CGN 2420 Matrix Operations in Excel

Instructor: Professor Cora Martinez, PhD Department of Civil and Environmental Engineering Florida International University

Objectives

- Learn how to define and name arrays.
- Learn how to carry out standard matrix math:
- Multiplying matrices by scalar values.
- Matrix addition.
- Matrix multiplication.
- Transposing matrices.
- Inverting a matrix.
- Find the determinant of a matrix.
\perp Solve systems of simultaneous linear equations.

Defining and Naming Arrays

An array is defined by filling a range of cells with the contents of the array.

- Naming a range of cells allows you to use the name in place of the cell range.
- To give a name to the range of cells that hold an array:
- Select the cells containing the array.
- Enter the desired name in the name box at the left side of the formula bar.
- Alternatively, a selected range can be assigned a name by using the ribbon options:

Formulas/Defined Names/Define Name

Defining and Naming Arrays (Cont.)

Matrix Addition

- The two matrices to be added must be the same size.
- Matrices can be added using basic cell arithmetic or array math operation.
- Matrix addition using array math:
- Name the cell ranges containing the arrays that will be added.
- Select a cell range with same dimensions as parent matrices.
- Then enter the formula= name matrix $1+$ name matrix 2 . Press [Ctrl-Shift-Enter] after entering formula.

Matrix Addition (Cont.)

Enter Formula

Important!
Press [Crtl-Shift-Enter] after entering formula

Multiplying a Matrix by a Scalar

Multiplying a matrix by a scalar requires to multiply each element of the matrix by the scalar.

- Scalar multiplication using array math:
- Enter and name the array that will be multiplied.
- Indicate the size of the result matrix by selecting the desired cell range.
- Enter the formula + [Ctrl-Shift-Enter]

Multiplying a Matrix by a Scalar (Cont.)

Select cell range

Enter Formula

Important!
Press [Crtl-Shift-Enter] after entering formula

4	A	B	C	D
1				
2	[A], 3×2		1	3
3			7	2
4			8	1
5				
6	Scalar:	10		
7				
8	[A]x scala		10	30
9			70	20
10			80	10
11				

Matrix Multiplication

In order to multiply two matrices, the number of columns in the first matrix must equal the number of rows in the second matrix.

- Ex:
[A], 3×2
[e], 2x1

To multiply these matrices, "inside" dimensions must match $(2,2)$. The product matrix dimension will have "outside" dimensions (3×1).

Matrix Multiplication (Cont.)

- Procedure:
- Enter and name the arrays that will be multiplied.
- Indicate the size of the result matrix by selecting the desired cell range.
- Enter the following function:
- MMULT(first matrix, second matrix) + [Ctrl-ShiftEnter]
- Note: Alternatively you can use the mouse to indicate the cell ranges instead of using arrays names.

Matrix Multiplication (Cont.)

Enter MMULT Function

Select cell range (outside dimensions)

Matrix Transpose

Any matrix can be transposed. To transpose a matrix, interchange the rows and columns.

- Excel features two methods to transpose a matrix:

By using PASTE SPECIAL (does not automatically recalculates)

- By using the TRANSPOSE() array function (automatically recalculates)

Matrix Transpose (Cont.)

- Using PASTE SPECIAL:
- Select and copy the array to be transposed.
- Indicate the cell that will contain the top-left corner of the result matrix.
- Open the PASTE SPECIAL dialog, using right click or ribbon options Home/Paste(menu)/Paste Special.
- Select values in the paste selection, and check the transpose check near the bottom of the dialog.
- Click OK button.

Matrix Transpose (Cont.)

Paste Special	$? X$
Paste	
OAll	All using Source theme
Eormulas	All except borders
() Values	Column widths
Formats	Formulas and number formats
Comments	Values and number formats
Validation	
Operation	
(-) None	Multiply
\bigcirc Add	\bigcirc divide
Subtract	
\square Skip blanks	\square Transpose
Paste Link	OK Cancel

Matrix Transpose (Cont.)

- Using TRANSPOSE array function:
- Enter the original matrix.
- Indicate where the result should be placed, showing the exact size of the transposed matrix.
- Enter the TRANSPOSE() array function + [Ctrl-ShiftEnter].

Matrix Transpose (Cont.)

Inverting a Matrix

Only square, non singular matrices can be inverted.

Procedure:

- Enter the matrix to be inverted and name it if desired.
- Indicate where the result should be placed, showing the exact size (same as original matrix).
- Enter the MINVERSE() array function + [Ctrl-Shift-Enter].

Inverting a Matrix (Cont.)

Matrix Determinant

The determinant of a matrix is a single value. If determinant $=0$, matrix is singular and can not be inverted.

A matrix is singular if:

- Any row or column contains all zeros
- Any two rows or columns are identical
- Any row or column is a linear combinations of other rows or columns.

Matrix Determinant (Cont.)

To calculate the determinant of a matrix:

MDETERM() function

Solving Systems of Linear Equations

The process of solving simultaneous equations by using matrices works as follows:

1. Write equations in matrix form

$$
\begin{aligned}
& 3 x_{1}+2 x_{2}+4 x_{3}=5 \\
& 2 x_{1}+5 x_{2}+3 x_{3}=17 \\
& 7 x_{1}+2 x_{2}+2 x_{3}=11
\end{aligned} \longrightarrow[C][x]=[r]
$$

Where,

$$
[C]=\left[\begin{array}{lll}
3 & 2 & 4 \\
2 & 5 & 3 \\
7 & 2 & 2
\end{array}\right]
$$

$$
[x]=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]
$$

$$
[r]=\left[\begin{array}{c}
5 \\
17 \\
11
\end{array}\right]
$$

Solving Systems of Linear Equations (Cont.)

2. Calculate the determinant of [C]

- If Det $(C)=0$, Solution undetermined
- If Det $(C) \neq 0$, Solution can be determined

3. Invert the coefficient matrix [c]
4. The solution to the system of equations is given by:

$$
[x]=[C]^{-1}[r]
$$

Solving Systems of Linear Equations (Cont.)

F12 ${ }_{\text {c }}$									
-	A	B	C	D	E	F	G	H	
1									
2	[C]=Coeff		3	2	4		$\mathrm{ro}=$	5	
3			2	5	3			17	
4			7	2	2			11	
5									
6	$\operatorname{Det}(\mathrm{C})=$	-78	$\neq 0$						
7									
8	inverse=		-0.05128	-0.05128	0.179487				
9			-0.21795	0.282051	0.012821				
10			0.397436	-0.10256	-0.14103				
11									
12	$\mathrm{x}=$ inverse*		0.846154						
13			3.846154						
14			-1.30769						
15									

