks when

compared to P-RMS.

Figure 4 shows the average values of S for data using

both cache unit sizes (i.e. 1KB and 4KB) and the four cache

memory sizes. From the figure, HBCA2 is able to schedule

up to 267% more real-time tasks than the P-RMS, and 101%,

64% and 26% more tasks when compared to HFPS, IBRT-

MCI-RMS and HBCA1, respectively.

VI. RELATED WORK

As multi-core platforms become more and more perva-

sive in computing system design, how to manage shared

fast local memory, such as cache or scratch-pad memory,

in multi-core architectures to improve the predicability and

schedulability of real-time applications has attracted more and

Figure 4: Average 90% Schedulability Ratio

more research efforts. Cache partitioning has shown to be one

of the most effective methods for managing the shared fast

local memory while optimizing other design objectives, such

as performance maximization [24], quality-of-service (QoS)

enhancement [25], and fairness [6]. Existing work on cache

partitioning can be largely categorized into two groups [26]:

cache allocation policies and cache management schemes.

The first ones focus on policies to dictate how to allocate

available cache resources to different tasks to achieve differ-

ent objectives, such as fairness, priorities, and performance

maximization (e.g. [8], [27], [28]). The second ones intend to

enforce, by means of hardware or software, the distribution of

the outcomes of the cache allocations so that each program can

access its allocated cache memory (e.g. [5], [9], [29], [30]).

We are interested in developing static cache allocation

policies for real-time systems to enhance the predicability and

schedulability when scheduled in a multi-core environment.

Unlike our proposed allocation policies, some techniques have

been proposed for single-core platforms [31], [32], and some

others use a non-preemptive EDF policy for intra-core schedul-

ing [33], [34]. A few approaches that have been published are

closely related to our work. Chang et. al. [16], [35] develop a

series of algorithms for real-time systems scheduled based on

EDF in island-based multi-core real-time systems with local

and global heterogeneous memories. The algorithm, so called

2015 33rd IEEE International Conference on Computer Design (ICCD) 595

Island Based Real-Time Scheduling for Multi-Core Islands

(IBRT-MCI), intends to optimize the system resource (CPU

and fast local memory) usage for a single task. A variant of

this algorithm is also introduced in a later publication [16],

in which the intra-core scheduling is performed according to

RMS, i.e. IBRT-MCI-RMS. As discussed before, the optimal

solution that can optimize the system resource usage for a

single task does not necessarily optimize that for the entire task

set. Also, as we show in our simulation results, incorporating

period relation into cache allocation and task mapping can

significantly improve the schedulability of real-time systems.

Kim et. al. [36] propose a cache allocation policy that relies

on page coloring as the cache management scheme. Differ-

ent from our approach, their algorithm assigns cache units

privately to cores instead of tasks, thus allowing intra-core

cache units sharing. This alleviates the memory co-partitioning

problem due to the page coloring management scheme, but

increases the predictability analysis complexity. Suzuki et. al.

[7] propose two algorithms as cache allocation policies, taking

into consideration the cache memory partitions and the main

memory banks assigned to each task. Unlike our approaches,

such algorithms assume EDF as intra-core scheduling policy

instead of RMS.

VII. CONCLUSIONS

We study the cache allocation and task partitioning problem

when running a set of fixed-priority real-time tasks on a multi-

core platform sharing a common cache memory. We have

developed two static schemes for cache allocation and task

partitioning. The first one (HBCA1) combines two previous

research studies that take task variable WCET times and period

relationship into consideration. The second one (HBCA2) is

a more elaborate approach that can judiciously choose the

cache size for each task, while exploiting the task harmonic

relationships within the task set. Our simulation results show

that our second approach increases the schedulability of real-

time tasks up to four times, when compared to a conventional

Partitioned Rate Monotonic Scheduling (P-RMS). As future

work, we plan to extend this research to analyze different types

and levels of memories, within the memory hierarchy, using

the approaches proposed in this work.

REFERENCES

[1] L. A. D. Bathen and N. D. Dutt, “Software Controlled Memories for
Scalable Many-Core Architectures,” IEEE RTCSA, 2012.

[2] O. Kotaba, J. Nowotsch, M. Paulitsch, S. M. Petters, and H. Theiling,
“Multicore in real-time systems–temporal isolation challenges due to
shared resources,” WICERT, IEEE DATE, 2013.

[3] M. Taylor, “A landscape of the new dark silicon design regime,” IEEE
MICRO, 2013.

[4] N. Guan, M. Stigge, W. Yi, and G. Yu, “Cache-Aware Scheduling and
Analysis for Multicores,” ACM EMSOFT, 2009.

[5] B. Lesage, I. Puaut, and A. Seznec, “PRETI : Partitioned REal-TIme
shared cache for mixed-criticality real-time systems,” ACM RTNS, 2012.

[6] J. Lin, Q. Lu, X. Ding, Z. Zhang, X. Zhang, and P. Sadayappan, “Gaining
Insights into Multicore Cache Partitioning : Bridging the Gap between
Simulation and Real Systems,” IEEE HPCA, 2008.

[7] N. Suzuki, H. Kim, D. D. Niz, B. Andersson, L. Wrage, M. Klein,
and R. Rajkumar, “Coordinated Bank and Cache Coloring for Temporal
Protection of Memory Accesses,” IEEE CSE, 2013.

[8] R. Mancuso, R. Dudko, E. Betti, M. Cesati, M. Caccamo, and R. Pel-
lizzoni, “Real-time cache management framework for multi-core archi-
tectures,” IEEE RTAS, 2013.

[9] G. Gracioli and A. Fröhlich, “An Experimental Evaluation of the Cache
Partitioning Impact on Multicore Real-Time Schedulers,” IEEE RTCSA,
2013.

[10] R. I. Davis and A. Burns, “A survey of hard real-time scheduling for
multiprocessor systems,” ACM Computing Surveys, no. 43.4, 2011.

[11] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. Whal-
ley, G. Bernat, C. Ferdinand, R. Heckmann, T. Mitra, F. Mueller,
I. Puaut, P. Puschner, J. Staschulat, and P. Stenstr, “The Worst-Case
Execution Time Problem Overview of Methods and Survey of Tools,”
ACM TECS, 2008.

[12] C. Chang, J. Chen, T. Kuo, and H. Falk, “Real-Time Partitioned
Scheduling on Multi-Core Systems with Local and Global Memories,”
in ASP-DAC, 2013.

[13] F. Eisenbrand and N. Hähnle, “Scheduling periodic tasks in a hard real-
time environment,” Automata, languages and programming. Springer
Berlin Heidelberg, 2010.

[14] M. Fan and G. Quan, “Harmonic-Aware Multi-Core Scheduling For
Fixed-Priority Real-Time Systems,” IEEE TPDS, 2014.

[15] J. Cantin and M. Hill, “Cache performance for selected SPEC CPU2000
benchmarks,” ACM SIGARCH Comp. Arch. News, no. 29.4, 2001.

[16] C.-W. Chang, J.-J. Chen, T.-W. Kuo, and H. Falk, “Real-Time Task
Scheduling on Island-Based Multi-Core Platforms,” IEEE TPDS, 2015.

[17] J. W. Liu, Real-time systems. Prentice Hall PTR, 2000.
[18] C. Han and H. Tyan, “A Better Polynomial-Time Schedulability Test for

Real-Time Fixed-Priority Scheduling Algorithms,” IEEE RTSS, 1997.
[19] J. Henning, “SPEC CPU2000: Measuring CPU performance in the new

millennium,” Computer, vol. 33.7, 2000.
[20] D. Burger and T. Austin, “The SimpleScalar tool set, version 2.0,” ACM

SIGARCH Comp. Arch. News, no. 25.3, 1997.
[21] Y. Zhang, L. Peng, B. Li, J. K. Peir, and J. Chen, “Architecture

comparisons between Nvidia and ATI GPUs: Computation parallelism
and data communications,” IEEE IISWC, 2011.

[22] Y. Iwase, D. Abe, and T. Yakoh, “GPGPU aided method for real-time
systems,” IEEE INDIN, 2012.

[23] M. Fan and G. Quan, “Harmonic-Fit Partitioned Scheduling for Fixed-
Priority Real-Time Tasks on the Multiprocessor Platform,” IEEE/IFIP
EUC, 2011.

[24] L. Hsu, S. Reinhardt, R. Iyer, and S. Makineni, “Communist, utilitarian,
and capitalist cache policies on CMPs: caches as a shared resource,”
ACM PACT, 2006.

[25] R. Iyer, L. Zhao, F. Guo, R. Illikkal, S. Makineni, D. Newell, Y. Soli-
hin, L. Hsu, and S. Reinhardt, “QoS policies and architecture for
cache/memory in CMP platforms,” ACM SIGMETRICS Performance
Evaluation Review, 2007.

[26] D. Sanchez and C. Kozyrakis, “Vantage: scalable and efficient fine-grain
cache partitioning,” ACM SIGARCH Comp. Arch. News, no. 39.3, 2011.

[27] M. K. Qureshi and Y. N. Patt, “Utility-Based Cache Partitioning : A
Low-Overhead , High-Performance , Runtime Mechanism to Partition
Shared Caches,” IEEE/ACM MICRO, 2006.

[28] D. Tam, R. Azimi, L. Soares, and M. Stumm, “Managing Shared L2
Caches on Multicore Systems in Software,” IEEE WIOSCA-ISCA, 2007.

[29] V. Suhendra and T. Mitra, “Exploring Locking & Partitioning for
Predictable Shared Caches on Multi-Cores,” ACM DAC, 2008.

[30] B. Ward, J. Herman, C. Kenna, and J. Anderson, “Making Shared Caches
More Predictable on Multicore Platforms,” IEEE ECRTS, 2013.

[31] B. Bui, M. Caccamo, L. Sha, and J. Martinez, “Impact of cache par-
titioning on multi-tasking real-time embedded systems,” IEEE RTCSA,
2008.

[32] S. Altmeyer, R. Douma, W. Lunniss, and R. I. Davis, “Evaluation of
Cache Partitioning for Hard Real-Time Systems,” IEEE ECRTS, 2014.

[33] B. Berna and I. Puaut, “{PDPA}: Period Driven Task and Cache
Partitioning Algorithm for Multi-Core Systems,” ACM RTNS, 2012.

[34] M. Paolieri, E. Quiñones, F. J. Cazorla, R. I. Davis, and M. Valero, “IA3:
An interference aware allocation algorithm for multicore hard real-time
systems,” IEEE RTAS, 2011.

[35] C.-W. Chang, J.-J. Chen, T.-W. Kuo, and H. Falk, “Real-time partitioned
scheduling on multi-core systems with local and global memories,” IEEE
ASP-DAC, 2013.

[36] H. Kim, A. Kandhalu, and R. Rajkumar, “A Coordinated Approach
for Practical OS-Level Cache Management in Multi-core Real-Time
Systems,” IEEE ECRTS, 2013.

596 2015 33rd IEEE International Conference on Computer Design (ICCD)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

