
1045-9219 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2016.2642941, IEEE
Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 1

Workload Consolidation for Cloud Data Centers
with Guaranteed QoS Using Request Reneging

Soamar Homsi, Member, IEEE, Shuo Liu, Member, IEEE, Gustavo A. Chaparro-Baquero, Member, IEEE,
Ou Bai, Shaolei Ren, and Gang Quan Senior Member, IEEE

Abstract—Cloud data centers are widely employed to offer reliable cloud services. However, low resource utilization and high power
consumption have been great challenges for cloud providers. Moreover, the rapid increase in demand for affordable cloud services
magnifies the obstacles for proficient resource management policies. In this paper, we investigate how to improve resource utilization
and power consumption in cloud data centers when delivering services with statistically guaranteed Quality of Service (QoS). We
assume that the service provider hosts different types of services, each of which has request classes with different QoS requirements.
Different from the traditional approaches that distribute workloads with different QoS levels on different Virtual Machines (VMs), we
introduce an approach to pack requests of the same service type, even with different QoS requirements, into the same VM, and to
remove potential failure requests in time to improve resource usage and energy cost. We formally prove that our algorithm can
statistically guarantee QoS conditions in terms of deadline miss ratios. We develop a cloud prototype to empirically validate our
proposed methods and algorithm. Our experimental results demonstrate that our approach can significantly outperform other traditional
approaches in terms of QoS guarantees, power consumption, resource demand and electricity cost.

Index Terms—Cloud computing, virtualization, workload consolidation, power efficiency, utilization, reneging, guaranteed QoS.

F

1 INTRODUCTION

C LOUD computing [1] has recently become the dominant
trend for the continuous delivery (CD) of online services

over the internet using large-scale data centers. In the mean-
time, the relentless increase in demand for different services
[2], [3], in both personal and professional life sectors with
high Service Levels (SL), has posed crucial challenges on
cloud service providers. Maintaining excessive computing
resources won’t effectively address this problem, as it can
lead to tremendously high power consumption rates and
energy costs.

Exorbitant power consumption rates and energy costs
are among the main concerns in cloud infrastructure facili-
ties. Cloud service providers strive to enrich competing mar-
kets with more reliable, yet less costly, services to a modern
world handles Everything as a Service (EaaS) [1]. Whereas
the price for online services decreases and the performance
of computing systems increases at almost the same rate
as Moore predicted five decades ago, the performance-per-
watt of computing components increases at a much slower
rate than what Moore has predicted [4]. As an example,
in 2013, the annual electricity consumption of data centers
only in the United States was close to 91 billion KiloWatt
Hour (KWH), which is larger than the annual amount
of electrical power required by most countries [5]. There-
upon, service providers are taxed by intimidating energy
bills as they try to provide satisfactory Quality-of-Service
(QoS) guarantees. Such a consumption rate of electricity
is not only a cost-and-profit problem, but also a serious
threat to the environment as a result of the large amounts
of carbon dioxide emissions during powering and cooling
those data centers [5]. As a result, proficient power-aware
resource management policies become a necessity and a
key infrastructure component for any agile, consolidated

and dynamically scalable cloud’s data center that provides
affordable and reliable high-quality services.

On the other hand, power-saving techniques tend to, if
not always, cause a degraded computing performance. The
QoS is the key to clients’ satisfaction, and service providers
normally provide multiple Service Level Agreements (SLAs)
regarding different QoS kinds. For example, a database may
be queried internally by a company’s employees or exter-
nally by a company’s customers, who may have a higher or
a lower priority than that of the employees [6]. Cloud ser-
vice providers need to provide a competing and guaranteed
QoS, but with less energy costs. Whereas over-provisioning
is a common and simple solution to avoid SLA viola-
tions, resource over-provisioning is an expensive method by
which resources are drastically underutilized, particularly
under the unpredictably fluctuating cloud workloads [7].

Low resource utilization [8] is a prevailing problem in
virtualized data centers, and is a major leading factor to
their high power consumption and increased operational
costs [4]. For example, while Google service provider makes
its data centers greener by benefiting from wind and solar
energy sources, and operating recycling cooling systems, the
utilization of Google’s servers is less than 50% on an average
[3]. Maximizing resource utilization becomes more crucial
when performance must meet a defined satisfactory level of
service given by QoS conditions. The challenge is then how
to allocate the cloud’s workloads in a way that maximizes
resource usage and guarantees the QoS requirements.

In this paper, we propose and investigate new power-
aware cloud workload allocation policies to minimize the
processing power demand of cloud’s services in cloud’s data
centers, and to reduce energy consumption, with statisti-
cally guaranteed QoS for users. We assume that clustered

1045-9219 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2016.2642941, IEEE
Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 2

data centers are able to accommodate different types of ser-
vices, each of which can have request classes with different
QoS requirements. Our main contributions in this paper are:
(1) Different from previous studies that employ separate
Virtual Machines (VMs) for requests with different QoS
requirements, we develop a workload multiplexing method
that enables requests of the same service type, but with
different QoS constraints, to share the same VM. To our best
knowledge, this is the first approach by which different re-
quests with different QoS guarantees can be hosted on a sin-
gle node in order to increase resource utilization. (2) We also
devise a novel methodology that properly discards potential
failure requests as soon as possible to minimize process-
ing rate demands, and to reduce total power consumption
with statistically guaranteed QoS. We introduce a packing
and consolidation algorithm, called Green Workload Packing
and Consolidation algorithm (GWPC), that statistically guar-
antees the QoS requirements of service requests in terms
of deadline miss ratios. (3) We design a fully-automated
private Green Cloud Computing Prototype (GCCP) that
conforms to the industrial standards, generates, and runs
different benchmarks under well-controlled conditions. We
further extend it to incorporate new workload scheduling,
resource provisioning and performance monitoring schemes
proposed in this paper. (4) In addition to the analytical
validation of our proposed methods, we experimentally
verify them, under general and cloud-specific workloads,
by implementing our algorithm, along with three other
common algorithms in GCCP. Extensive experimentation
results show that GWPC outperforms existing approaches
widely in terms of the QoS satisfaction, power consumption
efficacy, resource demand minimization, and electricity cost
saving. We use the words VM, node and server interchange-
ably throughout the paper.

The rest of this paper is organized as follows: Section
2 discusses related work; Section 3 introduces the system
model; Section 4 details the preliminary study; Section 5
describes the GWPC Algorithm; Section 6 describes the
validation planform GCCP and its functional modules. Sec-
tion 7 validates our analytical findings through intensive
experimentation and different benchmark types, and shows
the results; Section 8 discusses the conclusions and potential
future extensions of this work.

2 RELATED WORKS

Numerous efforts have been made to reduce power and
energy consumption in service-oriented computing systems.
We can categorize those researches into different abstraction
levels and/or according to different criteria. For example,
according to the scale/type of the computing systems, Cai et
al. in [8] categorized the energy-aware techniques applicable
for servers [9], [10], clusters [11], [12], [13], data centers
[4], [14] and clouds [15]. Power/energy aware approaches
can also be classified according to the different resource
types, such as CPUs [4], [16], memory [7], storage devices
[17], and/or network [18]. However, since CPUs usually
acquire the highest power consumption among all resource
types [14], we focus on improving power/energy efficiency
of CPUs in cloud data centers using techniques such as,
virtualization, workload consolidation and scheduling [19].

Dynamic Voltage Scaling and Dynamic Frequency Scal-
ing (DVS/DFS) have been powerful conventional methods
for adaptive performance and power dissipation adjustment
to achieve power efficiency [11], [12]. Hwang et al. showed
that the maximum energy savings in virtualized multi-core
servers can be achieved when combining the DVS/DFS
methods and the consolidation algorithms [9]. Beloglazov
et al. introduced in [15] a global-and-local layer approach
to make virtualized servers more power-efficient by adjust-
ing the frequency and voltage of processors according to
VMs’ utilization. Likewise, Kim et al. [11] proposed DVFS-
enabled, with both time-shared and space-shared, cluster
scheduling policies for a bag of tasks to reduce power con-
sumption and to meet end-users’ deadline requirements. Al-
though many researchers and engineers acknowledge that
DVFS scheduling algorithms are powerful energy-saving
solutions on the server’s level, there are many challenges
when they are applied in the current virtualized data cen-
ters; for instance, they are architecture dependent, hence
they may not achieve their best power/energy-saving when
applied to the current heterogeneous cloud data centers.

As virtualization technology evolved as a norm in to-
day’s data centers to amplify resource usage through run-
ning multiple VMs on a single server, VM migration has
been widely employed to optimize server utilization and to
reduce power consumption [20]. In [21], Mastroianni et al.
statistically modeled and analyzed the effects of VMs alloca-
tion and migration on minimizing the number of powered-
on servers, and on reducing power consumption in data cen-
ters. Zhen et al. [20] introduced the concept of “skewness” to
measure the unevenness in the servers’ multidimensional-
resource utilization. However, VM live migration requires a
delay that can degrade the overall system performance and
availability, and consequently leads to SLA violations [22].

In conjunction with VM migration, server consolidation
is of special interest among efficient resource allocation
policies [23]. Server consolidation, comparatively to DVFS,
improves resource utilization without demanding excessive
hardware resources, and it is easy to implement and to
deploy [21]. Now that, server power consumption is not
exactly proportional to its utilization, and a server may
consume a significant amount of power even when it is
idle [21], server consolidation methods pack running VMs
on a smaller number of physical servers and/or turn off
the rest, to minimize the total power consumed by those
servers [10], [21], [24]. In [10], Verma et al. presented a two-
dimensional, i.e., memory-based and CPU-based, consolida-
tion strategy in which decisions are based on the correlation
among different workloads. In [10], Pinheiro presented an
algorithm to dynamically turn servers on and off according
to the imposed load in computing clusters. Chase et al.
[25] reduced the energy consumption of server clusters by
degrading services according to their SLAs, when power
consumption or thermal dissipation exceeds certain limits.

Whereas saving power/energy is important, service
providers must also ensure that their services can satisfy
users’ QoS requirements, such as response time and/or
deadline miss ratios. For instance, a recent report has found
that a 100ms extra delay costs Amazon 1% of sales revenue
[26]. The problem becomes more challenging with interac-
tive workload types [27], such as online gaming [3] and

1045-9219 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2016.2642941, IEEE
Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 3

multimedia streaming services [28], whose response times
are crucial. These online interactive services are commonly
described by soft timely constraints [27], in that service
providers must guarantee that a predefined percentage of
them meet their deadlines. Otherwise, service providers are
regarded as failing to keep up with their SLA agreement [2].

VM placement methods with performance-interference
awareness were introduced in [29] to improve the perfor-
mance of VMs and the utilization of physical machines. Re-
source overbooking, i.e. allocating more resources than the
actual available capacity in order to raise service provider
profit, with different real-time constraints is presented in
[27]. Energy-aware resource allocations with response time
and end-to-end time guarantees were introduced in [24] and
[13], respectively. Greenberg et al. [18] studied the costs
of cloud data centers, and recommended to developing
new management systems within and across geographically
distributed data centers with the focus on network agility to
improve their efficiency and end-to-end performance.

SLA-aware workload consolidation had been proposed
to achieve higher dynamic power efficiency, and to over-
come the under-utilization problems resulting from ap-
plying the over-provisioning policies [30]. Lee et al. [31]
developed a pricing model, based on the queue model
M/M/1/PS, and used it to develop a profit-driven schedul-
ing algorithms with SLA for clouds’ dependent services.

To guarantee service requests with different classes of
QoS requirements, it has been a common approach (e.g.,
[13]) to serve requests with the same QoS requirements on
the same VM. Now that, all requests on the same machine
have the same QoS requirement, different types of QoS
can be captured by a single variable, such as provisioned
resources (e.g., [10] [21] [15]), required processing speed
(e.g., [12]) or latency (e.g., [24] [13]). Although this approach
simplifies the resource management problem to guarantee
one specified QoS criteria, it excludes requests that can
share resources, and the overall resource usage can be rather
inefficient, as illustrated later in this paper. Additionally,
almost all previous works implicitly assumed that all ac-
cepted requests must be served, even if they do not meet
their QoS conditions. We show in this paper that if we can
judiciously discard the requests that are likely to miss their
deadlines, we can significantly improve resource usages
without compromising QoS conditions.

3 SYSTEM MODEL

In this section, we introduce our system model and formu-
late the problem.

3.1 Service Model

We assume that a cloud data center consists of several cloud
computer clusters, each of which consists of two or more
physical machines, and has its own service manager that
is analogous to the cluster schedulers in Google’s clustered
data centers [6]. Each cloud’s cluster has a cloud orchestrator
(such as, OpenStack) and a virtualization hypervisor (such
as, Xen [32]) that work together to create VMs with differ-
ent types and capacities for hosted services, and to make
them available online for customers who submitted requests

with different QoS requirements. We assume that a service
provider provides n different types of services based on
their application purpose S = {S1, ..., Sn}. Each type of ser-
vice (e.g., Si) can accommodate different classes of service
requests Γi = {τi,j , j = 1, . . . , ri}, i.e. requests under differ-
ent SLAs. Each class of requests (e.g., τi,j) has its own QoS
requirements (e.g., Qi,j). We assume that different types
of services must be hosted on different VMs, but different
classes of requests of the same type can be potentially hosted
in the same VM. We assume that there are n types of VMs
{VM1, ..., V Mn} with capacities of {C1, ..., Cn} supporting
n different types of services {S1, ..., Sn}, respectively. VMs
with the same service type Si are logically grouped together
into a single server pool SPi. A server pool SPi may contain
up to mi VMs. Each VM {VMi,k, k = 1, . . . ,mi} within
a server pool SPi can require a different processing rate
{Ui,k, k = 1, . . . ,mi}. Our service model is illustrated in
Fig. 1.

As long as both waiting and average response times
distributions of industrial workloads’ requests have vari-
ances with small coefficients, we assume that request arrival
patterns follow the Poisson distribution, and their response
times follow the exponential distribution [33], as they ap-
proximate the actual corresponding distributions with ac-
ceptable precision [34]. Different request classes of the same
service type may have different arrival times, deadlines, and
completion ratios. Specifically, a request is modeled with a
3-tuple, i.e. τij = {λi,j , Di,j , Ri,j}; where λi,j is the arrival
rate of j-class requests in service Si, Di,j is the deadline of
j-class requests in Si, and Ri,j is the required completion
ratio of j-class requests in Si. The QoS requirement Qi,j of a
request τi,j is defined by {Di,j , Ri,j}, meaning that at least
Ri,j percent of τi,j requests have to be served no later than
Di,j as in [35]; for example, CloudSuite [36], a benchmark
suite for cloud services, describes the QoS constraints of web
search requests by a latency of D = 500 ms and completion
ratio of R = 90% [37].

3.2 Power Model
Considering that the allocation of processing units in cloud
data centers generally occurs at levels of whole core(s) [35],
[38], we assume that each VM is allocated to an individual
processing core on a physical server, and thus we adopt
a power model similar to that in [21] to model the power
consumption of a VM, as shown in (1):

P = P dϕ+ P s (1)

where; P s is the static power, P d is the dynamic power,
and ϕ is the utilization of a processing core. ϕ is defined
as ϕ = U

C ; where U is the processing rate for a VM, and
C is the capacity limit of the core allocated to it (i.e. the
maximum processing rate available). We calculate P d and
P s empirically, as explained later on in section 6, and we
assume that they are constant and the same for each set of
mi cores hosting the same service type Si. This model can
be easily extended to the scenarios wherein a VM is mapped
to multiple cores.

3.3 Problem Definition
With the system model defined above, the problem we are
to address can be formulated as follows.

1045-9219 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2016.2642941, IEEE
Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 4

Figure 1. Service Model. A cloud cluster with n server pools, each
pool SPicontains mi ≥ 1 VMs, e.g., SP1 contains 2 VM1-type
VMs {VM11,VM12}, and SP2 contains m VM2-type VMs {VM21,
..., VM2m}. There are n types of services {S1, S2, ..., Sn}. Different
request classes of the same service type can share the same VM (e.g.,
τ11 and τ14 share VM12, and τ12 and τ13 share VM11). Contrarily,
{τ21, τ2m} are hosted separately on {VM21, ..., V M2m}, resp.

Problem 1. Given service requests Γ = {τi,j : j = 1, ..., ri;
i = 1, . . . , n}, determine the server pools SP = {SPi :
i = 1, . . . , n}; where SPi = {VMi,k : k = 1, ...,mi}, the
corresponding processing rate {Ui,j : i = 1, ..., n; j = 1, ...,mi}
for each virtual machine (e.g., VMi,j), and the allocation of Γ
to the VMs within each server pool in SP , such that the QoS
requirements of the requests {Qi,j , i = 1, ..., n; j = 1, ..., ri}
are guaranteed, and the power consumption of each server pool is
minimized.

This problem involves two intertwined problems: (a)
how to judiciously pack service requests to a VM, (b) and
how to determine the proper service rate to minimize the
power consumption while guaranteeing the QoS for all
classes of request types. Next, we discuss our analytical
results for this problem, and then present our algorithm in
details.

4 PRELIMINARIES

This section presents several key analysis results with re-
gard to QoS guarantees, requests multiplexing, and requests
packing. These results form the basis of our approach.

4.1 Processing Rate Minimization for QoS Guarantee
Using Request Reneging

Traditionally, M/M/1 queue [33] has commonly been
adopted to represent the request processing procedure [2],
as shown in Fig. 2a. Service requests arrive with a rate λ,
wait in a queue with an infinite size, and are processed
with a rate µ. Accordingly, the probability density function
(PDF), and the cumulative distribution function (CDF) of
the response time can be formulated as:

f(t) = (µ− λ)e−(µ−λ)t (2)

F (t) = 1− e−tµ(1−λµ) (3)

with a mean response time:

E[t] =
1

µ− λ
(4)

(a) M/M/1 Queue Model

(b) M/M/1 Model with Request
Reneging

Figure 2. Processing Model.

The q-percentile of the response time tq (i.e., tq is larger than
q% of all response times) has the following relationship:

1− e−tqµ(1−λµ) =
q

100
(5)

To this end, given a request τi,j ’s arrival rate λi,j , deadline
Di,j , and completion ratio requirements Ri,j . In order to
guarantee Qi,j , the required service rate µi,j (when τi,j is
hosted alone) is:

µi,j =
ln[1

1−Ri,j]

Di,j
+ λi,j (6)

The µi,j defined above can guaranteeQi,j , i.e., no more than
(1−Ri,j)% of the requests can miss their deadlines.

To save power consumption, it is desirable to discard
a request, if it has a high probability to miss its deadline,
so that we can save the precious resource for requests that
are more likely to successfully complete in time. The prob-
lem nevertheless is how to discard these requests without
compromising the QoS. To this end, we employ the M/M/1
queue with the reneging model [39], as illustrated in Fig. 2b.

As shown in Fig. 2b, according to the reneging model,
each request is associated with a deadline. If a request is
not fully served by its deadline, it is removed from the
system. According to this model, there exists an provocative
relationship among the request’s deadline miss probability
Pmiss, arrival rate λ, processing rate µ, and deadline D,
which can be formulated as [39]:

Pmiss =
(1− ρ)eµD(ρ−1)

1− ρeµD(ρ−1)
(7)

where ρ = λ
µ . Accordingly, for a given λi,j , Ri,j , and Di,j of

request τi,j , we can derive µ∗i,j that guarantees Qi,j :

1−Ri,j ≤
(1− λi,j

µ∗
i,j

)e
µ∗
i,jDi,j(

λi,j
µ∗
i,j
−1)

1− λi,j
µ∗
i,j
e
µ∗
i,jDi,j(

λi,j
µ∗
i,j
−1)

(8)

By judiciously removing the requests from the queue, we
can guarantee the same QoS with lower processing rates.
This conclusion is formally formulated in Theorem 1. (Due
to the page limit, we moved the detailed proofs of Theorems
1 to 6 to Appendices A to F, respectively.)

Theorem 1. A service request τ = {λ,D,R}; where λ,D,
and R refer to its arrival rate, deadline, and completion ratio
requirement, respectively. Let µ∗ and µ be the processing rates
to satisfy R based on the M/M/1 queue model with and without
request reneging, respectively. Then µ ≥ µ∗.

4.2 Request Multiplexing
When a service Si has multiple request classes {τi,j , j =
1, ..., ri}, a common approach is to host each request class

1045-9219 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2016.2642941, IEEE
Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 5

on a single VM {VMi,j , j = 1, ..., ri}, respectively. The Ri,j-
th percentile response time tRi,j of τi,j can be formulated as:

tRi,j =
1

µi,j − λi,j
ln[

1

1−Ri,j
]. (9)

When hosting each request class τi,j individually on VMi,j ,
let the server pool SPi = {VMi,j , ..., V Mi,ri} has the
processing rates {Ui,1 = µi,1, ..., Ui,ri = µi,ri}, respectively.
Then to satisfy each Qi,j , the processing rates can be calcu-
lated according to equation 6:

µi,j =
ln[1

1−Ri,j]

Di,j
+ λi,j (10)

A better approach, withal, is to host multiple request classes
in a single VM with a processing rate U that satisfies the
QoS requirements of all hosted classes. We formulated this
essential finding in Theorem 2.

Theorem 2. For the i-type service requests {τi,j , j = 1, ..., ri}
hosted in a single node ˆVM , let the processing rate of ˆVM be Û
and let

Ui,j = µi,j +
ri∑

q=1,q 6=j
λi,q. (11)

Then the QoS requirements for {τi,j , j = 1, . . . , ri} can be
satisfied if Û ≥ maxrij=1 Ui,j .

From Theorem 2, when multiple classes of service re-
quests are multiplexed in a single VM, the processing rate
can be easily identified to ensure the QoS conditions for
these requests. In the meantime, we show that request
multiplexing helps improve resource utilization, as implied
in the Theorem 3. Let us first define the processing rate
Ω(SPi) of a server pool SPi.

Definition 1. The processing rate of a server pool, denoted
as Ω(SPi); where SPi = {VMi,1, ..., V Mi,ri}, is the sum of all
VMs’ required processing rates {Ui,1, ..., Uri} in that server pool:

Ω(SPi) =
ri∑
j=1

µi,j =
ri∑
j=1

[
ln[1

1−Ri,j]

Di,j
+ λi,j] (12)

Theorem 3. Given the i-type service requests {τi,1, . . . , τi,ri},
let SPi = {VMi,1, . . . , V Mi,ri} be all VMs, when each class of
requests, τi,j , is served separately with a dedicated VMi,j , and
let ˆSPi = { ˆVM i,1} be a server pool with a single VM that
serves all the requests simultaneously. Let Ω(SPi) (Ω(ˆSPi)) be
the processing rate of the server pool SPi (ˆSPi, resp.) such that
the QoS requirements for all {τi,j , j = 1, ..., ri} are satisfied.
Then Ω(SPi) ≥ Ω(ˆSPi).

Theorem 3 indicates that multiplexing different request
classes on a single VMi,j can result in a smaller processing
rate for the server pool, provided that the processing rate
is feasible on VMi,j ; i.e., required processing rate must not
exceed the VM’s maximum capacity Ci,j . If only one VM
cannot accommodate all service requests without compro-
mising their QoS requirements, we will need more than
one VM. How can we allocate service requests to VMs and
optimize their utilization? We address this question next.

4.3 Request Packing
From the discussions above, clustering multiple classes of
requests into the same VM helps improve the resource

Table 1
Processing rate comparison with different requests packing strategies

Packing Strategy 1 Packing Strategy 2
VM1 VM2 VM’1 VM’2

τi = {τ1, τ2} τi = {τ3, τ4} τi = {τ1, τ4} τi = {τ2, τ3}
U1 = 160 U2 = 140 U ′1 = 150 U ′2 = 130

usage. When more than one VM is needed, the question
then becomes how to group different classes of requests
into each VM to minimize the server pool processing rate
Ω =

∑
i

∑
k Ui,k, and thus to maximize the overall re-

source usage efficiency. Consider the following example
with four request classes of the same type {τ1, τ2, τ3, τ4},
with λ = {60, 40, 50, 20} request’ Instances Per Second
(IPS), and µ = {120, 80, 70, 90} IPS, respectively. µi is the
minimum processing rate of request τi to satisfy its QoS,
when it is allocated individually to a VM. To guarantee all
the QoS requirements, two request-grouping strategies are
shown in Table 1. The server pool’s processing rates using
both strategies are Ω(V1, V2) = 300 and Ω(V ′1 , V

′
2) = 280,

respectively (derived based on Theorem 2). This example
clearly shows that different requests’ allocation strategies
lead to server pools with different processing rates and thus
utilizations.

We show in Theorem 6 that the general packing prob-
lem is NP-hard in nature. Subsequently, we focus on the
development of an effective and efficient heuristic solution
for this problem. To this end, we have made a number of
crucial observations based on a service allocation onto two
servers, which we formulate in the following theorems.

Theorem 4. Let Γ1 = Γ1,p

⋃
Γ1,q ; where Γ1,p =

{τ1,p1 , τ1,p2 , ..., τ1,ps}, Γ1,q = {τ1,q1 , τ1,q2 , ..., τ1,qs}, and
Γ1,p

⋂
Γ1,q = ∅. Assume Γ1,p and Γ1,q are mapped to two VMs

with the same capacity, VM1,p and VM1,q , respectively. For each
τi,j , let

φi,j = µi,j − λi,j . (13)
Let U1,p (U1,q , resp.) denote the minimum processing rate for
VM1,p (VM1,q , resp.) that guarantees the QoS requirements
of Γ1,p (Γ1,q , resp.). Then the processing rate for the server
pool SP = {VM1,p, V M1,q}, i.e. Ω(SP) = U1,p + U1,q , is
minimized if the quantity given in equation 14 is minimized:

Φ = max
τ1,p∈Γ1,p

φ1,p + max
τ1,q∈Γ1,q

φ1,q. (14)

Theorem 4 means that to minimize the processing rate
for a server pool SPi, we need to minimize the sum of
maximum φi,j (defined in equation 13) for the services
allocated to each node. A simple heuristic is, hence, to
sort all requests classes {τi,j , j = 1, ..., ri} according to
their {φi,j , j = 1, ..., ri}, and allocate as many high-ranking
classes as possible on the same VM. Specifically, we have
the following theorem.

Theorem 5. Let Γi = {τi,1, τi,2, ..., τi,ri} be mapped to two
VMs with the same capacity, VMi,p and VMi,q . Let τi,k ∈ Γi
and let

Γhi,k = {τi,j ∈ Γi|φi,j > φi,k}. (15)
Then the processing rate for the server pool
SPi = {VMi,p, V Mi,q}, i.e., Ω(SPi) = Ui,p + Ui,q , is
minimized if τi,k is the one with the smallest φi,k such:

1045-9219 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2016.2642941, IEEE
Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 6

• Γhi,k are feasibly allocated to one server (e.g., VMi,p);
• Γhi,k + {τi,k} cannot be feasibly allocated to the same server

(VMi,p) simultaneously;
• τi,k is feasibly allocated to another server (e.g., VMi,q).

Note that Theorem 5 helps to identify the optimal ser-
vice packing solution for two VMs. However, if there are
more than two VMs, finding the optimal solution becomes
substantially more complicated due to the trade-off between
minimizing the maximum value of φ for a VM, and the total
number of needed VMs. In Theorem 6, we show that the
service packing problem involving more than two VMs is
NP-hard

Theorem 6. Let SPi = {VMi,1, V Mi,2, . . . , V Mi,mi} be
a server pool with m ≥ 3, hosts a set of requests Γi =
{τi,1, τi,2, ..., τi,ri} from the same service type Si, but with
different QoS constraints. Assume that all VMs in SPi have the
same capacityC. Then packing the request set Γi in the server pool
SPi such that the server pool processing rate Ωi =

∑mi
j=1Ui,j is

minimized is NP-hard.

5 THE GREEN WORKLOAD PACKING AND CON-
SOLIDATION (GWPC) ALGORITHM WITH STATISTI-
CAL GUARANTEES

We are now ready to discuss our approach for power con-
sumption minimization in cloud data centers with guaran-
teed QoS. Inasmuch as the overall power consumption of a
server pool depends on both the processing rates of its VMs,
and the static power consumption of the physical servers
hosting those VMs (see equation 1), to solve Problem 1, we
need to minimize the number of VMs, and their processing
rates. Thus, we develop an algorithm, called Green Workload
Packing and Consolidation algorithm (GWPC) to allocate VMs
and map service requests onto them.

First, GWPC intends to consolidate multiple request
classes to the same VM. As shown in Theorem 2, when mul-
tiple classes are hosted in the same VM, the total processing
rate of a server pool can be greatly reduced, which helps to
minimize the dynamic power consumption of the physical
cores on which VMs are allocated. Moreover, consolidating
multiple request classes in a single VM reduces the total
number of needed VMs, which in turn minimizes the total
number of hosting physical machines and their static power.
Second, GWPC adopts the reneging model to judiciously
expunge service requests. Specifically, in Fig. 3, the required
processing rate (e.g., µj) for each class of requests (e.g., τj)
is calculated based on the reneging model (line 1). We then
sort all requests based on φj = µj − λj in a decreasing order
(line 2), and pack the requests from the list to VMs with
the capacity (i.e. the maximum processing rate) of C (line
3 to 13). Theorem 6 clearly demonstrates that Problem 1 is
NP-hard, so we resort to the traditional first-fit bin-packing
algorithm to pack the requests, and minimize the number
of VMs. This helps reduce the static power consumption of
the server pool. Sorting the requests according to the value
of φ is a good heuristic with a basis presented in Theorem
5. It helps minimize the processing rate of each VM, and
thus the dynamic power consumption of the server pool.
In what follows, we first introduce the prototype we have

Input: A set of request classes Γ = {τj , j = 1, . . . , r} of a service
S, each τj has corresponding λj and Qj ({Dj , Rj}). A server
pool SP of virtual servers VM = {VMk, k = 1, . . . ,m} with
the same capacity C serve the request classes from service S.

Output: The request classes allocation.
1: Calculate each µj to satisfy Qj based on (8);
2: dif vect← Sort the φ = µ− λ in the decreasing order;
3: for All requests τj , j = 1, 2, . . . , r do
4: for All VMs VMk , k = 1, 2, . . . ,m do
5: Add τj into node VMk ;
6: Calculate VMk’s required processing rate Uk based on (2);
7: if (Uk ≤ C) then
8: Remove τj from dif vect;
9: Break the loop and pack the next request;

10: else
11: Remove τj from the current node VMk ;
12: end if
13: end for
14: if (Request τj did not fit in any available VM) then
15: Allocate a new VM and pack request τj ;
16: end if
17: end for

Figure 3. Green Workload Packing and Consolidation (GWPC) algorithm

developed, we then present the experiments and results we
obtained based on this prototype.

6 THE GREEN CLOUD COMPUTING PROTOTYPE
(GCCP)

We developed a private Green Cloud Computing Prototype
(GCCP) conforming to the industrial standards applied in
practice. Specifically, GCCP’s architecture model conforms
to the model introduced by IBM in [40], whereas GCCP’s
infrastructure organization model conforms to the well-
known cloud providers, such as Google Compute Engine,
Amazon EC2, Rackspace, and Microsoft Windows Azure.
GCCP consists of four functional modules implemented
in Java and running on management nodes. The system
workflow is automated and controlled using Python scripts
at the system level, and bash scripts at the Linux nodes
level. Management nodes are VMs launched using the open
source Kernel Virtual Machine (KVM) hypervisor, and man-
aged using the open source Webvirtmgr. KVM hypervisor
is hosted onto two Dell Precision T1500 machines with
Quad-Core Intel i − 5 CPU, 16 GB 1333 MHz DDR3
memory, and a 300 GB SATA Disk Drive. Management
VMs run Ubuntu Server Linux 12.04.5 LTS Precise Pangolin
release with kernel version 3.2.0.76. Next, we introduce
each functional module in more detail.

User Input Module This module allows users to de-
fine service types having request classes with different
QoS requirements. In our experiments, we defined sev-
eral scientific and cloud services. For example, we imple-
mented a memory-intensive service modeled with a Matrix
MULtiplication (MMUL) Java application, using the open
source lightweight Apache Common Mathematics Library
[41]. And we implemented a CPU-intensive service type
modeled with an one-Dimension Fast Fourier Transform
(1-D FFT) Java application, using the open source multi-
threaded (FFT) library Jtransforms [42]. The submodule
Unified Workload Generation Engine (UWGE) models and
generates request instances of different service types and
classes accordingly.

1045-9219 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2016.2642941, IEEE
Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 7

Service Management Module This module takes inputs
from the User Input Module and schedules/dispatches work-
load among computing resources by the Scheduler & Re-
source Allocator/Request Dispatcher submodules. To investi-
gate the performance of our approach, we implemented the
following workload mapping and scheduling algorithms,
which also employ failure reneging: (1) Split: denoted as
“SPT,”, the traditional method by which each request class
is hosted in a separate VM [10] [43]; (2) Random: denoted
as “RND,”, the method that fills multiple request classes
randomly into a VM; (3) First-fit-decreasing: denoted as
“FFD,”, the bin-packing method [44] with service classes
combined based on the decreasing order of their required
processing rates; (4) Green Workload Packing and Consol-
idation: denoted as “GWPC,” our proposed method.

Infrastructure Management Module This module is in
charge of managing the computing infrastructure, hardware
and software resources, of the cloud cluster. We employ
Citrix XenServer 6.5 platform, which is based on the hy-
pervisor Xen [32], to manage the physical resources on an
HP Workstation Z800 with two Intel Xeon Six-Core E5645
(2.40 GHz, 12 MB cache), 1333 MHz DDR3 memory
of size (32 GB), and 1 TB disk space. We also developed
a Cloud Orchestrator submodule that communicates with
the Scheduler & Resource Allocator and XenServer to auto-
mate the procedures of VM’s creation, provisioning, and
configuration, and to make VMs available online for the
Request Dispatcher onto which requests are forwarded from
the UWME submodule. In the first set of experiments, the
Cloud Orchestrator configures each VM with 2 GB memory,
20 GB disk storage, and a dedicated physical core with an
adjustable maximum processing rate according to a given
capacity using Xen’s credit scheduler [32].

Performance Monitoring Module This module moni-
tors the system’s performance, and collects performance
statistics, as well as other measurement readings through
three major submodules.

The Power Metering submodule measures the static
and dynamic power consumption of server pools hosted
by GCCP under different configurations and running
conditions. To measure the actual power consumption,
we used an AC/DC Fluke i410 current clamp meter
with an output of 1mV olts(mV)/Amps(A), connected
to an Agilent34401A multimeter with a resolution of
+/− 120mWatts(mW). This submodule automates the
power reading process using a C program running within
Ubuntu Linux 12.04.5 LTS on a dedicated Dell desktop that
communicates with the multimeter through a serial cable
to automatically record electrical current readings. Con-
sider a server pool SPi = {VMi,1, ..., V Mi,mi} allocated
to physical cores {PCPUi,1, ..., PCPUi,mi}, respectively.
Recall that a single workstation in GCCP has at most 10
available physical cores (Note that we reserve 2 cores for
Xen’s Domain-0.) SPi must be hosted by dmi10 eworkstations,
and the power consumption for SPi is the total power con-
sumption of these workstations. Now assume that mi ≤ 10.
Based on (1), the power consumption Pi consumed by SPi
can be formulated as

Pi =
mi∑
j=1

(P di,jϕi,j) + P si , (16)

Figure 4. High Level Representation of GCCP. Steps 1 till 5 illustrate
the process of initiating a new service and its request classes (step
1), running a packing and allocation algorithm (step 2), spawning and
configuring VMs (step 3), returning VMs’ Ids to the service manager
module to be available to the request instances (steps 4 and 5). On the
other hand, steps a, b and c illustrate the process of generating request
instances, dispatching them to the allocated VMs, and collecting the
system performance readings upon their completion.

where P di,j is the dynamic power when each core is 100%
utilized, ϕi,j is the utilization of VMi,j , and P si is the
static power of the HP workstation when mi physical cores
are allocated to the VMs. To calculate P si , we measured
the drawn AC current (i.e, Is) by the workstation when
all mi VMs are idle. Then the corresponding static power
is P si = Is × 120V . To calculate P di,j , we used UWGE
to generate enough request instances such that all VMs
were kept busy and achieved 100% utilization, and we
then measured the drawn AC current by the workstation
to calculate the total power consumption, i.e., static and
dynamic power. The difference accordingly, between the
total and static measured power, is the total dynamic power
consumption of mi cores with 100% utilization. We further
assume that cores hosting the same service type (e.g., Si)
with the same capacity size (e.g., Ci) consumes the same
amount of dynamic power, and we thereupon divide the
total dynamic power by the number of cores mi to get
P di,j . As an illustration, let a server pool with a single VM.
We measured its static power as 186W . Its dynamic power
consumption when running memory-intensive workload
and CPU-intensive workload on a fully utilized core are
16.8W and 18W , respectively.

The Resource Metering submodule leverages available
system tools and/or our newly developed user-level tools to
collect and/or measure resource usage, such as the amount
of CPU usage, i.e. processing rates, consumed by each VM in
terms of MHz (e.g., using the command xentop) and/or in
terms of IPS (e.g., using scripts that parses the run-time logs
generated by the Run-time Statistic Collection submodule,
which is described next);

The Run-time Statistic Collection submodule collects and
stores run-time statistics of dispatched request instances in
log files based on the light-weight RAM Filesystem (Ramfs).
Information collected by this submodule includes IDs of
service types, request classes, instances and hosting VMs,
along with instances’ start times, finish times, QoS viola-
tions, completion ratios, and so on.

1045-9219 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2016.2642941, IEEE
Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 8

(a) S1 : 256× 256 MMUL (b) S2 : 1× 256 1-D FFT

Figure 5. Minimum required processing rates for guaranteed QoS using
M/M/1 queue model with & without reneging for (a) S1 and (b) S2 types.

(a) S1 : 256× 256 MMUL (b) S2 : 1× 256 1-D FFT

Figure 6. Response Time Comparison for guaranteed QoS using M/M/1
queue model with & without reneging for (a) S1 and (b) S2 types.

7 EXPERIMENTS AND RESULTS

In this section, we use experiments to validate our analytical
findings, and to test the performance of the GWPC algo-
rithm using the GCCP platform.

7.1 Performance with Request Reneging

We first empirically study the advantages of request reneg-
ing on minimizing the required processing rates and aver-
age response times with QoS guarantees. We also compare
the performance of the system with and without request
reneging using two different service types; i.e., memory-
intensive (e.g., S1) and CPU-intensive (e.g., S2) types.

We generated two sets of classes with six different
request classes each {τi,j : i = 1, 2; j = 1, ..., 6}, with the
first set from (S1 : 256 × 256 MMUL), and the sec-
ond set from (S2 : 1× 256 1-D FFT). Request classes from
both types were set to have average arrival rates of
{λi,1 = 50, λi,2 = 100, ..., λi,6 = 300; where i = 1, 2}, com-
pletion ratios of Ri,j = 95%, and deadlines randomly
generated following a uniform distribution in the ranges
[5− 15] × 102µs and [2− 6] × 102µs for S1 and S2 classes,
respectively. All parameters and their values were arbitrar-
ily chosen.

We generated 105 Instances Per Request class (IPR), and
request instances of each class were executed in a VM with
and without reneging. The capacity of the VM was set
to 1800 IPS and 6000 IPS for S1 and S2, respectively. In
each run, we calibrated the maximum processing rate of
each VM by assigning a cap to each VM’s Virtual CPU
(VCPU) that limits the maximum amount of processing rates
a VM receives from its allocated physical core. We then
applied the traditional binary search method to find the
minimum required processing rates that can meet the given
QoS conditions. We repeated the experiment for each setting
104 times, and the average results are shown in Figs. 5 and
17.

Fig. 5 compares the minimum required processing rates
with and without reneging under different arrival rates and

QoS settings. We see that for both S1 and S2 requests, the
minimum required processing rates with reneging are much
lower than those without reneging. For example, when the
arrival rate is 200 IPS, the minimum required processing
rates with reneging for S1’s and S2’s are 1000 IPS and 4800
IPS, respectively. If no requests are reneged, the minimum
required processing rates become 1600 IPS and 5600 IPS,
respectively. This is an increase of 60% and 16.7% over
its counterparts. The minimum required processing rates
unsurprisingly increase with the increment of arrival rates.
Nonetheless, the minimum required processing rates with
reneging increase at a much slower rate, as clearly shown in
Figs. 5. In average, the minimum required processing rates
with reneging for S1 and S2 are 62% and 58% lower than
those without reneging, respectively. These results evidently
conform to the theoretical conclusion formulated in The-
orem 1 that request reneging helps reduce the processing
rates while guaranteeing the same QoS requirements.

We can also observe that request reneging helps lower
service response times. As shown in Figs 6a and 6b, the
average response times of S1 and S2 classes without reneg-
ing are always longer than those with reneging. On av-
erage, the average response times of S1’s and S2’s are
225% and 409% longer than those with reneging. As the
arrival rates increase, the minimum required processing
rates must increase to ensure the same QoS requirement.
As a result, response times are reduced. While response
times for requests without reneging change dramatically,
as arrival rates increase, the response times for requests
with reneging do not vary as significantly. This implies
that requests with reneging can deliver service in a more
stable manner in terms of response time variations. When
comparing the response time improvement with reneging
for the memory-intensive service S1 and the CPU-intensive
service S2, we can see that S1 benefits more than S2 in
term of the improvement for the minimum required pro-
cessing rates and response times, as shown in Figure 5 and
17. We conjecture that this is due to the fact that the S1

requests require longer I/O-related operations, and cannot
be easily terminated for request reneging, which negatively
affects their response times when compared with the CPU-
intensive requests.

Request reneging to a great extent not only reduces
processing rate requirements to guarantee the same QoS
requirements as the one without reneging, but also results
in a lower and more stable average response times, and
is therefore a promising approach to achieve reliable and
predictable performance.

7.2 Multiplexed vs. Split Request Processing

Having validated the performance improvement of request
reneging, we now compare the completion ratios and aver-
age response times when serving requests in a multiplexed
manner (e.g., GWPC) and a split manner (e.g., SPT).

We generated two types of services, S1 (128 × 128
MMUL) and S2(1× 64 1-D FFT). We randomly generated
six testing groups of request classes from each service type,
with the number of classes in each group varying from
r = 5 to r = 10, i.e. {τi,j ; i = 1, 2; j = 1, ..., r}. The arrival
rates and deadlines in each request class were randomly

1045-9219 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2016.2642941, IEEE
Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 9

(a) S1 : 128× 128 MMUL (b) S2 : 1× 64 1-D FFT

Figure 7. Performance of completion ratios between request multiplexing
& splitting using requests of (a) S1 & (b) S2 types.

generated with the average following a uniform distribution
in the ranges [20 − 120] IPS and [5− 6] × 102µs, respec-
tively. We set 90% and 95% completion ratios for S1 and S2,
respectively. In each test, we generated 105 IPR for each of
S1 and S2 classes, separately applied the GWPC and SPT
methods on those instances using VMs with a capacity set
to 104 IPS, and calculated the achieved completion ratios
and average response times in each run for each request
class. All these parameters and their values were arbitrarily
chosen. We repeated the experiment for each setting 104

times, and the average results are shown in Figs. 7 and 8.
Fig. 7 compares the completion ratios achieved by the

multiplexed and split approaches under different experi-
ment settings. As shown, both methods successfully guaran-
tee the required completion ratios for S1 and S2. Nonethe-
less, GWPC can achieve a much higher average completion
ratios than SPT. Note that, for the test cases when there are
eight different request classes (i.e. r = 8), GWPC achieves
a completion ratio of 94% for S1 and 97.5% for S2, in
comparison with 90.2% for S1 and 95.8% for S2 achieved by
SPT. Those results comply with the conclusion in Theorem 3
that request multiplexing helps reduce required processing
rates without compromising QoS requirements. When all
VMs have the same capacity, GWPC can unsurprisingly
lead to better completion ratios in all test cases. GWPC can
on average achieve an average completion ratios of 93.87%
for for S1 and 97.2% for S2, whereas SPT can only achieve
90.18% and 95.92% for S1 and S2, respectively.

Request multiplexing also results in less average re-
sponse times than those in SPT, as shown in Fig. 8. The
average response times in the multiplexed approach out-
perform those in SPT in all test cases. The reason for such
improvement is that GWPC can efficiently utilize computing
resources among different request classes, as a result of
request reneging and multiplexing. Moreover, allocating a
smaller number of VMs reduces the overhead on the Virtual
Machine Manager (VMM), i,e., the hypervisor, especially
with memory-intensive workloads, which demand more
privileged operations, such as memory accesses, context
switches, system calls and interrupts [45]. For instance, in
Fig. 8, when the number of classes is r = 10, GWPC results
in an average response time that is 2.26µs less than those
in SPT for S1 classes, but for S2 and with the same number
of request classes r = 10, GWPC shows only 0.06µs better
average response time than that of the SPT.

overall, our experiments show that request multiplexing
not only guarantees QoS requirements, but can also achieve
higher completion ratios than required. It can better utilize
computing resources than SPT does, especially with the
memory-intensive service types.

(a) S1 : 128× 128 MMUL (b) S2 : 1× 64 1-D FFT

Figure 8. Performance of average response times between request
multiplexing & splitting using requests of (a) S1 & (b) S2 types.

7.3 Performance under Different Service Utilizations

In this section, we analyze the performance of GWPC in
terms of power consumption and processing rate demand,
compared with SPT, FFD, and RND, which are described in
Section 6.

We generated five groups of test cases, each of
which has a different number of request classes
{τi,j : i = 1, 2; j = 1, ..., ri}; where ri = 10, 20, ..., 50, from
two service types, i.e., (S1 : 128 × 128 MMUL) and
(S2 : 1× 64 1-D FFT). The arrival rates and completion ra-
tios were randomly generated with the average following
uniform distributions in the ranges [20 − 500] IPS and
[90%− 95%], respectively. We recall that, from equation (8),
when the arrival rate is a constant value, the smaller the
deadline, the higher the required processing rate is. Thence,
as the deadline reduces, the processing rate µi,j increases,
and then the service utilization increases. We accordingly
varied request utilization by changing the intervals from
which we randomly picked the deadlines. For each set of
request classes, we varied the deadline range among four
intervals, starting from 500 µs and 600 µs with interval
length of 50µs and 100µs for S1 and S2, respectively.

GWPC, SPT, FFD, and RND were tested using the same
test cases. In each run, we generated 105 IPR with reneging
on the VMs VMi,j ; i = 1, 2; j = 1, 2, ...,mi. We repeated
each run 104 times, calculated the average results, normal-
ized them to the results by SPT, and presented them in
Figs 9 to 12. Specifically, Figs 9 and 10 show the power
consumption of different approaches, and Figs 11 and 12
compare the total minimum processing rates required by
each server pool (i.e., Ω(SPi)) to satisfy the given QoS
constraints.

From Figs. 9 and 10, we can immediately observe that
GWPC outperforms the other three approaches under the
different testing condition. For example, for S1’s request in
Fig. 9, and when the deadlines are within the range of [50
- 550] µs, and the number of classes is 30, the power con-
sumption by GWPC is about 46% of that by SPT. Whereas it
is about 52% and 58% for FFD and RND of that by SPT, re-
spectively. We can also see that GWPC’s power-saving per-
formance increases with increasing the number of classes,
as well as with increasing the tightness of their deadline
ranges. As the number of classes increases, and the solution
space to map requests to different VMs increases, GWPC can
henceforth take advantage of the bigger solution space, and
achieve better power-saving performance. Correspondingly,
when the deadlines are long, or the workload intensity is
light, the differences among packing approaches become
smaller, and therefrom the power consumption patterns

1045-9219 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2016.2642941, IEEE
Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 10

(a) D1,j ∈ [500− 550]µs (b) D1,j ∈ [550− 600]µs

(c) D1,j ∈ [600− 650]µs (d) D1,j ∈ [650− 700]µs

Figure 9. Power-saving performance normalized to that of SPT for S1 :
128× 128 MMUL service type with different deadline ranges.

(a) D2,j ∈ [6− 7] × 102µs (b) D2,j ∈ [700− 800]µs

(c) D2,j ∈ [800− 900]µs (d) D2,j ∈ [900− 1000]µs

Figure 10. Power-saving performance normalized to that of SPT for S2 :
1× 64 1-D FFT service type with different deadline ranges.

(a) D1,j ∈ [500− 550]µs (b) D1,j ∈ [550− 600]µs

(c) D1,j ∈ [600− 650]µs (d) D1,j ∈ [650− 700]µs

Figure 11. Processing Rate Performance normalized to that of SPT for
S1 : 128× 128 MMUL service type with different deadline ranges.

become similar. As the deadlines become larger and larger,
the workload becomes heavier and heavier, and thusly
GWPC can greatly benefit from its effective request reneg-
ing and packing methods, and can consequently achieve

(a) D2,j ∈ [600− 700]µs (b) D2,j ∈ [700− 800]µs

(c) D2,j ∈ [800− 900]µs (d) D2,j ∈ [900− 1000]µs

Figure 12. Processing Rate Performance normalized to that of SPT for
S2 : 1× 64 1-D FFT service type with different deadline ranges.

higher and higher power-saving performance. For example,
from Figs. 10(d) and 10(a), the power consumption ratios
achieved by GWPC increase from 61% to 82.8% as request
utilizations decrease (e.g., the deadline range changed from
[650− 700]µs to [500− 550] × 102µs).

The behaviors of the minimum required processing rates
and power consumption rates are closely related. Thus, it
is not unforeseen to observe the similar phenomena, when
studying our experimental results in terms of the minimum
processing rates of the server pools. The total processing
rates required by GWPC are lower than those required by
the other three approaches for both types of services and
under different testing cases, as shown in Figs. 11 and 12.
We can also notice,from same figures, that the improvement
of GWPC over the other three approaches increases, when
the class number for each service type increases, as well as
when the tightness of the deadline ranges increase. Recall
that, in Theorem 6, we prove that request packing is an NP-
hard problem [46], when a server pool SPi needs more than
two VMs. Yet, our experimental results clearly show that the
heuristic proposed in GWPC, i.e. packing requests ordered
by φi,j (see equation 13) is much more effective than the one
(i.e. FFD) that packs requests ordered by their individual
processing rates (e.g., µi,j) only. For example, in Figure 12
for S2 classes, when the class number is 30, the average total
processing rate by GWPC is about 85% of that by FFD.

7.4 Performance under Different Server Capacities

Different server capacities affect how many requests can be
accommodated in a single server, and how many servers
are needed to ensure the QoS requirements for a given set
of service requests. In this section, we investigate how the
performance of different allocation and packing approaches
varies with different server’s capacities, (e.g. Ci,j).

We generated two types of services, S1 (128 ×
128 MMUL) and S2 (1× 64 1-D FFT), with five test-
ing groups of requests from each service type, and
with each group has a different number of classes
{τi,j ; i = 1, 2; j = 1, ..., r; r = 10, 20, ..., 50}. The average ar-
rival rates were randomly varied with the average follow-
ing a uniform distribution in the range of [20 − 500] IPS

1045-9219 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2016.2642941, IEEE
Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 11

and [500 − 1500] IPS for S1’s requests and S2’s requests,
respectively. The deadlines of the requests were chosen
randomly from the interval [500 − 600]µs. We varied the
server’s capacities from 6000 IPS to 6750 IPS, and from
6000 IPS to 12000 IPS for S1 and S2, respectively. We
configured each VM with 2 GB memory, 20 GB disk storage,
and a dedicated physical core with an adjustable maximum
processing rate, i.e., capacity, according to a given value
(e.g. Ci,j) using Xen’s credit scheduler [32]. For example,
to pin a VCPU to a single physical core, i.e., CPU, we can
use: xl vcpu-pin ”VM Name” ”VCPU-ID” ”CPU ID”. Then to
adjust the processing rate of a VCPU in a VM according to a
given capacity Ci,j in terms of RPS, we can use Xen Credit
scheduler that assigns a Cap to the VCPU of a VM, which
limits the maximum amount of the physical CPU that VCPU
can use. For example, a VM with a 100 Cap means that
the VM can consume up to a 100% of its CPU’s maximum
processing rate: xlsched -credit -d ” VM Name” -c ”Cap-
Value”. The arbitrarily chosen parameters and their values
are summarized in Tables 2(a)(b) and (c). For each experi-
mental setting, we repeated each run 104 times, collected the
total power consumption and the total minimum processing
rates, and presented the average results normalized to those
by SPT in Figs. 13 to 16.

Figs. 13 and 14 show how power consumption of dif-
ferent approaches vary with different capacities, and Figs.
15 and 16 show how total required processing rates change
with different capacities. From the results, we can see that
GWPC outperforms others in terms of both power con-
sumption rates and total processing rate demands under
different server capacities. As shown in the figures, when
the VMs’ capacities increase from 6500 IPS (Fig. 13(a))
and from 6500 IPS (Fig.14(a)) to 6750 IPS (Fig.13(d))
and to 12000 IPS (Fig.14(d)), the improvement of GWPC
over RND and FFD diminishes for S1 (S2) service types.
This is because when the VMs’ capacities increase, more
request classes can be hosted together in the same VM, and
thus all multiplexing approaches show similar performance.
Nevertheless, we can see that the performance improvement
of power-saving and the processing rate demands by the
multiplexing approaches over SPT approach continue to
improve as the server’s capacities grow larger. For example,
in Fig. 13(a), when server capacity is 6000 IPS and the
number of classes is 30, the power consumption by GWPC
is about 53% of that by SPT. In Fig.13(d), when the server
capacity is 6750 IPS and the number of classes is 30, the
power consumption by GWPC becomes about 24% of that
by SPT. This again conforms to the theoretical conclusion in
Theorem 3.

7.5 Validation Using Cloud Benchmarks

We further evaluate our methods using the Data Caching
Benchmark, i.e. a benchmark that emulates the behavior of
a Twitter caching server, from the benchmark suite of cloud
services, CloudSuite [36]. The benchmark assumes strict
quality of service guaranties such as, 95% of the request
must finish within 200 ms.

We exploited the GCCP to bootstrapped two VMs with
10 GB memory capacity, and a single VCPU pinned to a
single physical core in each VM. We then implemented a

(a) C1 = 6000IPS (b) C1 = 6250IPS

(c) C1 = 6500IPS (d) C1 = 6750IPS

Figure 13. Power-Saving Performance normalized to that of SPT for S1 :
128× 128 MMUL service type with different server capacities.

(a) C2 = 6000IPS (b) C2 = 8000IPS

(c) C2 = 10000IPS (d) C2 = 12000IPS

Figure 14. Power-Saving Performance normalized to that of SPT for S1 :
1× 64 1-D FFT service type with different server capacities.

(a) C1 = 6000IPS (b) C1 = 6250IPS

(c) C1 = 6500IPS (d) C1 = 6750IPS

Figure 15. Processing Rate Performance normalized to that of SPT for
S1 : 128× 128 MMUL service type with different server capacities.

Memcached server—a distributed memory object caching
system that speeds up dynamic web applications by alle-
viating a database’s delay—on the first VM with a single
worker (e.g., a single execution queue) to process the data

1045-9219 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2016.2642941, IEEE
Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 12

(a) C2 = 6000IPS (b) C2 = 8000IPS

(c) C2 = 10000IPS (d) C2 = 12000IPS

Figure 16. Processing Rate Performance normalized to that of SPT for
S1 : 1× 64 1-D FFT service type with different server capacities.

Table 2
Power-Saving Performance of GWPC with Different Server Capacities

(a) Services & Nodes Specifications

Si SPi ’s Size (mi Nodes) Ci textbf(IPS)
S1 : 128× 128 MMUL m1 = {10, 20, 30, 40, 50} C1 = (6, 6.25, 6.50, 6.75) × 103

S2 : 1× 64 1-D FFT m2 = {10, 20, 30, 40, 50} C2 = (6, 8, 10, 12) × 103

(b) Requests Specifications for S1 and S2

τ i,j λi,j (IPS) V i,j Ci,j (IPS)) Run ID
(τ1,1 . . . τ1,r1) [20− 500] V1,1 . . . V1,m1 6× 103 (0 to 4)
(τ1,1 . . . τ1,r1) [20− 500] V1,1 . . . V1,m1 8× 103 (5 to 9)
(τ1,1 . . . τ1,r1) [20− 500] V1,1 . . . V1,m1 10× 103 (10 to 14)
(τ1,1 . . . τ1,r1) [20− 500] V1,1 . . . V1,m1 12× 103 (15 to 19)
(τ2,1 . . . τ2,r2) [500− 1500] V2,2 . . . V2,m2 6× 103 (20 to 24)
(τ2,1 . . . τ2,r2) [500− 1500] V2,2 . . . V2,m2 8× 103 (25 to 29)
(τ2,1 . . . τ2,r2) [500− 1500] V2,2 . . . V2,m2 10× 103 (30 to 34)
(τ2,1 . . . τ2,r2) [500− 1500] V2,2 . . . V2,m2 12× 103 (35 to 39)

(c) Shared Parameters among Requests

Ri,j (%) IPRi,j Run Repetition ri Di,j(102µs)
[90− 95] 105 104 (10, 20, 30, 40, 50) [5− 6]

caching requests, i.e., Get or Set. The caching requests are
generated by a Memcached clients implemented within
the workload engine UWME, and the Memcached server
processes those requests. The UWME replicates those re-
quests, and forward them to the second Memcached server
running on the second VM with reneging. The Performance
Monitoring Module collects the results on both servers.

We considered two main service types generated by
the UWME; i.e., Get (e.g., S1), and Set (e.g., S2). We gen-
erated one set of request with nine classes each from
each service type, {τi,j : i = 1, 2; j = 1, ..., 9}, with arrival
rates following the exponential distribution and averages of
{1000, 2000, ..., 9000}} RPS. The completion ratios were set
to be Ri,j = 95%. The deadlines in both sets were set such
that the maximum achieved throughput does not violate the
target QoS requirements, when the requests are served with
the Memcached server without reneging.

7.5.1 Data caching workload with Request Reneging
We first compare the the average response times under QoS
guarantees with and without request reneging. We gener-
ated 107 Instances Per Request class (IPR), and processed

these instances on both VM1 and VM2. The average results
are shown in Figs. 17.

Our experimental results clearly show that request
reneging can significantly reduce service response times.
As shown in Fig. 17(a), the average response times of Get
and Set classes without reneging are always longer than
those with reneging. On average, the average response
times of Get requests are 8%, 14%, and 17%, longer than
those with reneging for Get requests classes with the arrival
rates {λ1,1 = 1000, λ1,5 = 5000, λ1,9 = 9000} RPS, respec-
tively. We also observe similar trend in Fig. 17(b), where
the average response time of Set requests is on average
14% longer than those with reneging. When the arrival
rates increase for S1’s and S2’s requests, the minimum
required processing rates must increase to guarantee the
same QoS requirement, as the waiting times of requests
increased. From Figs. 17(a), and 17(b), we can also observe
that the response time improvement by the reneging over
non-reneging server increases with the arrival rate of the
requests. For example, in Fig. 17(b), and when the arrival
rate of Set requests is 5000 RPS, the response time by the
reneging server is 14% shorter than the non-reneging server,
and it becomes 19% when the arrival rate increases to 9000
RPS.

7.5.2 Energy-saving performance of Data Caching Work-
load with Request Reneging
To study the potential electricity cost savings of our ap-
proach, we tested GWPC, SPT, FFD, and RND, using the
same test cases defended above, with different request
classes each time ranging from 10 to 50. We also varied
the completion ratio for each class randomly from interval
of [90%,99%]. We assume that each HP workstation with a
total memory capacity of 32GB can hold up to 3 Memcached
servers. We generated 105 IPR for each request class, and
repeated each run 104 times with and without reneging.
The results are taken among different completion ratios and
service utilizations, averaged and normalized to the results
by SPT and presented them in Fig. 18. More details about
power measurement and electricity cost calculation can be
found in section 6.

The annual electricity cost-saving performance of GWPC
follows a similar pattern of the power-saving performance,
and total processing rate as our experimental results showed
before. First, compared with SPT, all three request multi-
plexing approach (i.e. GWPC, SPT, and RND), by sharing
servers and reneging requests, can improve the processing
efficiency and reduce the electricity cost significantly. In ad-
dition, as the number of classes increases, the improvement
becomes more significant. For example, when the number
of classes increases from 10 to 50, the annual electricity
cost ratios over SPT by GWPC, FFD and RND decrease
from 38 (35, resp.), 39 (36, resp.), and 40 (36, resp.) to 19
(16, resp.), 21 (17, resp.), and 25 (20, resp.) for S1 (and
S2, resp.), respectively. Moreover, we can see that GWPC
outperforms FFD and RND. According to Figs 18(a) and
18(b), GWPC on average saves around 4% and 3% more
than FFD and 12% and 10% more than RND for S1’s and
S2’s requests, respectively. Furthermore, such an improve-
ment increases while the number of classes increases. For
example, when the number of classes is 10, the relative

1045-9219 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2016.2642941, IEEE
Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 13

(a) Get’s Request Classes (b) Set’s Request Classes

Figure 17. Get’s (a) and Set’s (b) average response times under different
arrival rates with and without request reneging.

(a) Get’s Request Classes (b) Set’s Request Classes

Figure 18. Energy-saving performance of GWPC normalized to that of
SPT using Get’s and Set’s request classes under various QoS condition

improvement of GWPC over FFD and RND is 2.6% (2.8%,
resp.) and 5.3% (2.8%, resp.) for S1 (S2, resp.) requests,
respectively. When the number of classes is 50, the relative
improvement of GWPC over FFD and RND becomes 10.5%
(6.25%, resp.) and 31.6% (25.0%, resp.) for S1 (S2, resp.)
requests, respectively. This is because that when the number
of classes increases, the solution space to map requests to
different VMs increases, and GWPC consequently can take
advantage of the bigger solution space, and achieve better
power-saving performance. Overall, our experimental re-
sults have clearly demonstrated that request reneging with
data caching workload results in lower average response
times, and less energy costs comparing to its counterpart.
GWPC is therefore a promising approach that should be
studied and applied to more complicated cloud workloads.

8 CONCLUSION

In this paper, we present a novel approach that can be
applied in virtualized data centers to improve resource
utilization and minimize power consumption when deliv-
ering cloud services with statistically guaranteed QoS. The
effectiveness and efficiency of our approach is rooted in two
facts: (1) our approach can effectively remove the potential
failure requests as soon as possible to improve resources
usage; (2) our approach allows requests with different QoS
requirements to be served on the same VM. To our best
knowledge, this is the first approach by which different
requests with different QoS guarantees can be hosted on
a single node in order to further increase resource utiliza-
tion and reduce power consumption. We present several
interesting characteristics of our proposed approach with
formal proofs. We also present the GWPC algorithm that
allocates services on the same VMs and reneges potential
failure request while statistically guarantees QoS constraints
in terms of deadline miss ratios. We also design a Green
Cloud Computing Prototype, GCCP, to validated the GWPC
algorithm, and our experimental results demonstrate that
our approach can significantly outperform other traditional
approaches in terms of guaranteed QoS levels, power con-
sumption, resource demands, as well as electricity costs. In

the future, we intend to extend this work to platforms with
heterogeneous servers having different power consumption
and processing rates characteristics. We also plan to study
the effects of interferences among different service types on
the performance of cloud data centers modeled by exploit-
ing different queue models with request reneging.

REFERENCES

[1] J. Spillner and A. Schill, “A versatile and scalable everything-as-a-
service registry and discovery.” in CLOSER, 2013, pp. 175–183.

[2] M. Zivkovic, J. Bosman, J. L. Van den Berg, R. Van der Mei,
H. Meeuwissen, and R. Nunez-Queija, “Dynamic profit optimiza-
tion of composite web services with slas,” in Global Telecommuni-
cations Conference (GLOBECOM), IEEE, Dec 2011, pp. 1–6.

[3] “Pocket gems on google cloud platform,” http://cloud.google.
com/customers/pocketgems/.

[4] M. Poess and R. O. Nambiar, “Energy cost, the key challenge
of today’s data centers: a power consumption analysis of tpc-c
results,” Proceedings of the VLDB Endowment, vol. 1, no. 2, pp. 1229–
1240, 2008.

[5] Greenpeace, “How dirty is your data?” a look at the energy choices
that power cloud computing, 2011.

[6] C. Reiss, J. Wilkes, and J. L. Hellerstein, “Google cluster-usage
traces: format+ schema,” Google Inc., Mountain View, CA, USA,
Technical Report, 2011.

[7] R. Sethi, “Exoskeleton: Fast cache-enabled load balancing for key-
value stores,” 2015.

[8] C. Cai, L. Wang, S. U. Khan, and J. Tao, “Energy-aware high
performance computing: A taxonomy study,” in IEEE 17th Int.
(ICPADS), 2011, pp. 953–958.

[9] I. Hwang, T. Kam, and M. Pedram, “A study of the effectiveness
of cpu consolidation in a virtualized multi-core server system,” in
Proceedings of the ACM/IEEE int. symposium on Low power electronics
and design, 2012, pp. 339–344.

[10] A. Verma, G. Dasgupta, T. K. Nayak, P. De, and R. Kothari, “Server
workload analysis for power minimization using consolidation,”
in Proceedings of the Conference on USENIX Annual Technical Confer-
ence, ser. USENIX’09, Berkeley, CA, USA, 2009, pp. 28–28.

[11] K. H. Kim, R. Buyya, and J. Kim, “Power aware scheduling of bag-
of-tasks applications with deadline constraints on dvs-enabled
clusters.” in CCGRID, vol. 7, 2007, pp. 541–548.

[12] G. von Laszewski, L. Wang, A. J. Younge, and X. He, “Power-
aware scheduling of virtual machines in dvfs-enabled clusters.” in
CLUSTER. IEEE, 2009, pp. 1–10.

[13] P. Lama and X. Zhou, “Efficient server provisioning with end-to-
end delay guarantee on multi-tier clusters.” in IWQoS. IEEE, 2009,
pp. 1–9.

[14] M. Poess and R. O. Nambiar, “Energy cost, the key challenge
of today’s data centers: a power consumption analysis of tpc-c
results,” Proceedings of the VLDB Endowment, vol. 1, no. 2, pp. 1229–
1240, 2008.

[15] A. Beloglazov and R. Buyya, “Energy efficient resource manage-
ment in virtualized cloud data centers.” in CCGRID. IEEE, 2010,
pp. 826–831.

[16] S. Liu, S. Homsi, M. Fan, S. Ren, G. Quan, and S. Ren, “Scheduling
time-sensitive multi-tier services with probabilistic performance
guarantee,” in 2014 20th IEEE (ICPADS). IEEE, 2014, pp. 736–743.

[17] I. Ahmad and S. Ranka, Handbook of Energy-Aware and Green
Computing-Two Volume Set. CRC Press, 2016.

[18] A. Greenberg, J. Hamilton, D. A. Maltz, and P. Patel, “The cost
of a cloud: research problems in data center networks,” ACM
SIGCOMM computer communication review, vol. 39, no. 1, pp. 68–73,
2008.

[19] A. Hammadi and L. Mhamdi, “A survey on architectures and
energy efficiency in data center networks,” Computer Communi-
cations, vol. 40, pp. 1–21, 2014.

[20] Z. Xiao, W. Song, and Q. Chen, “Dynamic resource allocation
using virtual machines for cloud computing environment,” Parallel
and Distributed Systems, IEEE Transactions on, vol. 24, no. 6, pp.
1107–1117, 2013.

[21] C. Mastroianni, M. Meo, and G. Papuzzo, “Probabilistic consoli-
dation of virtual machines in self-organizing cloud data centers,”
IEEE T. Cloud Computing, vol. 1, no. 2, pp. 215–228, 2013.

[22] F. Salfner, P. Tröger, and A. Polze, “Downtime analysis of virtual
machine live migration,” in DEPEND, 2011, pp. 100–105.

1045-9219 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2016.2642941, IEEE
Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 14

[23] R. Bane, B. Annappa, and K. Shet, “Survey of dynamic resource
management approaches in virtualized data centers,” in Com-
putational Intelligence and Computing Research (ICCIC), IEEE Int.
Conference on, 2013, pp. 1–7.

[24] S. Wang, W. Munawar, J. Liu, J.-J. Chen, and X. Liu, “Power-saving
design for server farms with response time percentile guarantees.”
in IEEE Real-Time and Embedded Technology and Applications Sympo-
sium, M. D. Natale, Ed., 2012, pp. 273–284.

[25] J. S. Chase, D. C. Anderson, P. N. Thakar, A. M. Vahdat, and
R. P. Doyle, “Managing energy and server resources in hosting
centers,” ACM SIGOPS Operating Systems Review, vol. 35, no. 5,
pp. 103–116, 2001.

[26] GIGASPACES, “Amazon found every 100ms of latency cost them
1% in sales,” http://blog.gigaspaces.com/, 2015.

[27] F. Caglar and A. Gokhale, “ioverbook: Intelligent resource-
overbooking to support soft real-time applications in the cloud,”
in CLOUD, IEEE 7th Int. Conference on, 2014, pp. 538–545.

[28] K. C. Almeroth, A. Dan, D. Sitaram, and W. B. Tetzlaff, “Long term
resource allocation in video delivery systems,” in INFOCOM’97.
16th Annual Joint Conference of the IEEE Computer and Communica-
tions Societies. Driving the Information Revolution., Proceedings IEEE,
vol. 3, 1997, pp. 1333–1340.

[29] F. Caglar, S. Shekhar, and A. Gokhale, “A performance interfer-
enceaware virtual machine placement strategy for supporting soft
realtime applications in the cloud,” Institute for Software Integrated
Systems, Vanderbilt University, TN, USA, Tech. Rep. ISIS-2013-105.

[30] A. Verma, P. Ahuja, and A. Neogi, “pmapper: power and migra-
tion cost aware application placement in virtualized systems,” in
Middleware. Springer, 2008, pp. 243–264.

[31] Y. C. Lee, C. Wang, A. Y. Zomaya, and B. B. Zhou, “Profit-driven
service request scheduling in clouds,” in Proceedings of the 2010
10th IEEE/ACM international conference on cluster, cloud and grid
computing. IEEE Computer Society, 2010, pp. 15–24.

[32] “Xen project,” http://www.xenproject.org/.
[33] T. Robertazzi, Computer Networks and Systems: Queueing Theory

and Performance Evaluation, ser. Telecommunication networks and
computer systems,2000. Springer, 2000.

[34] V. Gupta, M. Harchol-Balter, J. Dai, and B. Zwart, “On the inap-
proximability of m/g/k: why two moments of job size distribution
are not enough,” Queueing Systems, vol. 64, no. 1, pp. 5–48, 2010.

[35] V. Petrucci, M. A. Laurenzano, J. Doherty, Y. Zhang, D. Mosse,
J. Mars, and L. Tang, “Octopus-man: Qos-driven task management
for heterogeneous multicores in warehouse-scale computers,” in
HPCA, IEEE 21st Int. Symposium on, 2015, pp. 246–258.

[36] “Cloudsuite benchmark,” http://parsa.epfl.ch/cloudsuite/
overview.html.

[37] M. Ferdman, A. Adileh, O. Kocberber, S. Volos, M. Alisafaee,
D. Jevdjic, C. Kaynak, A. D. Popescu, A. Ailamaki, and B. Falsafi,
“Clearing the clouds: a study of emerging scale-out workloads on
modern hardware,” in ACM SIGPLAN Notices, vol. 47, no. 4, 2012,
pp. 37–48.

[38] C. Delimitrou and C. Kozyrakis, “Quasar: resource-efficient and
qos-aware cluster management,” ACM SIGPLAN Notices, vol. 49,
no. 4, pp. 127–144, 2014.

[39] D. Y. Barrer, “Queuing with impatient customers and ordered
service,” Operations Research,, vol. 5, no. 5, pp. pp. 650–656, 1957.

[40] M. Dodani, “Cloud architecture.” Journal of Object Technology,
vol. 8, no. 7, pp. 35–44, 2009.

[41] C. Math, “The apache commons mathematics library,”
http//commons. apache. org/proper/commons-math/, 2014.

[42] P. Wendykier, “Jtransforms,” https://sites.google.com/site/
piotrwendykier/software/jtransforms, 2009.

[43] E. Feller, L. Rilling, and C. Morin, “Energy-aware ant colony based
workload placement in clouds,” in Grid Computing (GRID), 2011
12th IEEE/ACM Int. Conference on, Sept 2011, pp. 26–33.

[44] Y. Ajiro and A. Tanaka, “Improving packing algorithms for server
consolidation.” in Int. CMG Conference. Computer Measurement
Group, 2007, pp. 399–406.

[45] J. Li, Q. Wang, D. Jayasinghe, J. Park, T. Zhu, and C. Pu, “Perfor-
mance overhead among three hypervisors: An experimental study
using hadoop benchmarks,” in BigData Congress, IEEE Int. Congress
on, 2013, pp. 9–16.

[46] R. G. Michael and S. J. David, “Computers and intractability: a
guide to the theory of np-completeness,” WH Free. Co., San Fr,
1979.

Soamar Homsi (M’ 14) received his M.S. in
2014 from the Electrical and Computer Engi-
neering Department at Florida International Uni-
versity, Miami, and is currently a Ph.D. candidate
in the same department. His current research
interests center on energy-aware cloud comput-
ing and data centers, guaranteed QoS schedul-
ing of cloud/web services, workload modeling,
and data mining. He is also interested in the
thermal/power-aware real-time computing and
system design. He has been a research assis-

tant in the Advanced Real-time and Computing Systems (ARCS) labo-
ratory in Miami since 2014.

Shuo Liu (M’09) received his B.S. in electri-
cal engineering from Beihang University, Bei-
jing, China, and his M.S. in electrical engineer-
ing from Utah State University, Logan, UT, and
his Ph.D in electrical engineering from FIU. He
is currently working at Schneider Electric as a
software engineer, focusing on real-time security
platform.

Gustavo A. Chaparro-Baquero (M’11) received
his M.S. degree from the Department of Com-
puter Engineering, University of Puerto Rico,
PR, in 2007. He is currently working towards the
Ph.D. at the Electrical and Computer Engineer-
ing Department, FIU. He worked as Auxiliary
Professor with the Electrical and Computer En-
gineering Department at Universidad del Turabo,
Puerto Rico from 2006 to 2011. His research
interests include real-time systems and applica-
tions, microprocessors, and memories.

Ou Bai received his PhD in 2000 from Saga
University in Japan and his BA from Tsinghua
University in 1991 from Beijing, China. His cur-
rent research interests include cyber-physical
systems research on robotic/prosthetic opti-
mization. He is also interested in smart and
connected health research on in-home exer-
cise/rehabilitation, monitoring cybersecurity, and
privacy in cyber-physical systems sensors. He is
currently an Associate Professor in FIU.

Shaolei Ren is an Assistant Professor of Elec-
trical and Computer Engineering at University
of California, Riverside. Previously, he was an
Assistant Professor at FIU from 2012 to 2015.
He received his B.E. from Tsinghua University
in 2006, M.Phil. from Hong Kong University of
Science and Technology in 2008, and Ph.D. from
University of California, Los Angeles in 2012,
all in electrical and computer engineering. His
research interests include cloud computing, data
centers, and network economics. He was a re-

cipient of the NSF Faculty Early Career Development (CAREER) Award
in 2015.

Gang Quan (M’02-SM’10) received his Ph.D.
from the Department of Computer Science &
Engineering, University of Notre Dame, USA, his
M.S. from the Chinese Academy of Sciences,
Beijing, China, and his B.S. from the Department
of Electronic Engineering, Tsinghua University,
Beijing, China. He is currently an associate pro-
fessor in the Electrical and Computer Engineer-
ing Department, FIU. His research interests and
expertise include real-time systems, embedded
system design, power-/thermal-aware comput-

ing, advanced computer architecture and reconfigurable computing.

