CGN 2420 Introduction to Mathcad

Instructor: Professor Cora Martinez, PhD

Department of Civil and Environmental Engineering
Florida International University

Objectives

- Understand how Mathcad can assist the engineering design process.
- Familiarize with the Mathcad interface.
- Know how Mathcad handles equations and units.
- Learn how to enter format text regions on a Mathcad worksheet.
- See how Mathcad can help you present your results.

Mathcad

- Mathcad is an equation-solving software package that has a wide range of applicability to engineering problems.
- It has the ability to display equations the same way you would write them on paper.
- A Mathcad worksheet could include:

Definitions
Equations
Data

Variables
Text
Graphs

Mathcad

- Mathcad advantages:
- Equations displayed in highly readable form.
- Ability to work with units, access to reference tables.
- Symbolic math capability.
- Iterative solution capability, problem solver.
- Extensive function library.

Programming capability.

Mathcad

As a design tool:

- Mathcad worksheet is a collection of variable definitions, equations, text regions, and graphs displayed on the screen in the same fashion you would write them on a paper.
- Big difference: automatic recalculation.
- Advantages:
- Calculations in a orderly way.
- Adding comments to your work.
- Using units on your variables.

Mathcad

As a mathematical problem solver:

- Mathcad has the ability to solve problems numerically or symbolically.
- It has a large collection of built-in functions for:
- Trigonometric calculations.
- Statistical applications.
- Data analysis.
- Matrix operations.
- Calculus.
- Iterative procedures.

Mathcad

As a unit converter:

- It allows you to build units into most equations.

For presenting results:

- Mathcad has the ability to show equations and results in a useful form.
- Equations and results on Mathcad are shown in the same way people are use to read them. The solution method is obvious.
- Equations and results from Mathcad can be inserted into other programs, as word processors, for more formal reports.

Getting started

Mathcad Fundamentals

- The Mathcad workspace

Mathcad Math Toolbar

Standard Toolbar

Formatting Bar

Formating								区
Normal	\checkmark Arial	$\checkmark 10$	\square	B	$\boldsymbol{I} \underline{\mathrm{U}}$: 三 =	

Math Toolbar

Calculator-Common arithmetic operators.
Graph-Various two- and three-dimensional plot types and graph tools.
Matrix-Matrix and vector operators.
Evaluation-Equal signs for evaluation and definition.
Calculus-Derivatives, integrals, limits, and iterated sums and products.
Boolean-Comparative and logical operators for Boolean expression.
Programming-Programming constructs (Mathcad Professional only).
Greek-Greek letters.
Symbolic-Symbolic keywords.

Controlling the order of equations in Mathcad

- MathCAD evaluates equations from left to right and top to bottom

Left to right

- Anchor point for each equation, located to the left of first character at the baseline

Mathcad Equality

In Algebra:
"=" means that left hand side is equal to right hand side.

In Programming Context:
"=" means "assignment"
ex : count = count +1.

Mathcad's Four Equal Signs

Name	Symbol	Keystroke	Usage
Assignment Operator	$:=$	[:] (colon)	Use to define new variables.
Evaluation Operator	$=$	[equal]	Use to display the value assigned to a variable, or the result of a calculation.
Symbolic Equality Operator	$=$ (bold =)	[Ctrl=]	Used to show the relationship between variables in a equation (algebraic equality)
Global Assignment Operator	\equiv	[~] (tilde)	Operates like the regular assignment operator, except global assignments (variable definitions) are performed before evaluating the rest of the worksheet.

Math Operators Calculator Toolbar

Symbol	Name	Short Key
+	Addition	+
-	Subtraction	-
*	Multiplication	[shift8]
1	Division	1
$e^{\wedge} x$	Exponentiation	
1/x	Inverse	
$\chi^{\wedge} \mathrm{y}$	Raise to a power	[^] or [shift6]
n !	Factorial	
\checkmark	Square root	1
	$\mathrm{N}^{\text {th }}$ root	[ctrl]

Operator Precedence Rule

Precedence	Operator	Operation
First	\wedge	Exponentiation
Second	* ,	Multiplication- division
Third	,+-	Addition- Subtraction

Entering and Editing Text

- Matchcad default is equation edit mode.
- If you type a series of letters and then a space, Mathcad will recognize that you are entering text.
- To create a text region:
- Position the edit cursor (crosshair) in the blank portion of the worksheet.
- Press ["] (the double-quote key).
- Insert the desired text.

Text and Matrix Subscripts

- Matchcad allows two types of subscripts on variables, text subscripts and matrix subscripts
- Text subscripts are use to help identify variables. This type of subscript is entered by typing a period [.] before the subscript text, so $A_{\text {side }}$ is entered as: A.side
- Matrix index subscripts are used to identify particular elements of an array (a vector or matrix). These subscripts are entered by typing a left bracket [[] before the subscript text. A21 is entered as A[21

Modifying Equations

- Selecting an Equation:
- Selecting an equation for editing: Click on the eq.
- Selecting an equation for moving or deleting: dragselect the equation.
- Selecting part of an equation:
- Vertical editing line, move it using the arrows keys or by clicking with the mouse.
- Horizontal editing line, pressing [Space] increases the length of the horizontal line to include a greater portion of the equation.

Modifying Equations (Cont.)

- Highlighting a region
- Select the equation as for moving or deleting.
- Right click on it and select properties, then select Highlight Region and choose color.
- Changing the way operators are displayed:
- Right click on an equation directly over the operator, select View Definition As, change operator symbol.
- To change the appearance of all operators on a worksheet, use the Worksheet Options dialog from the Tools menu and click on the Display tab.

Working with Units

- Mathcad supports the following system of units:
- SI-Default units
- MKS-(meter, kilogram, second)
- CGS(centimeter, gram, second)
- US-(foot, pound, second)
- None (disables all built-in units, but user-defined units still work)
- Mathcad automatically can handle unit conversions. Values are converted from the units you enter to the base set of units (SI by default, but you can change it).

Displaying Results

- Using the Result Format dialog from the menu Format, it is possible to control:
- The way numbers are displayed
- The way matrices are displayed
- The way units are displayed
- Using the Format tool bar, it is possible to modify and edit text regions in a worksheet, or edit only part of the text, as it is done in a word processor.

Saving your worksheets

- By default, Mathcad 13 saves worksheets in XML format using the file extension .xmcd.
- XML (Extensible Markup Language) is a textual data format with strong support and allows accessibility from different operating systems.
- .xmcd files are unreadable by Mathcad versions lower than 12. Files can be saved as .mcd files to be read by earlier Mathcad versions.

Mathcad Examples

2.- Defining arrays:
1.- Defining functions:

$$
\operatorname{dist}(x, y):=\sqrt{x^{2}+y^{2}}
$$

$\mathrm{x} 1:=0$	$\mathrm{y} 1:=1.5$
$\mathrm{x} 2:=3$	$\mathrm{y} 2:=4$
$\mathrm{x} 3:=-1$	$\mathrm{y} 3:=1$

```
\(\operatorname{dist}(\mathrm{x} 1, \mathrm{y} 1)=1.5\)
\(\operatorname{dist}(\mathrm{x} 2, \mathrm{y} 2)=5\)
    \(\operatorname{dist}(3,4)=5\)
\(\operatorname{dist}(\mathrm{x} 3, \mathrm{y} 3)=1.414\)
```


Mathcad Examples

3.- Finding roots:

$$
f(x):=x^{3}-10 \cdot x+2
$$

$$
\operatorname{root}(f(x), x,-5,4)=-3.258
$$

$$
\operatorname{root}(f(x), x,-2,3)=0.201
$$

$$
\text { coef: }=\left(\begin{array}{c}
2 \\
-10 \\
0 \\
1
\end{array}\right)
$$

$$
\text { polyroots (coef) }=\left(\begin{array}{c}
-3.258 \\
0.201 \\
3.057
\end{array}\right)
$$

Mathcad Examples

4.- Solving Non-linear equations:

Guess values: $x:=1 \quad y:=1$

Given

$$
\begin{aligned}
& x^{2}+y^{2}=6 \quad x+y=2 \\
& x \leq 1 \quad y>2 \\
& \binom{\text { xual }}{\text { yval }}:=\text { Find }(x, y)
\end{aligned}
$$

Solution: xval $=-0.414 \quad$ yval $=2.414$
Check: \quad xval $\left.\right|^{2}+\mathrm{yval}^{2}=6 \quad$ wal + yval $=2$

