Volumen and Mass of a Substance in a Storage Tank


If height of solid is less than height of conical section:

$$
\mathrm{Vc}=\left(\frac{1}{3} \cdot \pi \cdot \mathrm{r}^{2} \cdot \mathrm{~h}\right)
$$

If height of solid is larger than height of conical section:
$\mathrm{V}=\frac{1}{3} \cdot \pi \cdot \mathrm{R}^{2} \cdot \mathrm{H}_{\mathrm{C}}+\pi \cdot \mathrm{R}^{2} \cdot\left(\mathrm{~h}-\mathrm{H}_{\mathrm{C}}\right)$
with $\quad R=\frac{D}{2}$
and

$$
\mathrm{r}=\mathrm{h} \cdot \tan \theta
$$

$$
\begin{aligned}
& \mathrm{D}:=12 \mathrm{ft} \\
& \theta:=30 \mathrm{deg} \\
& \rho_{\mathrm{a}}:=20 \frac{\mathrm{lb}}{\mathrm{ft}^{3}} \\
& \mathrm{R}_{\mathrm{N}}:=\frac{\mathrm{D}}{2} \\
& \mathrm{H}_{\mathrm{C}}:=\frac{\mathrm{R}}{\tan (\theta)} \\
& \mathrm{H}_{\mathrm{C}}=10.392 \mathrm{ft} \\
& \mathrm{r}:=\mathrm{h} \cdot \tan (\theta) \\
& \mathrm{V}_{\mathrm{C}}:=\frac{1}{3} \cdot \pi \cdot \mathrm{r}^{2} \cdot \mathrm{~h} \\
& \mathrm{~V}_{\mathrm{h}}:=\frac{1}{3} \cdot \pi \cdot \mathrm{R}^{2} \cdot \mathrm{H}_{\mathrm{C}}+\pi \cdot \mathrm{R}^{2} \cdot\left(\mathrm{~h}-\mathrm{H}_{\mathrm{C}}\right) \\
& \mathrm{V}_{\mathrm{C}}:=\mathrm{if}\left(\mathrm{~h}<\mathrm{H}_{\mathrm{C}}, \mathrm{~V}_{\mathrm{C}}, \mathrm{~V}_{\mathrm{h}}\right)
\end{aligned}
$$

$$
\mathrm{V}=1591.48 \mathrm{ft}
$$

$$
m:=\rho_{\mathrm{a}} \cdot \mathrm{~V}
$$

$$
\mathrm{m}=31829.65 \mathrm{lb}
$$

