CGN 2420 Programming in Mathcad

Instructor: Professor Cora Martinez, PhD
Department of Civil and Environmental Engineering Florida International University

Objectives

- Know what Mathcad programs are and when they are useful.
- Write programs in Mathcad.
- Understand how to access program keywords through the Programming Toolbar.
- Be able to read and write programming flowcharts.

Mathcad Programs

- Essentially a multistep function.
- Very handy to write complex functions in simple form.
- Gives options for looping (for and while loops).
- Easy syntax

Basic Pieces of Program

- Function name: is used to refer where ever the program is necessary in rest of the worksheet.
- Parameters list: Is the list of all variable information which the program should know before it can do the job.
- Assignments operator: Is used to assign variable to values (locally)

Programming Toolbar

View \gg Toolbars \gg Programming.

```
Add Line [ ] ]
While [CTRL + ] ]
Otherwise [CTRL + }]
Continue [CTRL + [ ]
Local definition [ {]
For [CTRL + " ]
Return [CTRL + |]
If [{]
Break [ CTRL + { ]
On error [ CTRL + `]
```

Programming	图
Add Line	\leftarrow
if	otherwise
for	while
break	continue
return	on error

Program Flowchart

- It depicts a visual representation of a program's operation.
- It is designed to show, step by step, what the program does.
- It is used by programmers to assist in developing the program and help others understand how program works.

Program Flowchart

- Flowcharting symbols

Program Flowchart

Thermo(T) $:=\left\lvert\, \begin{aligned} & \mathrm{RV} \leftarrow 0 \\ & \mathrm{RV} \leftarrow 1 \text { if } \mathrm{T}<23 \\ & \mathrm{RV} \leftarrow-1 \text { if } \mathrm{T}>25\end{aligned}\right.$

$$
\begin{aligned}
\operatorname{Thermo}(20) & =1 \\
\operatorname{Thermo}(24) & =0 \\
\operatorname{Thermo}(30) & =-1
\end{aligned}
$$

This program check the heater temperature and states the thermostat on or off.

Basic Elements of Programming

- Data
- Input (T)
- Operations
- Output (RV)
- Conditional Execution (IF)
- Loops
- Functions

Conditional Executions

- If statement

It is used to select from two options, depending on the result of a calculated (logical) condition.

- Otherwise statement This statement is used in conjunction with an If statement when the program is to do something when the condition in the If statement evaluates to false. Ex.

$$
\text { Thermo2 }(\mathrm{T}):=\left\lvert\, \begin{aligned}
& \mathrm{RV} \leftarrow 1 \text { if } \mathrm{T}<23 \\
& \mathrm{RV} \leftarrow-1 \text { otherwise }
\end{aligned}\right.
$$

Loops

- For Loop

Uses an iteration variable to loop a prescribed number of times. Ex.

$$
\operatorname{addnumbers(n):=} \left\lvert\, \begin{aligned}
& \mathrm{s} \leftarrow 0 \\
& \text { for } \mathrm{k} \in 0 . . \mathrm{n} \\
& \mathrm{~s} \leftarrow \mathrm{~s}+\mathrm{k} \\
& \mathrm{~s}
\end{aligned}\right.
$$

Loops

- While Loop

Causes an action to be repeated while a condition is true

$$
\operatorname{Rootsf}(\mathrm{f}, \mathrm{x}):=\left\lvert\, \begin{aligned}
& \mathrm{dx} \leftarrow 1 \\
& \text { tol } \leftarrow 0.0001 \\
& \text { while }|\mathrm{dx}|>\text { tol } \\
& \\
& \begin{array}{l}
\text { dfxo } \leftarrow \frac{\mathrm{d}}{\mathrm{dx}} \mathrm{f}(\mathrm{x}) \\
\mathrm{fxo} \leftarrow \mathrm{f}(\mathrm{x}) \\
\text { return "error" if dfxo }=0 \\
\mathrm{dx} \leftarrow \frac{-\mathrm{fxo}}{\mathrm{dfxo}} \\
\mathrm{x} \leftarrow \mathrm{x}+\mathrm{dx}
\end{array} \\
& \operatorname{Root} \leftarrow \mathrm{x}
\end{aligned}\right.
$$

Continue

- The Continue statement stops execution of the current iteration, and restarts it at the top of the nearest enclosing loop for the next iteration.
For example, a program can add only odd integers between 0 and n by skipping the even ones using continue.

$$
\operatorname{addOdds}(\mathrm{n}):=\left\{\begin{array}{l}
\mathrm{s} \leftarrow 0 \\
\text { for } \mathrm{k} \in 0 . . \mathrm{n} \\
\left\lvert\, \begin{array}{l}
\text { continue } \\
\mathrm{s} \leftarrow \mathrm{~s}+\mathrm{k}
\end{array}\right. \\
\mathrm{~s}
\end{array} \quad \text { if } \bmod (\mathrm{k}, 2)=0\right.
$$

Break

- The Break statement is used to stop execution of a For or While loop. It is used when some condition other than the normal loop termination is desirable to stop the loop. Ex:

$$
\operatorname{demo}(\mathrm{n}):=\left\lvert\, \begin{aligned}
& \mathrm{x} \leftarrow \mathrm{n} \\
& \text { while } \mathrm{x}<100 \\
& \left\lvert\, \begin{array}{l}
\text { break if } \mathrm{x} \leq 1 \\
\mathrm{x} \leftarrow \mathrm{x}^{2.5}
\end{array}\right.
\end{aligned}\right.
$$

Return and On Error

- The Return operator is used in conjunction with an If statement. It stops program execution when the If statement is true, and returns the value listed. Ex:

$$
\begin{aligned}
& \text { return } 1.5 \text { if } x<100 \\
& \text { return } 2.0 \text { if } x>100
\end{aligned}
$$

- The On Error operator executes the right-hand argument first. If no error occurs, it returns the result of the right argument. If an error occurs, then the error is cleared and the left argument is returned.

$$
\text { Ex: } \quad F(x)=\infty \text { on error } 24 / x
$$

Functions

- Functions allow a program to be broken into pieces, each one handling a single task. The programmer can then call the functions as needed to complete complex calculations.
- Functions used in programming can be Mathcad's built in functions or they can be user-written functions.

