CGN 2420 Working with Matrices in Mathcad

Instructor: Professor Cora Martinez, PhD
Department of Civil and Environmental Engineering Florida International University

Objectives

- Know several ways to create a matrix and fill it with values.
- Be able to perform basic matrix operations using Mathcad.
- Be aware of Mathcad's built-in functions to manipulate matrices.
- Use linear algebra to solve systems of equations.

Matrix

A matrix is a collection of numbers, called elements, that are related in some way.

Definitions used in Mathcad's help files:

- Array argument (A): either a matrix or a vector.
- Matrix argument (M): an array with two or more rows or columns.
- Vector argument (v):an array containing a single row or column.

Defining a Matrix

- There are several ways to initialize a matrix in Mathcad:
- Type in the values from the keyboard.
- Read the values from a file.
- Use an input table to fill the matrix.
- Compute the values by using a function or a range variable.
- Copy and paste values from another Windows program.

Defining a Matrix

- Step 1: Create the empty arrange
- Begin by choosing a variable name and using the assignment operator (:=).
- Then open the Insert Matrix Dialog.
- Tell Mathcad how many rows and columns the matrix should contain.

Defining a Matrix

- Step 2: Fill the placeholders to assign a value to each matrix element.

Modifying Matrices

- Use the Insert Matrix Dialog to insert a row and/or a column into an existing array.
- Use the Insert Matrix Dialog to delete a row and/or a column of an existing array
- To join two arrays together side to side, use the augment() function.

Modifying Matrices (Cont)

- To put one array on top of the another use the stack() function.
- Portions of an array can be selected by:
- Column operator, $<>$ to grab a single column from an array.
- Submatrix() function, to grab a part of an array.

Copying and Pasting Values from an Spreadsheet

- Define an array in Mathcad.
- In the spreadsheet, select and copy the values.
- In Mathcad, click the placeholder on the right side of the assignment operator in the new matrix definition.
- Paste the values by using the menu options Edit/Paste, or keyboard shortcut [Ctrl+V].

Reading Data from Text Files

Data can be read directly into an array definition by using the READPRN() function.

- The READPRN(path) function takes the path name of the file.
- The text file can be tab-delimited or commadelimited.

Matrix Properties

Matrix Addition or Subtration

- Requirement:

The arrays to be added must be the same size.

- Procedure:

Each element of the first array is added (or subtracted from) the same element of the second array.

Matrix Multiplication

- Requirement:

The inside dimensions of the arrays to be multiplied must be equal.

- Procedure:

Working across the columns of the first array
 and down the rows of the second array, add the product of each pair of elements.

Element-by-Element Multiplication

- Requirement:

The arrays must be the same size.

- Procedure:

Multiply each individual element of the first matrix by the corresponding

M Mathcad - [Untitled:1]			
Wh File Edit View Insert Format Tools Symbolics Window He			
Normal	\checkmark Arial $\quad \vee$ \|	10 V	B I
		My Site	
$\begin{gathered} \mathrm{Ma}:=\left(\begin{array}{ll} 1 & 2 \\ 1 & 2 \end{array}\right) \quad \mathrm{Mb}:=\left(\begin{array}{ll} 4 & 2 \\ 6 & 3 \end{array}\right) \\ \mathrm{Mult}:=\xrightarrow[(\mathrm{Ma} \cdot \mathrm{Mb})]{ } \\ \mathrm{Mult}=\left(\begin{array}{ll} 4 & 4 \\ 6 & 6 \end{array}\right) \end{gathered}$			

Transposing a Matrix

- Requirement:

Any array can be transposed.

- Procedure: Interchange row and column element.

The transpose operator is available on the matrix tool bar or $[C t r l+1]$.

Inverting a Matrix

- Requirement:

Only square and nonsingular ($\mathrm{Det} \neq 0$) matrices can be inverted.

- Procedure: Quite involved!
See textbook pg. 118

The inverse operator is available on the matrix tool bar.

Determinant of a Matrix

- Requirement:

Matrix must be square.

- Procedure:

The determinant operator is available on the matrix tool bar.

Solving Systems of Linear Algebraic Equations (LAE)

- Requirements:

A non homogeneous system of linear equations has a unique solution if the determinant of the system's matrix is nonzero (i.e., the matrix is nonsingular).

$$
\begin{aligned}
& 8 x_{1}+4 x_{2}-3 x_{3}=14 \\
& 6 x_{1}+2 x_{2}-4 x_{3}=-4 \\
& 4 x_{1}-3 x_{2}+6 x_{3}=32
\end{aligned}
$$

$$
C \cdot X=b
$$

Steps to Solve LAE

Step 1:
Write the set of equations in proper matrix form.
$8 x_{1}+4 x_{2}-3 x_{3}=14$
$6 x_{1}+2 x_{2}-4 x_{3}=-4$
$4 x_{1}-3 x_{2}+6 x_{3}=32$

Mathead - [Untitled:1]		
Wa] File Edit view Insert Format Tools Symbolics Window		
Normal \vee Arial	\checkmark	10 V
		My Site
$\mathrm{C} 1:=\left(\begin{array}{ccc}8 & 4 & -3 \\ 6 & 2 & -4 \\ 4 & -3 & 6\end{array}\right)$	b1 : $=\left(\begin{array}{c}14 \\ -4 \\ 32\end{array}\right)$	

Steps to Solve LAE

- Step 2:

Calculate the determinant of the coefficient to see of a solution exists.

If the determinant of the coefficient matrix is zero, there is no solution to the set of equations.

Mathcad - [Untitled:1]				
NJ File Edit View Insert Format Tools Symbolics Window Help				
Norm	\checkmark Arial	\checkmark	10 v	B I $\underline{\mathrm{U}}$
			My Site	
$\begin{gathered} \mathrm{C} 1:\left(\begin{array}{ccc} 8 & 4 & -3 \\ 6 & 2 & -4 \\ 4 & -3 & 6 \end{array}\right) \quad \mathrm{b} 1:=\left(\begin{array}{c} 14 \\ -4 \\ 32 \end{array}\right) \\ \|\mathrm{C} 1\|=-130 \end{gathered}$				

Steps to Solve LAE

- Step 3:

Determine the element values of the unknown vector by inverting the coefficient matrix and multiplying the result with the right-handside vector as:

$$
x:=C \wedge-1 \text { *r }
$$

Using Isolve() to solve LAEs

- Other option to calculate LAE in Mathcad is using the function "Isolve()"
- "Isolve()" receives the coefficient matrix and right-hand-side vector as argument, and returns the solution vector, x.

Using Isolve() to solve LAEs

Other Array Functions

$\max (\mathrm{A}) \ldots$ Maximum value in an array
$\min (A) \ldots$ Minimum value in an array
cols (A) ... number of columns in array A
rows (A) ... number of rows in array A
last (V)... returns the index number of last element in vector V .
sort (V) ... arranges elements of the vector in ascending order. reverse (v) ...reverses the order of elements in a vector.
csort (A,n) ... sort array A so elements in column n are in ascending order.
rsort (A, n) ... sort array A so elements in row n are in ascending order.

ORIGIN: $=1$ must be used to initialize arrays index in 1.

