
Instructor: Professor Cora Martinez, PhD
Department of Civil and Environmental Engineering

Florida International University

� Know what an Excel macro is and how they

can be created and used.

� Create recorded macros.

� Access Excel’s Visual Basic programming

Environment.

� Write your own functions.

� Excel 2007 uses two different file extensions:
◦ .xlsx.xlsx.xlsx.xlsx-Excel file extension for macro-disabled
workbooks (DEFAULT)

◦ .xlsm.xlsm.xlsm.xlsm-Excel file extension for macro-enabled
workbooks

If you save the workbook as .xlsx.xlsx.xlsx.xlsx you will loose all
your macros!!!!

ALWAYS SAVE AS .xlsmALWAYS SAVE AS .xlsmALWAYS SAVE AS .xlsmALWAYS SAVE AS .xlsm

� A macro is a subprogram that does not receive any
inputs (there are no arguments).

� Recording of keystrokes is the easiest way to create
a macro.

� When you ask Excel to record a macro, it actually
writes a program in VBA using Visual Basic
statements that are equivalent to the commands
you enter via the keyboard and/or mouse.

� After recording you can edit the program.

� Let’s demonstrate the process of recording a
macro with the following example:

Consider a macro that converts a temperature in degrees
Fahrenheit to degrees Celsius:

To make sure your macro is working properly use the
following reference values:

212.0 F =100.0 C (Boiling point of water)

98.6 F = 37.0 C (Human body temperature)

32.0 F = 0.0 C (Freezing point of water)

-40.0 F = -40.0 C (Equivalent temperature)

3 2

1 . 8

F
C

T
T

−

=

� Begin by entering a Fahrenheit temperature and
selecting the cell that will contain the temperature
in °C:

� Tell Excel that you want to record a Macro using
Ribbon options

View/Macros/Macros (menu)/Record macroView/Macros/Macros (menu)/Record macroView/Macros/Macros (menu)/Record macroView/Macros/Macros (menu)/Record macro

The macro dialog will be displayed

� Use the record dialog to set the macro name and
shortcut key (optional). You could also include a
brief description of the macro.

� Select relative
references:
◦ If you want the macro to
use the value “in the cell
to the left of the currently
selected cell” use relative relative relative relative
referencingreferencingreferencingreferencing.

◦ If you want the macro to
always use the value in
cell B3, use absolute absolute absolute absolute
referencingreferencingreferencingreferencing.

To select relative referencing:
View/Macros/Macros (menu), View/Macros/Macros (menu), View/Macros/Macros (menu), View/Macros/Macros (menu),
toggle on [Use Relative References]toggle on [Use Relative References]toggle on [Use Relative References]toggle on [Use Relative References]

� Enter the conversion
equation in cell C3
normally.

The macro recorder is

running as the formula
is entered.

� Stop the macro recorder by pressing the
Stop Recording button on the Ribbon:

View/Macros/Macros (menu)/Stop RecordingView/Macros/Macros (menu)/Stop RecordingView/Macros/Macros (menu)/Stop RecordingView/Macros/Macros (menu)/Stop Recording

� Once the macro was recorded, let’s use the
benchmark temperatures given before to test
the macro.

� Select the cell next to the temperature that
you want to convert into °C.

� The list of currently available macros is
displayed by using Ribbon options:

View/Macro/Macro (menu)/View MacrosView/Macro/Macro (menu)/View MacrosView/Macro/Macro (menu)/View MacrosView/Macro/Macro (menu)/View Macros

� Run the F_to_C macro
by selecting the
macro name and
pressing the [Run]
button.

� You can also run the
macro by using the
assigned shortcut key
[Ctrl-f].

� Recorded macros are stored as VBA (Visual Basic
for Applications) subprograms or “Subs”. The
F_to_C was stored like this:

Sub F_to_C()
'
' F_to_C Macro
' Converts F to C
'
' Keyboard Shortcut: Ctrl+f
'
ActiveCell.FormulaR1C1 = "=(RC[-1]-32)/1.8"
ActiveCell.Offset(1, 0).Range("C4").Select

End Sub

Sub F_to_C()
'
' F_to_C Macro
' Converts F to C
'
' Keyboard Shortcut: Ctrl+f
'
ActiveCell.FormulaR1C1 = "=(RC[-1]-32)/1.8"
ActiveCell.Offset(1, 0).Range("C4").Select

End Sub

Comments are ignored when
macro is run. They are
included to provide
information about the macro.

Two operational
lines

� ActiveCell.FormulaR1C1 = "=(RC[-1]-
32)/1.8”

This portion assigns (=) a formula in R1C1 notation
(used for relative cell references) to the active cell.

The statement “RC[-1]” tells Excel to use the cell in
the current row (R) and one cell to the left of the
active cell (C[-1]).

� ActiveCell.Offset(1, 0).Range(“C4").Select

This programming line moves the cursor down one

row after entering the formula.

◦ ActiveCellActiveCellActiveCellActiveCell

Starting form the current active cell location

◦ Offset (1,0)Offset (1,0)Offset (1,0)Offset (1,0)

Move one row down and zero columns right

◦ Range (Range (Range (Range (““““C4C4C4C4””””))))

On the currently selected worksheet.

◦ SelectSelectSelectSelect

Makes the offset cell the selected active cell.

� The recorded macro can be edited as a VBA
program by using the VBA editor.

� To open the editor, use Ribbon options:

1.1.1.1. View/Macro/Macro (menu)View/Macro/Macro (menu)View/Macro/Macro (menu)View/Macro/Macro (menu)

2.2.2.2. Choose the macro you want to editChoose the macro you want to editChoose the macro you want to editChoose the macro you want to edit

3.3.3.3. Click the [Edit] button to open the VBA editorClick the [Edit] button to open the VBA editorClick the [Edit] button to open the VBA editorClick the [Edit] button to open the VBA editor

The program code for the selected macro
will be displayed.

� You can modify the existing program or
create entirely new macros. Let’s illustrate
this with the following example:

Create a new macro for converting
temperatures in degrees Celsius to degrees
Fahrenheit by copying the existing macro
“F_to_C”

1. Select and copy the code of the recorded
macro:

2. Modify the macro as needed:

3. Save the changes.

Creating a new sub in VBA makes the macro
available to the worksheet.

Note:
The shortcut key and description are not assigned to
the macro when it was created by using VBA.

To assign the shortcut key and description, press
the option button and entering the information.

4. Finally, test the new macro in the worksheet

� A Function is a simple piece of a program that
receives input through arguments (or
parameters), performs calculations, and
returns a result.

� User-written functions can be written when
ever needed. They can be tailored to meet very
specific needs when built-in functions are not
available.

User-written functions in Excel are written in
VBA (Visual Basic for Applications).

This a complete programming language and

programming environment built-in into the
Microsoft Office programs.

� Starting VBA:
The developer tab’s Code Group provides a [Visual
Basic] button to access the Visual Basic editor.

Developer/Code/[Visual Basic]Developer/Code/[Visual Basic]Developer/Code/[Visual Basic]Developer/Code/[Visual Basic]

� The VBA Editor is a multipanel window:

◦ The main area is called the development area. This
area is used for writing program codes.

◦ The project panel lists all of the items in the project.

◦ A project contains all of the functions, forms and
subprograms needed to make a program work. It also
contains the worksheets in the workbook.

◦ The properties Panel is used to access an modify the
various properties of the currently presented object.

Project Panel

Development Area
•Program Code
•Form Layout

Properties Panel

Insert a module:

� To insert a module, select Insert/Module from the
VBA menu.

Insert the Function Procedure into the module:

To have VBA create the first and last line of your

function:

Select Insert/Procedure

� Every procedure must have a unique name.

� For user-written functions, the Type Function is
used.

Write Your Own Function:

� Enter the required lines of program code to
accomplish the desired task.

� Return to the worksheet and use the function in
the same way build-in functions are used..

Let’s do an example (textbook pg. 524):

� Procedure:
1. Open the VBA editor (Alt+ F11)
2. Insert a module.
3. Insert the function Procedure.

Name the function “LinearInterp”

4. Insert variables (parameters).
xLow, xMid, xHigh, yLow, yHigh

5. Insert Function (see eq. 13.2 problem
statement).

6. Save the function.

Now that you have created a new function
called “LinearInterp” you can use it as any
other Excel built-in function.

Let’s try our new function:

1.Set an spreadsheet with the following values
of X and Y:

X Y

0 1

100 3

We want to know the value ofWe want to know the value ofWe want to know the value ofWe want to know the value of
Y for a value of X=50 Y for a value of X=50 Y for a value of X=50 Y for a value of X=50

2. Insert the function in
the selected cell:
Use the Ribbon option

Formulas/Insert FunctionFormulas/Insert FunctionFormulas/Insert FunctionFormulas/Insert Function

The insert function dialog
will appear. In the box
“Select a Category”, select
User Defined , click OK User Defined , click OK User Defined , click OK User Defined , click OK

3. Select your function
name and click OK.

3. The function
argument dialog will
be displayed

5. Input the function arguments and click OK:

The result is
displayed in the
selected cell.

� The classic conditional execution statement is
the If statement.

� An If statement is used to select from two
options by means of the result of a logical
condition.

Ex.

RV = “No Ice”

If Temp < 32 Then RV = “Ice”

� Loop structures are used to perform
calculations over and over again.

� The classic execution is:

suma = 0.0

For i = 1 To 10

suma = suma + i

next i

