
A

Harmonicity Aware Task Partitioning for Fixed Priority Scheduling of
Probabilistic Real-Time Tasks on Multi-Core Platforms

Tianyi Wang, Florida International University
Soamar Homsi, Florida International University
Linwei Niu, West Virginia State University
Shaolei Ren, University of California at Riverside
Ou Bai, Florida International University
Gang Quan, Florida International University
Meikang Qiu, Pace University

The uncertainty due to performance variations of IC chips and resource sharing on multi-core platforms have significantly
degraded the predictability of real-time systems. Traditional deterministic approaches based on the worst-case assumptions
become extremely pessimistic and thus unpractical. In this paper, we address the problem of scheduling a set of fixed-
priority periodic real-time tasks on multi-core platforms in a probabilistic manner. Specifically, we consider task execution
time as a probabilistic distribution and study how to schedule these tasks on multi-core platforms with guaranteed Quality of
Service (QoS) requirements in terms of deadline missing probabilities. Moreover, it is a well known fact that the relationship
among task periods, if exploited appropriately, can significantly improve the processor utilization. To this end, we present a
novel approach to partition real-time tasks that can take both task execution time distributions and their period relationships
into consideration. From our extensive experiment results, our proposed methods can greatly improve the schedulability of
real-time tasks when compared with existing approaches.

Categories and Subject Descriptors: C.3.J.7 [Real time]: Real-time and embedded systems

General Terms: Design, Algorithms, Performance

Additional Key Words and Phrases: probabilistic; multi-core; task partitions; harmonic; real-time systems

1. INTRODUCTION
With the fast pace of technology scaling, billions of transistors are integrated on a single chip. As
a transistor’s feature size continues to shrink, to the level close to the wavelength of light used
to print them, it becomes very difficult to precisely control the manufacturing process [Nassif et al.
2007]. Therefore, the performance of IC chips becomes less and less deterministic. Moreover, multi-
core technology is becoming mainstream which leads to increased sharing on multi-core platforms
which makes program executions less predictable. Such randomness can significantly degrade the
predictability of computing systems, which is critical for real-time systems.

The traditional real-time system analysis adopts a deterministic approach, i.e. based on determin-
istic real-time parameters such as the worst-case execution times (WCET), and provides a determin-
istic guarantee [Liu and Layland 1973; Lehoczky et al. 1989; Lehoczky 1990] such that all jobs from
every single task can meet their deadlines. As computing performance becomes less and less pre-

This work is supported by the National Science Foundation, under grant CNS-1423137, CNS-1457506, CNS-1565474 and
ECCS-1610471.
Author’s addresses: T. Wang, S. Homsi, O. Bai, and G. Quan, Department of Electrical and Computer Engineering, Florida
International University, FL USA; L. Niu, Department of Mathematics and Computer Science, West Virginia State Univer-
sity, WV USA; S.Ren, Department of Electrical and Computer Engineering, University of California at Riverside, CA, USA;
M. Qiu, Department of Computer Science, Pace University, NY, USA.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies show this notice on the
first page or initial screen of a display along with the full citation. Copyrights for components of this work owned by others
than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, to
redistribute to lists, or to use any component of this work in other works requires prior specific permission and/or a fee.
Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701
USA, fax +1 (212) 869-0481, or permissions@acm.org.
c© YYYY ACM 1539-9087/YYYY/01-ARTA $15.00
DOI:http://dx.doi.org/10.1145/0000000.0000000

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:2 T. Wang et al.

dictable, such a deterministic design can lead to extremely pessimistic design. In addition, the hard
deadline guarantee may not always be necessary for many real-time systems that allow a portion of
the jobs miss their deadlines. For example, even for the aerospace industry, a probability of failure
no more than 10−9 per hour is considered to be feasible by the certification authorities [ARINC
2008].

The probabilistic approach (e.g. [Tia et al. 1995]), on the other hand, is a more effective ap-
proach to tackle the randomness of real-time systems and to guarantee the design constraints
from a statistical perspective. It takes probabilistic characteristics, such as probabilistic execution
times, into real-time analysis and system design to meet real-time design constraints without over-
provisioning [Edgar and Burns 2001].

In this paper, we are interested in the problem of how to schedule a set of fixed-priority real-
time tasks with probabilistic execution times on multiple homogeneous processing cores and satisfy
the given deadline miss probabilities. We focus on fixed-priority scheduling schemes since fixed-
priority scheduling is one of the most popular scheduling schemes in real-time system design. It
has simpler implementation and better practicability than other dynamic priority-based schedul-
ings [Bini and Buttazzo 2005].

Given the NP-hard nature of task partitioning problem [Garey and Johnson 1990], one intuitive
approach is to transform the problem into a simple bin-packing problem [Johnson et al. 1974], and
employ the feasibility test methods such as those developed in [Kim et al. 2005; Maxim and Cucu-
Grosjean 2013] to ensure the deadline miss probability guarantee. Note that, it is a well known
fact that the period relationship among tasks, if exploited appropriately, can greatly improve the
processor utilization [Fan and Quan 2012; Wang et al. 2015]. The challenge however is how to
determine if a task is more “harmonic” than another one to a reference task if their periods are not
strictly integer multiples, and their execution times are probabilistic instead of deterministic. To this
end, we develop four novel metrics, with one improving upon another, to quantify the degree of
harmonicity between two tasks. Based on these metrics, we then develop an algorithm that takes
both the probabilistic execution times and task period relationship into consideration to guide the
partition process for periodic tasks with random execution times on multi-core platforms. We have
conducted extensive simulations to validate our approach. The experimental results show that the
proposed approach can significantly improve the schedulability of real-time tasks when compared
with the deterministic approach or the traditional bin-packing approaches.

The rest of the paper is organized as follows. In Section 2 we discuss related work. In Section 3
we introduce our system models and formally define our problem. In Section 4 we present the
harmonic-aware metrics we developed. In Section 5 we introduce our task partition algorithm in
details. Section 6 presents the experimental results and finally we conclude in Section 7.

2. RELATED WORK
In this section, we discuss the related work from two aspects: first, the studies that tackle the har-
monic relationship for periodic tasks; and second, the studies that deal with probabilistic analysis of
real-time scheduling.

The harmonic relationship for periodic tasks have been extensively studied for Rate Monotonic
Scheduling (RMS) on uniprocessor [Bini et al. 2001; Lauzac et al. 2003; Lu et al. 2006]. It is proved
that if all the tasks in a task set are harmonic (i.e., any two tasks’ periods pairwise divide each other),
the utilization bound can be as high as 1. Han et al. proposed a polynomial-time method to deter-
mine the feasibility of a task set by verifying the feasibility of the corresponding harmonic task
set transformed from the original task set [Han and Tyan 1997]. They proved that any task set that
can pass the feasibility test by Liu&Layland’s bound can also be validated by their proposed test.
Another approach by Kuo et al. [Kuo and Mok 1991] combines harmonic tasks into one task to
reduce the effective number of tasks and then Liu&Layland’s bound can be applied. More recently,
Bonifaci et al. [Bonifaci et al. 2013] studied the feasibility of tasks with explicit deadlines on a
uniprocessor. They proved that when all the tasks have harmonic periods, an exact polynomial-time
algorithm for computing the response time of tasks can be found for both fixed priority scheduling

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Harmonicity Aware Task Partitioning for Fixed Priority Scheduling A:3

and dynamic priority scheduling. Nasri et al. [Nasri et al. 2014] presented a method to determine a
set of harmonic periods among the possible values for tasks to simplify the worst-case timing anal-
ysis and to improve the system utilization. The advantages of exploiting task harmonic relationship
have drawn many attentions due to its potential high resource utilization and low complexity on
feasibility checking.

As computing applications and systems grow in scope and scale, there have been increasing inter-
ests on probabilistic approaches for real-time system analysis and design. For example, Tia et al. [Tia
et al. 1995] presented a probabilistic performance guarantee approach for semi-periodic tasks on a
single processor, by transforming semi-periodic tasks into a periodic task followed by a sporadic
task. Atlas et al. [Atlas and Bestavros 1998] introduced a statistical rate monotonic scheduling for
periodic tasks with statistical QoS requirements. Maxim et al. [Maxim et al. 2011] proposed three
priority assignment algorithms for probabilistic real-time systems. They further improved the pre-
vious work by proposing a framework of re-sampling mechanism that can simplify the calculation
of response time distributions in order to ease timing analysis for real-time systems in [Maxim et al.
2012]. Yue et al. [Lu et al. 2012] presented a statistical response time analysis by analysing samples
in timing traces taken from real systems. In [Kim et al. 2005], the authors proposed a stochastic
analysis framework which computed the response time distribution and deadline miss probability
for each individual task. The framework can be applied to both fixed-priority and dynamic-priority
systems on a single-core platform. The authors in [Maxim and Cucu-Grosjean 2013] extended their
work to allow both task’s execution time and period to be random variables and computed analyti-
cally the response time distribution of the tasks on uniprocessor under a task-level fixed-priority pre-
emptive scheduling policy. In [Axer and Ernst 2013], the authors proposed a new convolution-based
stochastic analysis method for single processor fixed-priority non-preemptive scheduling policy to
bound the response time under fault situations.

For multi-core case, Li et al. [Li and Tang 2013] proposed a task scheduling algorithm for hetero-
geneous computing systems considering deadline and energy consumption budget constraints. They
studied the problem of scheduling a bag-of-tasks application, with independent stochastic tasks
of normal distribution as task execution times. In [Li et al. 2013], the authors presented a model
of scheduling stochastic parallel applications on heterogeneous cluster systems. They proposed a
scheduling algorithm for parallel applications based on stochastic bottom levels and stochastic dy-
namic levels. None of these approaches takes task period relationship into consideration.

We believe that by taking advantage of the harmonic relationship between periodic tasks can
greatly improve the processor usage and system feasibility. Several previous researches (e.g. [Guan
et al. 2012; Kandhalu et al. 2012]) have already exploited the harmonic relationship between peri-
odic tasks by applying so called R-Bound [Lauzac et al. 1998], i.e., a utilization bound that takes the
possible harmonic relationship into consideration. More recently, Fan et al. [Fan and Quan 2014]
proposed a semi-partitioned approach for fixed-priority tasks on multi-core platforms with harmonic
relationship exploration. They formally proved that any task set with a system utilization bounded
by Liu&Layland’s bound can be successfully scheduled. However, all these approaches assume de-
terministic parameters in their task models, such as worst-case execution times (which could lead to
overly pessimistic results). Therefore, these approaches cannot readily apply to solve the problem
when the task execution times are probabilistic. In our approach, we are interested in partitioning
tasks with statistical execution times by exploiting harmonic relationship among them. We develop
four metrics, with each one improving upon another, to quantitatively measure the harmonic rela-
tionship between different tasks with statistical execution times. Then based on the proposed four
metrics, we allocate tasks that are close to be harmonic to one processor to improve system resource
usage. To our best knowledge, this is the first paper that tackles task mapping with probabilistic
execution times on multi-core systems by taking advantage of harmonic relationship [Wang et al.
2016].

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:4 T. Wang et al.

3. PRELIMINARY
In this section we first introduce our system models including real-time task models and processor
models. We then formulate the problem formally.

3.1. System models and problem formulation
We consider a real-time system consisting of N independent periodic tasks, denoted as Γ =
{τ1,τ2, . . . ,τN}, to be scheduled on a homogeneous multi-core platform, denoted as P =
{p1, p2, ..., pK}, according to the RMS policy. Each task τi ∈ Γ, is characterized by a tuple (Ci,Ti),
where

Ci =

(
c1 = cmin ...ck · · · cn = cmax
Pr(cmin) ...Pr(ck) · · · Pr(cmax)

)
(1)

representing the worst-case execution time distribution [Edgar and Burns 2001; Lu et al. 2012] of
τi, i.e., the probability that the worst execution time of Ci = ck is Pr(ck). For all possible values of
Ci, we have ck ∈ [cmin,cmax], where cmin and cmax are the minimum and maximum values for Ci, and
∑

n
k=1 Pr(ck) = 1. Ti is the period of task τi and we have Ti ≤ Tj if i < j. We also assume that the

deadline of a task equals its period, i.e., Di = Ti.
Since a task’s execution time is not unique, the response time for each job may be different.

Therefore a job may meet or miss its deadline. We formally define the concept of deadline miss
probability as follows.

Definition 1. The deadline miss probability (DMP) of job τi, j (denoted as DMPi, j) is the probability
that job τi, j misses its deadline and can be formulated as following:

DMPi, j = Pr(Ri, j > Di, j) (2)

where Ri, j is the response time distribution of job τi, j and Di, j is the deadline of job τi, j. Accordingly,
the deadline miss probability of task τi (denoted as DMPi) is defined as the probability that the task
misses its deadline and formulated as

DMPi = Pr(Ri > Di) (3)

Finally, the deadline miss probability for a task set Γ (denoted as DMPΓ) is defined as

DMPΓ = max{DMPi},τi ∈ Γ. (4)

Our research problem can be formulated as follows:

Problem 1. Given

— a task set consisting of N tasks, Γ = {τ1,τ2, . . . ,τN},
— a multicore platform with K homogeneous processing cores, P = {p1, p2, ..., pK},
— and the deadline miss probability constraint, i.e. DMPΓ ≤Cd , with Cd a constant

partition the task set Γ on the multi-core platform and schedule the tasks on each core using RMS
scheme such that the deadline miss probability constraint for the task set is satisfied and the number
of cores is minimized.

3.2. Motivations
One simple approach to solve this problem is to transform it into the traditional bin-packing prob-
lem. Note that, with the knowledge of tasks assigned to a processing core, Yue et al. [Lu et al. 2012]
proposed a method to calculate the probabilistic response time distribution for a real-time task un-
der a preemptive uniprocessor fixed-priority scheduling policy, which can be applied to determine
if the DMP constraint can be satisfied. Therefore, traditional bin-packing approaches such as First
Fit, Next Fit, Best Fit can be readily applied to assign tasks to different cores.

It is a well known fact that, for RMS, the processor utilization can reach as high as one if tasks
are harmonic, i.e. task periods are integer multiples of one another. For tasks that are not entirely

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Harmonicity Aware Task Partitioning for Fixed Priority Scheduling A:5

harmonic, Fan et al. [Fan et al. 2015] showed that, if the period relationships among tasks can be
appropriately exploited, the processor utilization can be significantly improved. Specifically, they
introduced three interesting concepts, sub harmonic task set, the primary harmonic task set, and
harmonic index, which are defined as follows:

Definition 2. [Fan et al. 2015] Given a task set Γ = {τ1,τ2, . . . ,τN}, let Γ̂ = {τ̂1, τ̂2, . . . , τ̂N}, where
τ̂i = (Ci, T̂i), T̂i ≤ Ti, and T̂i|T̂j if i < j (a|b means ”a divides b” or ”b is an integer multiple of a”).
Then Γ̂ is a sub harmonic task set of Γ.

Definition 3. [Fan et al. 2015] Let Γ′ be a sub harmonic task set of Γ. Then Γ′ is called a primary
harmonic task set of Γ if there exists no other sub harmonic task set Γ′′ such that T ′i ≤ T ′′i for all
1≤ i≤ N.

Definition 4. [Fan et al. 2015] Given a task set Γ, let G(Γ) represent all the primary harmonic
task sets of Γ. Then the harmonic index of Γ, denoted as H (Γ), is defined as

H (Γ) = min
Γ′∈G(Γ)

∆(U ′) (5)

where

∆(U ′) =
{

U(Γ′)−U(Γ) if U(Γ′)≤ 1,
+∞ otherwise.

(6)

U(Γ) and U(Γ′) represent the utilizations of task set Γ and Γ′, respectively. We can employ Sr
or DCT algorithm [Han et al. 1996; Han and Tyan 1997] to find all sub harmonic task sets with a
complexity as low as O(N · log(N)).

We believe that, by exploiting the period relationships among tasks, we can greatly improve the
processor utilization. The challenge is how to quantify the degree of harmonicity among different
tasks with probabilistic execution times. For tasks with deterministic execution times, according
to Definition 4, given a reference task, a task with its original period closer to the transformed
period in the primary harmonic task set has a higher degree of harmonicity. However, the degree of
harmonicity of a task to its reference task may depend not only on its period but also on its execution
time distribution as well. Consider a task set with three tasks τa = {

(
2 3

0.3 0.7

)
, 6}, τb = {

(
4 6

0.5 0.5

)
, 12},

and τc = {
(

3 7
0.5 0.5

)
, 12}. Note that both τb and τc have the same period and same mean execution

time. If we allocate τa and τb together to a core, we have DMPτa,τb = 0. If we allocate τa and τc to a
core, we have DMPτa,τc = 24.5%. Therefore, the degree of harmonicity of a task depends not only
on its period, but also on its execution time distribution as well.

In what follows, we first introduce four metrics that we have developed, with each improving
upon the previous one, to quantify the degree of harmonicity between two tasks. We then propose
an algorithm that takes both the probabilistic execution times and task period relationships into
consideration to guide the partition process for periodic tasks with random execution times on multi-
core platforms.

4. HARMONIC INDEX FOR TASKS WITH PROBABILISTIC EXECUTION TIMES
In this section, we formally introduce the metrics which take the harmonic relationship into con-
sideration to guide our allocation of tasks with random execution times. Since not all tasks in a
task set are strictly harmonic, it is desirable that we quantify the harmonicity of tasks and allo-
cate tasks with higher degree of harmonicity to the same processor to achieve higher utilization as
well as higher schedulability. In what follows, we develop four metrics to measure the harmonic
relationship among tasks.

4.1. Mean-based harmonic index
Our goal is to quantify the degree of harmonicity between two tasks. Before we define the harmonic
index for this purpose, we first introduce the following concept.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:6 T. Wang et al.

Definition 5. Given a task set Γ = {τ1,τ2, . . . ,τN} and one of its primary harmonic task set Γ′ =
{τ′1,τ′2, . . . ,τ′N}, let τr ∈ Γ, τ′r ∈ Γ′ and τr = τ′r. Then τr is called the reference task of the primary
harmonic task set Γ′, and Γ′ is called the primary harmonic task set based on τr and is denoted as
Γ′(τr).

According to Definition 5, the primary harmonic task set based on τr, i.e. Γ′(τr), is simply the
primary harmonic task set with τr unchanged.

When task execution times are probabilistic, one intuitive approach is to employ the execution
time mean and thus transform the probabilistic execution time distribution into a deterministic value.
The harmonic index can therefore be defined in a similar way as that for tasks with deterministic
execution times.

Definition 6. Given a task τi = {Ci,Ti} ∈ Γ and its reference task τr ∈ Γ, let τ′i = {Ci,T ′i } be the
corresponding task of τi in Γ′(τr). Then the mean-based harmonic index of task τi w.r.t. the reference
task τr, denoted as Hm(τi,τr), is defined as

Hm(τi,τr) = |Ū(τi)−Ū(τ′i)|, (7)

where

c̄i = ∑
∀(ck,Pr(ck))∈Ci

ck ·Pr(ck), (8)

Ū(τi) =
c̄i

Ti
. (9)

Note that τr in equation (7) indicates Ū(τ′i) is calculated under its corresponding task set Γ′(τr).

Transformed based Transformed based
on τ1 (T1|Ti) on τ2 (T2|Ti)

τi (Ci,Pri) Ti T̂i Hm(τi,τ1) T̂i Hm(τi,τ2)

1 (2,0.3) 6 6 0 5 0.09
(3,0.7)

2 (4,0.5) 10 6 0.3 10 0
(5,0.5)

3 (4,0.5) 12 12 0 10 0.083
(6,0.5)

4 (8,0.7) 20 18 0.032 20 0
(10,0.3)

Table I: Sub-harmonic task set transformations of a 4-task set.

Let us consider the example shown in Table I. A task set contains four independent periodic
tasks, each with a probabilistic execution time distribution and a deterministic period. We trans-
form the original task set into two primary harmonic task sets, based on τ1 and τ2, respectively (for
more details, please check [Han and Tyan 1997]). For the first primary harmonic task set which
is transformed based on task τ1, we take τ2 as an example to show how we derive its mean based
harmonic index Hm(τ2,τ1). According to equation (7), Ū(τ2) = 0.45 and Ū(τ′2) = 0.75. There-
fore, Hm(τ2,τ1) = |Ū(τ2)− Ū(τ′2)| = 0.3. Then if we sort the tasks based on Hm(τi,τ1), we have
Hm(τ1,τ1)= 0, Hm(τ3,τ1)= 0, Hm(τ4,τ1)= 0.032 and Hm(τ2,τ1)= 0.3. If we combine task τ1 with
τ3, task τ1 with τ4 and task τ1 with τ2 into three different subsets and allocate each subset to a proces-
sor, the deadline miss probability of each individual subset are DMPτ1,τ3 = 0%, DMPτ1,τ4 = 10.29%
and DMPτ1,τ2 = 24.5%. This shows that smaller Hm does imply better harmonic relationship be-
tween two tasks.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Harmonicity Aware Task Partitioning for Fixed Priority Scheduling A:7

From Definition 6, we can see that the mean-based harmonic index (Hm), with a computational
complexity of O(|Ci|) with |Ci| representing the number of different possible worst-case execution
times of task τi, quantifies the harmonic relationship of a task to its reference task by measuring
the difference between its expected utilization and that in the primary harmonic task set. While the
mean value is a good representative value for a probabilistic distribution, it cannot capture the entire
characteristics of a probabilistic distribution. Recall the example shown in Sub-section 3.2, task τb
and τc do not only have the same period but also the same mean. According to Hm, the two tasks
have the same harmonic index. However, the scheduling results are different (DMPτa,τb 6=DMPτa,τc).
Therefore, more effective harmonic index needs to be developed.

4.2. Variance-based harmonic index
As we have discussed earlier, it is possible that two tasks with the same mean may have different
harmonic relationships compared to a third task. The reason is that the harmonic relationship refers
to the “distance” between the two tasks (the smaller the “distance”, the better harmonic relationship
the two tasks have). However, the mean-based harmonic index calculates the “distance” solely based
on the expected worst-case execution time which cannot accurately capture the harmonic relation-
ship between two tasks. We need a harmonic metric that can account for the deviations of execution
time distributions between two tasks instead of the mean execution times only, when evaluating the
harmonic relationship, i.e., the “distance”. It is therefore reasonable to take the variance into con-
sideration when designing the harmonic metric. To this end, we develop a variance-based harmonic
index as follows.

Definition 7. Given τi ∈ Γ and its reference task τr ∈ Γ, let τ′i = {Ci,T ′i } be the corresponding task
of τi in Γ′(τr). Then the variance-based harmonic index of task τi w.r.t. the reference task τr, denoted
as Hv(τi,τr), is defined as

Hv(τi,τr) = Hm(τi,τr)+Var(τi,τr), (10)

where

Var(τi,τr) =

√
∑∀ck∈Ci(ck− c̄i)2 ·Pri

T ′i
(11)

Hv, with the same computational complexity as that of Hm, improves upon Hm by taking both
the mean value of execution times as well as their variances into consideration. For the exam-
ple shown in Section 3.2, we have Hv(τa,τb) < Hv(τa,τc) (since Hm(τa,τb) = Hm(τa,τc) and
Var(τa,τb) < Var(τa,τc)) indicating that task τb is more harmonic than τc to reference task τa.
This conforms to the results from the schedulability analysis. The variance-based harmonic index
can capture more accurate harmonic relationship than mean-based harmonic index since it consid-
ers both mean and variance of execution time distributions between two tasks, and therefore, it can
be a more accurate representative in terms of the harmonic relationship. However, there are still
problems with the proposed harmonic metric. First, it essentially implies that both execution time
mean values and variances are equally important in evaluating the degree of harmonicity. Second,
again, using only mean value and its variance cannot capture accurately the characteristics of ex-
ecution time distributions. Many execution time distributions may have the same mean value and
variance but totally different probabilistic characteristics. In what follows, we quantify the harmonic
relationship between two tasks based on their execution time distribution formulations.

4.3. Cumulative distribution function based harmonic index
We believe that we can achieve a better correlation of harmonic index and task schedulability if we
can capture execution time distributions more accurately and incorporate them into the harmonic
index. To this end, we propose another metric developed on the cumulative distribution function of
task execution times. Before we present our new harmonic index, we first introduce the following
concepts and notations.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:8 T. Wang et al.

Definition 8. Given τi ∈ Γ, the cumulative distribution function of the task’s utilization, denoted as
CDFτi(u) , can be formulated as

CDFτi(u) = ∑Pr(
Ci

Ti
≤ u) (12)

Essentially, the cumulative distribution function is the utilization CDF of task τi. Note that CDFs
for τi ∈ Γ and its corresponding task τ′i ∈ Γ are different. To measure the “distance”, we can use the
`2-norm operation.

Definition 9. Given a vector x = [x1,x2, ...,xp], its `2-norm, denoted as ||x||, is defined as

||x||=

√
∑

p
k=1 |xk|2

p
(13)

Now we are ready to define the new harmonic index.

Definition 10. Given τi ∈ Γ and its reference task τr ∈ Γ, let τ′i = {Ci,T ′i } be the corresponding task
of τi in the primary harmonic task set of Γ, i.e. τ′i ∈ Γ′(τr). Then the cumulative distribution function
based harmonic index of task τi to τr, denoted as HC(τi,τr), is defined as

Hcd f (τi,τr) = ||CDFτi(x)−CDFτ′i
(x)|| (14)

where x = [x1,x2, ...,xp] represents a sequence of utilization values and

CDFτi(x) = [CDFτi(x1),CDFτi(x2), ...,CDFτi(xp)], (15)
CDFτ′i

(x) = [CDFτ′i
(x1),CDFτ′i

(x2), ...,CDFτ′i
(xp)]. (16)

Note that for a given task τi and its reference task τr, the corresponding primary harmonic task
τ′i may have a different set of possible utilizations than that in τi. For example, consider a task
with a four possible WCETs, i.e. τi = {

(
3 4 6 8

0.3 0.3 0.2 0.2

)
, 12}. Accordingly we have four possible

utilizations
(x1 x2 x3 x4

0.25 0.33 0.50 0.67

)
and their corresponding CDFs as CDFτi(x1) = 0.3, CDFτi(x2) = 0.6,

CDFτi(x3) = 0.8 and CDFτi(x4) = 1.0. Assume the period for the reference be 10, and we have τ′i
= {
(

3 4 6 8
0.3 0.3 0.2 0.2

)
, 10}. Thus the possible utilizations of τ′i become

(x′1 x′2 x′3 x′4
0.3 0.4 0.6 0.8

)
and CDFτ′i

(x′1) =
0.3, CDFτ′i

(x′2) = 0.6, CDFτ′i
(x′3) = 0.8 and CDFτ′i

(x′4) = 1.0. Since x j 6= x′j, j = 1,2,3,4, we cannot
apply equation (14) directly to calculate Hcd f (τi,τr). To resolve this problem, we combine both
(x1,x2,x3,x4) and (x′1,x

′
2,x
′
3,x
′
4) to form a new utilization vector, i.e. x = {x1,x′1,x2,x′2,x3,x′3,x4,x′4}

for this example, and reconstructed CDFτi and CDFτ′i
as shown in the following table. We can then

x1 x′1 x2 x′2 x3 x′3 x4 x′4
Utilizations(x) 0.25 0.30 0.33 0.40 0.50 0.60 0.67 0.80

CDFτi(x) 0.30 0.30 0.6 0.60 0.80 0.80 1.00 1.00
CDFτ′i

(x) 0.0 0.30 0.30 0.60 0.60 0.80 0.80 1.00

apply equation (14) to calculate Hcd f (τi,τr).
The rationale behind the definition of cumulative distribution function based harmonic index is

that we intend to determine the degree of harmonicity by measuring how much the task utilization
distribution has changed after changing its period to be an integer multiple of that of the reference
task. The larger the difference, the less harmonic the two tasks are. It is not difficult to see that the
computational complexity for calculating HC(τi,τr) is still O(|Ci|), as p≤ |Ci| in equation (14).

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Harmonicity Aware Task Partitioning for Fixed Priority Scheduling A:9

4.4. The utilization sum based harmonic index
Note that Hcd f determines if τi is harmonic to τr only by the “distance” of utilization distributions
of task τi in Γ and Γ′(τr). While the utilization of τi can affect the task schedulability, the combined
utilization distribution of τi and τr can be a better indicator to the schedulability for task sets contain-
ing both τi and τr. Therefore, to design a harmonic index that can be a more effective schedulability
indicator, it is reasonable to use the sum of utilization of both τi and τr rather than that of τi alone.

For ease of our presentation, we first introduce the following notation.

Definition 11. Given τi,τ j ∈ Γ, the cumulative distribution function of the total utilization of τi and
τ j, denoted as CDFτi,τ j(u) , can be formulated as

CDFτi,τ j(u) = ∑Pr(
Ci

Ti
+

C j

Tj
≤ u). (17)

CDFτi,τ j can be easily calculated using convolution once (Ci,Ti) and (C j,Tj) are given.

Definition 12. Given a task τi and a reference task τr, let τ′i = {Ci,T ′i } be the corresponding task
of τi in the primary harmonic task set of Γ, i.e. τ′i ∈ Γ′(τr). Then the utilization sum based harmonic
index of τi based on reference task τr, denoted as Hsum(τi,τr), is defined in the following equation,

Hsum(τi,τr) = ||CDFτi,τr(x)−CDFτ̂i,τr(x)|| (18)

The index Hsum evaluates the task harmonic relationship based on the variation of combined uti-
lization distribution, which is more closely related to the task schedulability and thus can potentially
achieve better results. In the meantime, however, the computational complexity also increases. Note
that CDFτi,τ j(u) may have as many as |Ci| × |C j| different values. The complexity of calculating
Hsum with regard to τi,τ j is thus O(|Ci|× |C j|).

So far we presented four metrics for quantifying the harmonic relationship among tasks. It forms
the basis for our task partitioning approach that exploits harmonic relationship for tasks with prob-
abilistic execution times. In what follows, we present our task partitioning algorithm in details.

5. TASK PARTITIONING
In this section, we first present our task partitioning algorithm and then we discuss how to select the
best candidate task set to allocate to a core.

5.1. Partitioning algorithm
With the harmonic indices defined above, we are ready to introduce our task partitioning algorithm.
Essentially, our algorithm intends to identify the tasks with the highest harmonic index values,
and put them into one core to improve the processor utilization. To satisfy the DMP requirement,
we conduct the schedulability analysis based on the technique proposed in [Lu et al. 2012]. The
detailed algorithm is illustrated in Algorithm 1.

As shown in Algorithm 1, our algorithm chooses the reference task from the first task τ1 till the
last task τN . For each reference task, all the rest of the tasks are ordered according to the chosen
harmonic index values, and selected from high value to low to form a sub-task set until the DMP test
is failed. After we identify all candidate subsets from each primary harmonic task set, we choose
the best subset from all the candidate subsets and allocate them to a core (to be explained further in
Section 5.2). Then we delete these tasks from task set Γ. We repeat this process for the rest of the
tasks until all tasks are assigned.

The computational complexity of the algorithm comes from the following major components:
(1) To identify all primary harmonic task sets with complexity of O(N2), where N is the number of
tasks; (2) To sort the tasks in a primary task set based on a designated harmonic index with complex-
ity of O(NlogN×Ch), where Ch is the computational complexity for calculating the harmonic index;
(3) For each primary harmonic task set, to determine how many tasks can fit in a core without violat-
ing the DMP constraint with a complexity of O(NC f), where C f is the computational complexity for

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:10 T. Wang et al.

feasibility checking of a task set. The overall complexity is therefore O(N3 +N2logNCh +N3C f).
Since C f >> N [Lu et al. 2012] and C f >> Ch, the overall complexity of the Algorithm 1 is thus
approximately (N3C f).

Algorithm 1 Stochastic task partitioning algorithm.
Input:

1: Task set: Γ = {τ1,τ2, . . . ,τN};
2: Task set deadline miss probability: DMPΓ;

Output:
3: Task partitions: = {subset1,subset2, . . . ,subsetK}, K is the total number of cores.
4:
5: while Γ 6= /0 do
6: SubSet = /0; //initialize the subset to empty
7: Γ′ = {Γ′(τ1),Γ

′(τ2), . . . ,Γ
′(τL)}, // identify all the primary harmonic task sets

8: for i = 1 to N // for each primary harmonic task set do
9: Γ′(τi) = {τ

′
1,τ

′
2, . . . ,τ

′
N} // sort the tasks with increasing order of Hm, Hv, Hcd f or Hsum

10: subseti = /0 // initialize a subset for Γ′(τi)
11: for j = 1 to N do
12: subseti = subseti + τ

′
j

13: if DMPsubseti > DMPΓ then
14: subseti = subseti− τ

′
j;

15: break;
16: end if
17: end for
18: Identify the best subseti;
19: SubSet = subseti;
20: end for
21: Γ = Γ−SubSet;
22: end while

5.2. Best subset selection
In Algorithm 1, with each task as the reference, we can identify a sub task set that is most harmonic
to the reference task. All of them can satisfy the DMP requirement if they are assigned to a core.
The question is then which sub task set is the best one and should be chosen to assign to a core.
If a task utilization is a deterministic value, we can simply choose the task set with the highest
total utilization. However, what if the task utilization is probabilistic rather than deterministic? We
explain how we choose the best subset with an example.

Consider the example shown in Table I. Let us take task τ1 as the reference task, then the two
corresponding subsets, (τ1,τ3) and (τ2,τ4), are both schedulable with DMP = 0. Now the question
is which one should we pick first to assign to a core such that the processor utilization is optimized.
The intuitive idea is to pick the subset with the larger utilization. However, since the tasks have
random execution times, how should we determine if a subset has a larger utilization than another?

Let Ui denote the utilization distribution for task τi. For tasks in Table I we have U1 =
(2

6
3
6

0.3 0.7

)
,

U2 =
(4

10
5
10

0.5 0.5

)
, U3 =

(4
12

6
12

0.5 0.5

)
, and U4 =

(8
20

10
20

0.7 0.3

)
. The utilization distribution of a subset is the

convolution of each task within the subset. So we have U1,3 = U1
⊗

U3 =
(

0.67 0.83 1.0
0.15 0.5 0.35

)
. Similarly

we have U2,4=
(

0.8 0.9 1.0
0.35 0.5 0.135

)
(transformed to decimal values for better illustration). As we can see,

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Harmonicity Aware Task Partitioning for Fixed Priority Scheduling A:11

U1,3 and U2,4 have different possible utilization values and it is hard to determine which task set
has a larger utilization. In what follows, we propose two methods for sub task set selection.

Method 1: Mean-based sub task set selection (MTS)
Given two subsets Γ1 and Γ2, let their total utilization distributions be UΓ1 and UΓ2 . Then one

intuitive approach is to rank Γ1 and Γ2 based on the mean values of their total utilization distribu-
tions, i.e. UΓ1 , UΓ2 . The higher the mean utilization for a task set is, the higher the average resource
demand it requires and thus should be chosen first.

For example, since the mean utilization for subset (τ1,τ3) is 0.67∗0.15+0.83∗0.5+1∗0.35 =
0.8655 and that for subset (τ2,τ4) is 0.8 ∗ 0.35+ 0.9 ∗ 0.5+ 1 ∗ 0.135 = 0.865. We choose subset
(τ1,τ3) over (τ2,τ4). This approach is simple and straightforward. However, this approach suffers
the same problem as our mean-based harmonic index introduced before — the mean value cannot
accurately capture the characteristic of a probabilistic distribution.

Method 2: Utilization threshold-based sub task set selection(UTTS)
A larger value of mean utilization for a task set indicates a higher workload demand in average by

the task set. However, when considering the deadline miss probability, not all the workload demands
are “critical” in the same way. Recall that, for fixed-priority tasks, any task set with total utilization
no more than the Liu&Layland’s bound, i.e. close to 0.7 as the task number approaching infinite,
are guaranteed to be schedulable. When task set utilization is higher than the Liu&Layland’s bound,
they are not necessarily schedulable at all.

Consider two sub task sets Γ1 and Γ2, and let Pr(UΓ1 > 0.7) > Pr(UΓ2 > 0.7). Since both Γ1
and Γ2 are guaranteed to meet the deadline miss probability requirement, it seems reasonable to
choose Γ1 first as it has a higher probability to accommodate workload demands which may not
be schedulable otherwise. Based on this observation, we develop the second sub task set selection
method, which is formulated in Algorithm 2.

Algorithm 2 The utilization threshold-based sub task set selection (UTTS).
1: Probability = 0,SubSet = subset1; //initialization
2: Ut = 0.7;
3: for each subseti do
4: if Pr(Usubseti >Ut)> Probability then
5: Probability = Pr(Usubseti >Ut);
6: SubSet = subseti;
7: end if
8: end for
9: return SubSet;

As an example, we can calculate that the probability that subset (τ1,τ3) has utilization higher than
0.7 is Pr(U1,3 > 0.7) = 0.85 while that for subset (τ2,τ4) is Pr(U2,4 > 0.7) = 1.0. Therefore subset
(τ2,τ4) is a better choice first because it has higher probability to have larger utilization than subset
(τ1,τ3).

6. EXPERIMENTAL RESULTS
In this section, we used experiments to investigate the effectiveness of our proposed algorithms. We
first studied how different sub task set selection strategies may affect the task partitioning perfor-
mance. We then examined how effective are the four harmonic indexes presented in Section 4, when
compared with other existing approaches. We collected two sets of experimental results for this pur-
pose: (1) the required numbers of cores for given real-time task sets by different approaches; (2)
the feasibility ratios of randomly generated real-time tasks on multi-core platforms with pre-defined
core numbers. Finally we investigate the computational costs of our proposed approaches.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:12 T. Wang et al.

6.1. Experimental setup
In our experiments, we randomly generated real-time tasks as our test cases, using algorithm simi-
lar to UUniFast approach [Bini and Buttazzo 2005]. Specifically, we picked 2, 4, 6 and 8 different
possible task’s worst-case execution times for each real-time task. The possible worst-case execu-
tion times for a task was randomly picked from interval [1,100]. As shown in equation (1), our
approaches are not limited to any specific probabilistic distribution for the worst-case execution
time. The corresponding probability for each possible worst-case execution time of each task was
also randomly generated, with overall probabilities equal to 1. We then generated periods for all the
tasks randomly such that the expected utilization of each task is within range [0.1,0.4].

Six different approaches were implemented in our experiment. The first approach is the traditional
bin-packing approach. Specifically, real-time tasks are ordered according to their mean utilizations,
and then allocated to a core according to the first-fit strategy until the deadline miss probability
exceeds the given threshold. We denote this approach as FF. Note that this approach does not take
the task period relationship into consideration. The second approach, similar to that in [Fan et al.
2015], is the deterministic harmonicity-aware task partitioning approach based on the longest worst-
case execution time and not the worse case execution time probabilistic distribution. We denote this
approach as WCET-H. We also implemented four approaches based on four harmonic indexes we
developed, i.e. the mean-based harmonic index, the variance-based harmonic index, the cumulative
distribution based harmonic index, and the cumulative distribution based harmonic index, which
are denoted as Hm, Hv, Hcd f and Hsum, respectively.

6.2. Subset selections
First we want to study how different sub task selection strategies may affect the task partitioning
results. We implemented both strategies in Section 5.2 and compared the results by task partitioning
approach Hsum. We denote the results using the mean-based sub task set selection method as MT S.
For the second sub task set selection method UT T S, we set the utilization threshold (Ut) to one
of the five values: 0.5, 0.6, 0.7, 0.8, 0.9. Specifically, we use UT T S-Ut to denote the results of
with utilization threshold Ut. For example, UT T S-0.5 denotes the results when Ut = 0.5. Three
sets of different test cases were generated, i.e. with 8 tasks, 12 tasks and 16 tasks in each task set,
respectively. For each set of test cases, we randomly generated 100 task sets and set DMPΓ = 5%.
The total number of required cores were collected and are shown in Figure 1.

From Figure 1, we can see that task partitioning results by UT T S-0.7, UT T S-0.8, and UT T S-0.9
outperform that by MT S in most cases. For example, in Figure 1(b) for the test cases with 8 task
number and 8 possible worst-case execution times, UT T S-0.9 outperforms MT S by as much as
5%. Also, when considering UT T S approach with different utilization thresholds, it is interesting to
observe from Figures 1(a), 1(b), and 1(c) that, the the performance keeps improving as the threshold
increases from 0.5 to 0.9. For example, as shown in Figure 1(b), the performance improves by almost
1 core as the threshold increases from 0.5 to 0.9. This verifies our hypothesis that selecting sub task
sets with high probability of high utilizations tends to achieve better results than the ones with
larger expected utilizations, as a task with high probability to reach high utilization is difficult to be
schedulable together with other tasks, even though its expected utilization is relatively low.

As shown in Figure 1, the utilization threshold of 0.9 works well in UT T S under different scenar-
ios and can be easily justified. Therefore in what follows, we choose 0.9 as the utilization threshold.

6.3. Performance w.r.t. number of cores
Next, we study the performance of our proposed approaches in terms of number of cores when
scheduling given task sets. We generated three types of task sets, i.e. with 8 tasks, 12 tasks and 16
tasks, respectively. For each type of task set, we also set the possible worst-case execution times for
each task to be 2, 4, 6 or 8. We also studied two different deadline miss probabilities: DMPΓ = 5%
and DMPΓ = 10%. For each test case, we randomly generated 100 task sets and the results are
shown in Figure 2 and Figure 3.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Harmonicity Aware Task Partitioning for Fixed Priority Scheduling A:13

2.8

2.9

3

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

MTS UTTS-0.5 UTTS-0.6 UTTS-0.7 UTTS-0.8 UTTS-0.9

N
um

be
r

of
 P

ro
ce

ss
or

s

2 Possible Execution Times 4 Possible Execution Times
6 Possible Execution Times 8 Possible Execution Times

(a)

4.2

4.4

4.6

4.8

5

5.2

5.4

5.6

MTS UTTS-0.5 UTTS-0.6 UTTS-0.7 UTTS-0.8 UTTS-0.9

N
um

be
r

of
 P

ro
ce

ss
or

s

2 Possible Execution Times 4 Possible Execution Times
6 Possible Execution Times 8 Possible Execution Times

(b)

0

1

2

3

4

5

6

7

8

MTS UTTS-0.5 UTTS-0.6 UTTS-0.7 UTTS-0.8 UTTS-0.9

N
um

be
r

of
 P

ro
ce

ss
or

s

2 Possible Execution Times 4 Possible Execution Times
6 Possible Execution Times 8 Possible Execution Times

(c)

Fig. 1: Performance of subset selection methods w.r.t. number of cores for (a) 8 tasks, (b) 12 tasks
and (c) 16 tasks using DMPΓ = 5% and utilization uniformly generated in the range [10%−40%]

From Figure 2 and Figure 3, we can see that Hm, Hv, Hcd f and Hsum outperform FF in most test
cases. For example, as shown in Figure 3(c), when the number of tasks is 16, and the number of
different possible worst-case execution times is 6, we can see that Hm, Hv, Hcd f and Hsum outperform
FF by 0.1,0.2,0.3, and 0.4 cores, respectively. This clearly shows the advantage of taking the task
period relationship into consideration when partitioning tasks. In the meantime, we can also see
that Hm, Hv, Hcd f and Hsum can achieve better task partitioning results than WCET -H, i.e. with
improvement of 0.3, 0.5, 0.6 and 0.7 cores, respectively, as shown in Figure 2(c) for sets with 16
tasks and 8 worst-case execution times. WCET -H makes task partitioning decisions based solely
on one single deterministic parameter, i.e. the longest worst-case execution times. It is thus biased
and can be extremely pessimistic for task sets that exhibit significant randomness in its worst-case
execution time. The other four approaches, by taking probabilistic nature of tasks into consideration,
can therefore achieve better performance.

It is interesting to see that our experiments indeed show that our proposed four approaches, i.e.
Hm, Hv, Hcd f and Hsum, improve one another following the same order. For example, as shown in
3(b), Hsum has the highest performance improvement over FF , WCET -H with 0.3 and 0.35 less
core usage in average, respectively. Hm, on the other hand, has the lowest performance improve-
ment over FF , WCET -H with 0.1 and 0.15 less core usage in average, respectively. Hm determines

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:14 T. Wang et al.

how harmonic two tasks are based solely on their expected worst-case execution times. While Hv
improves upon Hm by incorporating the worst-case execution time variances, the expected value and
variance alone are not enough to capture the characteristics of an arbitrary probabilistic distribution
accurately. Hcd f and Hsum are more elaborative and determine the harmonic relationship based on
the entire probabilistic distribution of a task’s worst-case execution time, and therefore become more
effective to quantify how harmonic two tasks are.

In addition, our experiment results show that our proposed approaches work better with the in-
crease of task number. As shown in Figure 3(a), Hsum improves upon FF by as much as 0.2 cores for
test cases with 8 tasks and 8 possible worst-case execution times. When increasing the task number
to 16, we can see in Figure 3(c) that Hsum improves upon FF by as much as 0.5 cores. Increasing
task number increases the design space. Our proposed approaches can effectively optimize the task
partitioning results, and therefore can achieve better results as design space increases.

It is also interesting to see that, with the increase of possible number of worst-case execution
times for each task, Hcd f and Hsum improves much rapidly than Hm, and Hv. For example, in Figure
2(b), for test cases with 12 tasks and 4 different worst-case execution times, Hsum improves Hm by
0.15 cores; for test cases with 12 tasks and 8 different worst-case execution times, we found that
Hsum improves Hm by 0.3 cores. When more possible worst-case execution times a task has, its
statistical execution nature can be captured more accurately. This is the reason why Hcd f and Hsum,
by employing the entire worst-case execution time distribution, can be more effective in determining
the harmonicity between two tasks.

From Figure 2 and Figure 3, it is not surprising to see that as deadline miss probability increases,
the numbers of cores needed decrease. This is due to the fact that the tighter the DMP constraint,
the more resources (processing cores in this case) is needed in order to guarantee the statistical
timing behaviors of real-time tasks. Our experimental results also show that our approaches perform
better for systems with tighter DMP requirements. For example, for test cases with 12 tasks and 8
execution times, Hsum can improve upon FF by 0.3 cores when DMPΓ = 10%, as shown in Figure
3(c), compared with a performance improvement of 0.4 cores when DMPΓ = 5%, as shown in Figure
2(c). This is because that a tighter DMP implies less allocation opportunities for naive methods (FF
and WCET -H), while our approaches can identify task allocations with better resource usage.

6.4. Performance w.r.t. schedulability
Next, we analyze the performance of different approaches in terms of schedulability. Specifically,
with a given core number, we randomly generated real-time task sets and compared the number of
task sets that can be successfully scheduled by different approaches. We used the same test cases as
in the second experiment and set the core number to be 3, 4 and 6 for 8 tasks, 12 tasks and 16 tasks,
respectively. The percentage of the schedulable task sets are shown in Figure 4 and Figure 5.

Similar conclusions can be drawn from these two figures. First, we can see that our proposed
approaches can significantly improve FF and WCET -H up to 22% by Hsum for test cases with
16 tasks and 8 different worst-case execution times, as shown in Figure 5(c). Second, we can see
that the feasibility ratios improvement increases following the order of Hm, Hv, Hcd f and Hsum. As
shown in Figure 4(b), we can see that the schedulability improves from 37% using Hm to 48% using
Hsum. Third, we can also see that the improvement of our proposed approaches increases with the
number of tasks as well as the numbers of possible worst-case execution times for each task. For
example, Hsum improves from 16% for test cases using 12 tasks and 8 possible worst-case execution
times to 30% for test cases using 16 tasks and 8 possible worst-case execution times as shown in
Figures 4(b), and 4(c), respectively. Whereas FF improves by as much as 3% for the same test
cases. Finally, we can also see that our approaches work better with lower DMP. For example, the
average feasibility percentage improvement of Hsum over FF using 8, 12 and 16 tasks with 8 possible
worst-case execution times using DMPΓ = 10% is 13%, as shown in Figure 5, whereas the average
feasibility percentage improvement of Hsum over FF using same test cases with DMPΓ = 5% is
12.5%. It shows that with tighter DMP, our approaches can still make better allocation choice and
keep up with the improvement over traditional heuristics.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Harmonicity Aware Task Partitioning for Fixed Priority Scheduling A:15

3

3.2

3.4

3.6

3.8

4

4.2

FF WCET-H Hm Hv Hcdf Hsum

N
um

be
r o

f P
ro

ce
ss

or
s

2 Possible Execution Times 4 Possible Execution Times
6 Possible Execution Times 8 Possible Execution Times

(a)

4

4.2

4.4

4.6

4.8

5

5.2

5.4

5.6

5.8

6

FF WCET-H Hm Hv Hcdf Hsum

N
um

be
r o

f P
ro

ce
ss

or
s

2 Possible Execution Times 4 Possible Execution Times
6 Possible Execution Times 8 Possible Execution Times

(b)

5

5.5

6

6.5

7

7.5

8

8.5

FF WCET-H Hm Hv Hcdf Hsum

N
um

be
r o

f P
ro

ce
ss

or
s

2 Possible Execution Times 4 Possible Execution Times
6 Possible Execution Times 8 Possible Execution Times

(c)

Fig. 2: Processor usage w.r.t. number of cores for (a) 8 tasks, (b) 12 tasks and (c) 16 tasks using
DMPΓ = 5% and utilization uniformly generated in the range [10%−40%]

6.5. Computational Costs
Finally, we want to compare the computational costs of approaches with different harmonic indexes.
Three sets of different test cases were generated, using 8 tasks, 16 tasks and 24 tasks. For each set
of test cases, we randomly generated 100 task sets with 8 different worst-case execution times for
each task, and set DMPΓ = 10%. The results are shown in Figure 6.

From Figure 6 we can see that the more tasks we have, the more time it takes for our harmonic-
indexes-based approaches. For example, for 8 tasks, less than 4 seconds are needed for each ap-
proach to complete its computation. Whereas for 24 tasks, the fastest completion time is around 132
seconds (our approach with mean-based harmonic index, Hm). Moreover, Hcd f and Hsum have higher
computational costs than Hm and Hv. Because Hcd f and Hsum need to calculate the difference be-
tween two distributions which takes more time compared with the mean and variance calculations.
Note that, FF can finish within 3 seconds for 24 tasks. In fact, the computation costs of all four
metrics are very low. Most of the computation time is spent on feasibility checking to pick the best
sub task set. However, our approach is essentially an off-line scheme, and can thus tolerate relative
large computational cost for its distinctive advantage to minimize resource usage while satisfying
the DMP constraints.

7. CONCLUSIONS
With the increase of performance variations in modern computer systems, it is imperative to adopt
a probabilistic approach rather than the traditional deterministic approach in the design and analysis

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:16 T. Wang et al.

2.9

3

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

FF WCET-H Hm Hv Hcdf Hsum

N
um

be
r o

f P
ro

ce
ss

or
s

2 Possible Execution Times 4 Possible Execution Times
6 Possible Execution Times 8 Possible Execution Times

(a)

4

4.2

4.4

4.6

4.8

5

5.2

5.4

5.6

FF WCET-H Hm Hv Hcdf Hsum

N
um

be
r o

f P
ro

ce
ss

or
s

2 Possible Execution Times 4 Possible Execution Times
6 Possible Execution Times 8 Possible Execution Times

(b)

5

5.5

6

6.5

7

7.5

FF WCET-H Hm Hv Hcdf Hsum

N
um

be
r o

f P
ro

ce
ss

or
s

2 Possible Execution Times 4 Possible Execution Times
6 Possible Execution Times 8 Possible Execution Times

(c)

Fig. 3: Processor usage w.r.t. number of cores for (a) 8 tasks, (b) 12 tasks and (c) 16 tasks using
DMPΓ = 10% and utilization uniformly generated in the range [10%−40%]

of real-time systems. In this paper, we developed a novel task partitioning algorithm for fixed-
priority scheduling of real-time tasks with probabilistic execution times on a homogeneous multi-
core platform with statistical guarantee. In our approach, we develop four novel metrics: mean
based, variance based, cumulative distribution based, and distribution sum based harmonic indices
to quantify the harmonicity among tasks, and based on which to better identify task set allocations
and improve processor utilization. We conducted extensive simulation studies and the results show
that our algorithms can significantly outperform the existing approach.

Our approach presented in this paper is focused on fixed-priority preemptive scheduling of in-
dependent real-time tasks on multi-core systems. This approach can be readily extended to several
other scheduling problems such as fixed-priority non-preemptive scheduling [Marouf and Sorel
2011] and fixed-priority scheduling with resource sharing [Sha et al. 1990] as our approach can
help to improve the resource utilization under those scheduling algorithms as well. Note that
our approach are limited only to synchronized periodic tasks with implicit deadlines, i.e. dead-
lines are equal to their periods. Therefore, even though the fixed-priority scheduling of periodic
tasks with data dependency can be transformed to that of fixed-priority scheduling of independent
tasks [de Oliveira and da Silva Fraga 2000], our approach cannot apply since the transformed task
sets are no longer synchronized task sets and/or have implicit deadlines. How to extend our approach
to task sets with constrained deadline is an interesting problem and will be our future study.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Harmonicity Aware Task Partitioning for Fixed Priority Scheduling A:17

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

FF WCET-H Hm Hv Hcdf Hsum

Fe
as

ib
le

 m
ap

pi
ng

 p
er

ce
nt

ag
e

2 Possible Execution Times 4 Possible Execution Times
6 Possible Execution Times 8 Possible Execution Times

(a)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

FF WCET-H Hm Hv Hcdf Hsum

Fe
as

ib
le

 m
ap

pi
ng

 p
er

ce
nt

ag
e

2 Possible Execution Times 4 Possible Execution Times
6 Possible Execution Times 8 Possible Execution Times

(b)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

FF WCET-H Hm Hv Hcdf Hsum

Fe
as

ib
le

 m
ap

pi
ng

 p
er

ce
nt

ag
e

2 Possible Execution Times 4 Possible Execution Times
6 Possible Execution Times 8 Possible Execution Times

(c)

Fig. 4: Feasible mapping percentages for different approaches using (a) 8 tasks, (b) 12 tasks and (c)
16 tasks with DMPΓ = 5% and utilization uniformly generated in the range [10%−40%]

REFERENCES
ARINC. 2008. An avionics standard for safe, partitioned systems. In Wind River Systems/IEEE Seminar.
A Atlas and A Bestavros. 1998. Statistical rate monotonic scheduling. In Real-Time Systems Symposium, 1998. Proceedings.,

The 19th IEEE. 123–132. DOI:http://dx.doi.org/10.1109/REAL.1998.739737
P. Axer and R. Ernst. 2013. Stochastic response-time guarantee for non-preemptive, fixed-priority scheduling under errors.

In Design Automation Conference (DAC), 2013 50th ACM / EDAC / IEEE. 1–7.
Enrico Bini, Giorgio Buttazzo, and Giuseppe Buttazzo. 2001. A Hyperbolic Bound for the Rate Monotonic Algorithm. In

Proceedings of the 13th Euromicro Conference on Real-Time Systems (ECRTS ’01). IEEE Computer Society, Washing-
ton, DC, USA, 59–. http://dl.acm.org/citation.cfm?id=871910.871919

Enrico Bini and Giorgio C. Buttazzo. 2005. Measuring the Performance of Schedulability Tests. Real-Time Syst. 30, 1-2
(May 2005), 129–154. DOI:http://dx.doi.org/10.1007/s11241-005-0507-9

Vincenzo Bonifaci, Alberto Marchetti-Spaccamela, Nicole Megow, and Andreas Wiese. 2013. Polynomial-time exact
schedulability tests for harmonic real-time tasks. In Real-Time Systems Symposium (RTSS), 2013 IEEE 34th. IEEE,
236–245.

Romulo Silva de Oliveira and Joni da Silva Fraga. 2000. Fixed priority scheduling of tasks with arbitrary prece-
dence constraints in distributed hard real-time systems. Journal of Systems Architecture 46, 11 (2000), 991 – 1004.
DOI:http://dx.doi.org/10.1016/S1383-7621(00)00004-7

S. Edgar and A Burns. 2001. Statistical analysis of WCET for scheduling. In Real-Time Systems Symposium, 2001. (RTSS
2001). Proceedings. 22nd IEEE. 215–224. DOI:http://dx.doi.org/10.1109/REAL.2001.990614

Ming Fan, Qiushi Han, Shuo Liu, Shaolei Ren, Gang Quan, and Shangping Ren. 2015. Enhanced fixed-priority real-time
scheduling on multi-core platforms by exploiting task period relationship. Journal of Systems and Software 99 (2015),
85–96.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:18 T. Wang et al.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

FF WCET-H Hm Hv Hcdf Hsum

Fe
as

ib
le

 m
ap

pi
ng

 p
er

ce
nt

ag
e

2 Possible Execution Times 4 Possible Execution Times
6 Possible Execution Times 8 Possible Execution Times

(a)

0

0.1

0.2

0.3

0.4

0.5

0.6

FF WCET-H Hm Hv Hcdf Hsum

Fe
as

ib
le

 m
ap

pi
ng

 p
er

ce
nt

ag
e

2 Possible Execution Times 4 Possible Execution Times
6 Possible Execution Times 8 Possible Execution Times

(b)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

FF WCET-H Hm Hv Hcdf Hsum

Fe
as

ib
le

 m
ap

pi
ng

 p
er

ce
nt

ag
e

2 Possible Execution Times 4 Possible Execution Times
6 Possible Execution Times 8 Possible Execution Times

(c)

Fig. 5: Feasible mapping percentages for different approaches using (a) 8 tasks, (b) 12 tasks and (c)
16 tasks with DMPΓ = 10% and utilization uniformly generated in the range [10%−40%]

0

20

40

60

80

100

120

140

160

8 tasks 16 tasks 24 tasks

Co
m

pu
ta

ti
on

al
 ti

m
e

(s
)

Hm

Hv

Hcdf

Hsum

Fig. 6: Computational costs of approaches with different harmonic indexes with DMPΓ = 10%

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Harmonicity Aware Task Partitioning for Fixed Priority Scheduling A:19

Ming Fan and Gang Quan. 2012. Harmonic semi-partitioned scheduling for fixed-priority real-time tasks on
multi-core platform. In Design, Automation Test in Europe Conference Exhibition (DATE), 2012. 503–508.
DOI:http://dx.doi.org/10.1109/DATE.2012.6176521

Ming Fan and Gang Quan. 2014. Harmonic-Aware Multi-Core Scheduling for Fixed-Priority Real-Time
Systems. Parallel and Distributed Systems, IEEE Transactions on 25, 6 (June 2014), 1476–1488.
DOI:http://dx.doi.org/10.1109/TPDS.2013.71

Michael R. Garey and David S. Johnson. 1990. Computers and Intractability; A Guide to the Theory of NP-Completeness.
W. H. Freeman & Co., New York, NY, USA.

Nan Guan, Martin Stigge, Wang Yi, and Ge Yu. 2012. Parametric utilization bounds for fixed-priority multiprocessor schedul-
ing. In Parallel & Distributed Processing Symposium (IPDPS), 2012 IEEE 26th International. IEEE, 261–272.

Ching-Chih Han, Kwei-Jay Lin, and Chao-Ju Hou. 1996. Distance-Constrained Scheduling and Its Applications to Real-
Time Systems. IEEE Trans. Comput. 45, 7 (July 1996), 814–826. DOI:http://dx.doi.org/10.1109/12.508320

Ching-Chih Han and Hung-ying Tyan. 1997. A better polynomial-time schedulability test for real-time fixed-priority schedul-
ing algorithms. In Real-Time Systems Symposium, 1997. Proceedings., The 18th IEEE. IEEE, 36–45.

D. Johnson, A. Demers, J. Ullman, M. Garey, and R. Graham. 1974. Worst-Case Performance Bounds for Simple One-
Dimensional Packing Algorithms. SIAM J. Comput. 3, 4 (1974), 299–325. DOI:http://dx.doi.org/10.1137/0203025

Arvind Kandhalu, Karthik Lakshmanan, Junsung Kim, and Ragunathan Rajkumar. 2012. pCOMPATS: period-compatible
task allocation and splitting on multi-core processors. In Real-Time and Embedded Technology and Applications Sym-
posium (RTAS), 2012 IEEE 18th. IEEE, 307–316.

Kanghee Kim, J.L. Diaz, L. Lo Bello, J.M. Lopez, Chang-Gun Lee, and Sang-Lyul Min. 2005. An exact stochastic analysis
of priority-driven periodic real-time systems and its approximations. Computers, IEEE Transactions on 54, 11 (Nov
2005), 1460–1466. DOI:http://dx.doi.org/10.1109/TC.2005.174

Tei-Wei Kuo and A.K. Mok. 1991. Load adjustment in adaptive real-time systems. In Real-Time Systems Symposium, 1991.
Proceedings., Twelfth. 160–170. DOI:http://dx.doi.org/10.1109/REAL.1991.160369

Sylvain Lauzac, Rami Melhem, and Daniel Mossé. 1998. An efficient RMS admission control and its application to mul-
tiprocessor scheduling. In Parallel Processing Symposium, 1998. IPPS/SPDP 1998. Proceedings of the First Merged
International... and Symposium on Parallel and Distributed Processing 1998. IEEE, 511–518.

Sylvain Lauzac, Rami Melhem, and Daniel Mossé. 2003. An Improved Rate-Monotonic Admission Control and Its Appli-
cations. IEEE Trans. Comput. 52, 3 (March 2003), 337–350. DOI:http://dx.doi.org/10.1109/TC.2003.1183948

J.P. Lehoczky. 1990. Fixed priority scheduling of periodic task sets with arbitrary deadlines. In Real-Time Systems Sympo-
sium, 1990. Proceedings., 11th. 201–209. DOI:http://dx.doi.org/10.1109/REAL.1990.128748

J. Lehoczky, Lui Sha, and Y. Ding. 1989. The rate monotonic scheduling algorithm: exact characteri-
zation and average case behavior. In Real Time Systems Symposium, 1989., Proceedings. 166–171.
DOI:http://dx.doi.org/10.1109/REAL.1989.63567

Kenli Li and Xiaoyong Tang. 2013. Energy-Efficient Stochastic Task Scheduling on Heterogeneous Computing Systems.
(2013).

Kenli Li, Xiaoyong Tang, and Bharadwaj Veeravalli. 2013. Scheduling Precedence Constrained Stochastic Tasks on Hetero-
geneous Cluster Systems. (2013).

C. L. Liu and James W. Layland. 1973. Scheduling Algorithms for Multiprogramming in a Hard-Real-Time Environment. J.
ACM 20, 1 (Jan. 1973), 46–61. DOI:http://dx.doi.org/10.1145/321738.321743

Wan-Chen Lu, Hsin-Wen Wei, and Kwei-Jay Lin. 2006. Rate Monotonic Schedulability Conditions Using Relative Period
Ratios. In Embedded and Real-Time Computing Systems and Applications, 2006. Proceedings. 12th IEEE International
Conference on. 3–9. DOI:http://dx.doi.org/10.1109/RTCSA.2006.54

Yue Lu, T. Nolte, I Bate, and L. Cucu-Grosjean. 2012. A Statistical Response-Time Analysis of Real-
Time Embedded Systems. In Real-Time Systems Symposium (RTSS), 2012 IEEE 33rd. 351–362.
DOI:http://dx.doi.org/10.1109/RTSS.2012.85

Mohamed Marouf and Yves Sorel. 2011. Scheduling non-preemptive hard real-time tasks with strict periods. In Emerging
Technologies Factory Automation (ETFA), 2011 IEEE 16th Conference on. IEEE, 1–8.

Dorin Maxim, Olivier Buffet, Luca Santinelli, Liliana Cucu-Grosjean, and Robert I Davis. 2011. Optimal Priority Assign-
ment Algorithms for Probabilistic Real-Time Systems.. In RTNS. Citeseer, 129–138.

Dorin. Maxim and L. Cucu-Grosjean. 2013. Response Time Analysis for Fixed-Priority Tasks with Mul-
tiple Probabilistic Parameters. In Real-Time Systems Symposium (RTSS), 2013 IEEE 34th. 224–235.
DOI:http://dx.doi.org/10.1109/RTSS.2013.30

Dorin Maxim, Mike Houston, Luca Santinelli, Guillem Bernat, Robert I. Davis, and Liliana Cucu-Grosjean.
2012. Re-sampling for Statistical Timing Analysis of Real-time Systems. In Proceedings of the 20th Inter-
national Conference on Real-Time and Network Systems (RTNS ’12). ACM, New York, NY, USA, 111–120.
DOI:http://dx.doi.org/10.1145/2392987.2393001

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:20 T. Wang et al.

Mitra Nasri, Gerhard Fohler, and Mehdi Kargahi. 2014. A Framework to Construct Customized Harmonic Periods for Real-
Time Systems. In Real-Time Systems (ECRTS), 2014 26th Euromicro Conference on. IEEE, 211–220.

S. Nassif, K. Bernstein, D.J. Frank, A. Gattiker, W. Haensch, B.L. Ji, E. Nowak, D. Pearson, and N.J. Rohrer. 2007. High
Performance CMOS Variability in the 65nm Regime and Beyond. In Electron Devices Meeting, 2007. IEDM 2007.
IEEE International. 569–571. DOI:http://dx.doi.org/10.1109/IEDM.2007.4419002

L. Sha, R. Rajkumar, and J. P. Lehoczky. 1990. Priority inheritance protocols: an approach to real-time synchronization.
IEEE Trans. Comput. 39, 9 (Sep 1990), 1175–1185. DOI:http://dx.doi.org/10.1109/12.57058

T.-S. Tia, Z. Deng, M. Shankar, M. Storch, J. Sun, L.-C. Wu, and J. W S Liu. 1995. Probabilistic performance guaran-
tee for real-time tasks with varying computation times. In Real-Time Technology and Applications Symposium, 1995.
Proceedings. 164–173. DOI:http://dx.doi.org/10.1109/RTTAS.1995.516213

Tianyi Wang, Qiushi Han, Shi Sha, Wujie Wen, Gang Quan, and Meikang Qiu. 2016. On harmonic fixed-priority scheduling
of periodic real-time tasks with constrained deadlines. In Proceedings of the 53rd Annual Design Automation Confer-
ence. ACM, 131.

Tianyi Wang, Linwei Niu, Shaolei Ren, and Gang Quan. 2015. Multi-core fixed-priority scheduling of real-time tasks with
statistical deadline guarantee. In Proceedings of the 2015 Design, Automation & Test in Europe Conference & Exhibi-
tion. EDA Consortium, 1335–1340.

Received Month Year; revised Month Year; accepted Month Year

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

