Systems neuroengineering

the use of engineering tools and technologies to image, decode, and modulate the brain in order to comprehend its functions and to repair its dysfunction.

Neuroscience

8

Cognitive

Science

4) Brain-Machine Interfaces

Adapted from: Berberich N., Cheng G. (2020) Kognitive Systeme und Neurorobotik. In: Mainzer K. (eds) Philosophisches Handbuch Künstliche Intelligenz. Springer Reference Ge

Systems neuroengineering

the use of engineering tools and technologies to image, decode, and modulate the brain in order to comprehend its functions and to repair its dysfunction.

Engineering Principles:

□Signal processing (analysis, manipulation, filtering, amplification modulation)

- Control systems (design, implementation to stabilize process or output)
- □Instrumentation (design & development of devices)

Systems neuroengineering

the use of engineering tools and technologies to image, decode, and modulate the brain in order to comprehend its functions and to repair its dysfunction.

Neuroimaging

Measure cerebral activities: ranging from the direct neuronal output of the brain to the metabolic requirements of its function.

Study neurovascular relationships occurring within the brain

Neural interfacing technologies

Decoding the neural activity related to daily bodily functions

<u>Neural code:</u> specific functions elicit a stable and repeatable sequence of activity and neural interfacing tech allows to detect these patterns and determine the corresponding behavior or operation

Advantages: can be used to detect electrophysiological responses of a cellular or system activity (single unit vs EEG)

Neuromodulation

Alter irregular activity by stimulating the brain using a variety of electrical, optical, and sonic approaches with the goal of stabilizing the system to a healthy state

Method	Measurements provided	Disorders	Advantages	Limitations
X-ray computed tomograhy (CT)	1. Brain structure 2. Blood–brain barrier integrity	Acute/chronic hemorrhages Acute trauma General screening of anatomy Focal or generalized atrophy S. Hydrocephalus	 Excellent bone imaging 100% detection of hemorrhages Short study time Can scan patients with ancillary equipment Can scan patients with metal/ electronic devices 	 Ionizing radiation Poor contrast resolution
Magnetic resonance imaging (MR)	 Brain structure Brain and cervical vasculature Relative cerebral perfusion Chemical concentrations Fiber tracts Blood-brain barrier integrity 	 Acute ischemia Neoplasms Demyelinating disease Epileptic foci Degenerative disorders Infections Preoperative mapping 	 High spatial resolution No ionizing radiation High resolution High gray-white contrast No bone-generated artifact in posterior fossa Can also perform chemical, functional, and angiographic imaging 	 Long study duration Patients may be claustrophobic Electronic devices contraindicated Acute bemorrhages problematic Relative measurements only
Positron emission tomography (PET)	 Perfusion Metabolism Substrate extraction Protein synthesis Neurotransmitter integrity Receptor binding Blood-brain barrier integrity 	 Ischemic states Degenerative disorders Epilepsy Movement disorders Affective disorders Affective disorders Neoplasms Addictive states Preoperative mapping 	 Can perform hemodynamic chemical, and functional imaging Quantifiable results Absolute physiologic variables can be determined Uniform spatial resolution 	 Ionizing radiation High initial costs Long development time for new tracers Limited access Low temporal resolution
Single-photon- emission computed tomography (SPECT)	 Perfusion Neurotransmitter integrity Receptor binding Blood-brain barrier integrity 	 Ischemic states Degenerative disorders Epilepsy Movement disorders 	 Can perform hemodynamic, chemical, and functional imaging Widely available 	I. Ionizing radiation Z. Relative measurements only S. Nonuniform spatial resolution 4. Low temporal resolution
Xenon-enhanced computed tomography (XECT)	1. Perfusion	1. Ischemic states	1. Uses existing equipment	 Ionizing radiation High xenon concentrations have pharmacalogic effects
Spiral computed tomography (CT angiography, CTA)	1. Vascular anatomy 2. Boney anatomy	 Vascular occlusive disease Vascular and boney anatomy only 	1. Provides high-resolution vascular images	 Ionizing radiation Vascular and boney anatomy only
Electroencephalo- graphy surface (EEG)	1. Electrophysiology	 Epilepsy Encephalopathies Degenerative disorders Preoperative mapping 	 No ionizing radiation High temporal resolution Widely available Can identify epileptic foci 	 Low spatial resolution Weighted toward measurements
Magnetoencephalo- graphy (MEG)	1. Electrophysiology	1. Epilepsy	 No ionizing radiation High temporal resolution Can identify epileptic foci 	1. Low spatial resolution
Transcranial, magnetic stimulation (TMS)	1. Focal brain activation	1. Preoperative mapping	 No ionizing radiation Potential for therapy Can be linked to other imaging methods (PET fMRI) 	 Low spatial resolution Has produced seizures in certain patient groups
Optical intrinsic signal imaging (OIS)	 Integrated measure of blood volume, metabolism, and cell swelling 	1. Intraoperative mapping	1. No ionizing radiation 2. High temporal resolution 3. High spatial resolution	 Complex signal source Invasive only (intraoperative)

Table 1 Brain Mapping Methods Used in the Study of Human Health and Disease, along with the Types of Measurements They Provide and Some of the Clinical Situations in Which They May Be of Use

Visualizing neural structure and function Where the telescope ends, the microscope begins, which of the two has the grander view? —VICTOR HUGO, LES MISÉRABLES (1862)

Otto Friedrich Karl Dieters

1834 - 1863

Introduced potassium dichromate to harden the neural tissue

https://jralonso.es/2015/11/08/la-celula-ramificada/

Immersion

Fixation is a chemical process used to preserve, stabilize, and strengthen biological specimens for histological procedures and microscopic analysis.

Fixative Type	Name	Key Features		
Cross-linking	Formaldehyde	Preserves morphology, widely used, may cause DNA-protein crosslinks		
	Paraformaldehyde	Similar to formaldehyde, but purer and more potent		
	Glutaraldehyde	Excellent for preserving ultrastructure, but can distort morphology		
	Osmium Tetroxide	Used in electron microscopy, good for preserving lipids and cell membranes		
Dehydrating	Methanol	Causes protein denaturation and lipid dissolution, good for preserving RNA		
	Acetone	Rapidly penetrates tissues, good for preserving lipids, can cause shrinkage		

pulmonary vein

С

Е

G

Wu et al., Bio Protocol, 2021

This process stabilizes the tissue's structure and makes it easier to cut

Embedding Medium	Key Features
Paraffin Wax	Most commonly used, good for routine histology and immunohistochemistry, requires deparaffinization before staining.
OCT (Optimal Cutting Temperature) Compound	Used for frozen sections, good for preserving enzymes and antigens, does not require deparaffinization.
Resin (e.g., Epoxy Resin)	Used for electron microscopy, provides excellent resolution, but can be difficult to cut.
Gelatin	Good for light microscopy, particularly for large specimens or whole organs.
Agar	Useful for small, delicate specimens that may be distorted by other embedding media.

grants access to cells within the slice for his reagents but also facilitates the study of br structures under a microscope.

Sectioning Aethod	Essential Features	
E	Before	After
The world of a ur con great of	e brain is a d consisting n er of ed t and at sucches unknown territory.	The brain is world consis of a number unexplore continents and great stretches of unknown territory.
		2 days

CLARITY – Clear Lipid-exchanged Acrylamide-hybridized Rigid Imaging/immunostaining/*in situ* hybridization-compatible Tissue hYdrogel

Corona

Du et al., Exp Ther Med, 2018

Engineering principles in tissue processing Mechanical Principles

Material Properties

Resonance and Vibrations

Thermal Considerations

Optics and Imaging

Bio-compatibility

Engineering principles in tissue processing

Light-tissue interraction

Keiser, 2022, Biophotonics

Visualizing morphology

<u>Key points:</u>

- Brain sections are transparent due to high water content.
- Various dyes are used to visualize brain structures.
- Dyes increase contrast, enabling visualization of neural systems' features.
- Basophilic stains like hematoxylin and thionine highlight cell bodies by labeling nucleic acids.
- Nissl stains, a type of basophilic stain, label RNA within cells.
- Fluorescent markers like DAPI, Hoechst, and PI are used for cell nuclei in fluorescent microscopy.
- Fiber stains label myelin, aiding in visualizing white-matter tracts.
- Protocols like Weigert's or Weil's methods help in myelin labeling.
- The Golgi stain technique labels individual neurons and their processes.
- Intracellular and juxtacellular labeling methods mark cell bodies/axons post brain fixation and sectioning.

Rosen, G.D., et al. 2000

DAPI stain

Stains used for studying neuroanatomy

Stain	Use	Appearance	Comments
Cresyl violet (Nissl stain)	Cell nuclei	Blue to purple	Useful for examining cytoarchitecture; stains each type of neuron slightly differently
Hematoxylin	Cell nuclei	Blue to blue-black	Often used in combination with eosin; known as H&E
Eosin Y	Cytoplasm	Pink to red	Counterstain with hematoxylin; acidophilic stain
Thionine (Nissl stain)	Cell nuclei	Blue to purple	
Methylene blue	Cell nuclei	Blue	Can be perfused through the brain before fixation
Toluidine blue	Cell nuclei	Nucleus is stained blue; cytoplasm light blue	Often used to stain frozen sections
DAPI	Cell nuclei	Fluorescent blue	Fluorescent DNA intercalating agent; excited by UV illumination
Hoechst (bis- benzamide)	Cell nuclei	Fluorescent blue	Fluorescent DNA intercalating agent; excited by UV illumination
Propidium iodide (PI)	Cell nuclei	Fluorescent red	Fluorescent DNA intercalating agent; excited by green light illumination
Weigert	Myelin	Normal myelin is deep blue; degenerated myelin is light yellow	Combines hematoxylin with other chemicals to selectively stain myelin
Weil	Myelin	Black	Combines hematoxylin with other chemicals to selectively stain myelin
Luxol fast blue (LFB)	Myelin	Blue	
Golgi stain	Fills neuron cell bodies and processes	Black	Stains individual neurons at random

Cutaneous malignant melanoma (SKCM)

H&E stains

Lung adenocarcinoma (LUAD)

- Better understand how the brain processes information
- Examine tissue samples for disease
- Study influence of physical impacts on brain tissue

Hagele et al., Nat Sci Rep, 2020

Visualizing neural circuitry

Figure 2. Depiction of neurons and two types of neuronal tracing. Retrograde tracers (left side, orange) travel within a neuron from the neuron terminals to the soma. Anterograde tracers (right side, green) travel within a neuron from the soma to the terminals. The direction of travel is relative to the site of tracer origin/delivery, which is depicted by a gray circle.

Carter, Matt, and Jennifer C. Shieh. Guide to Research Techniques in Neuroscience, Elsevier Science & Technology, 2015.

Tracer	Direction	Comments
Horseradish peroxidase (HRP)	Retrograde	Produces brown precipitate after reaction with hydrogen peroxide and DAB (diaminobenzidine)
Fluorescent microspheres	Retrograde	Available in many different colors; nontoxic
Fluoro-gold	Retrograde	Widely used, rapid labeling
Diamidino yellow	Retrograde	Produces yellow fluorescence
Fast blue	Retrograde	Stable, rapid labeling; produces blue fluorescence
Cholera toxin, subunit B (CTB)	Retrograde (may also be anterograde)	May also be anterograde
DiI, DiO	Anterograde and retrograde	Lipophilic dye crystals
Biotinylated dextran amine (BDA)	Anterograde and retrograde	Widely used; direction of transport depends on molecular weight and pH; can be visualized by EM
Phaseolus vulgaris leucoagglutinin (PHA-L)	Anterograde	Plant lectin; can be visualized by EM

Tracer	Direction	Comments
Tritiated amino acids (3H-proline, 3H-leucine)	Transsynaptic (anterograde)	Detected using autoradiography
Wheat germ agglutinin (WGA)	Transsynaptic	Plant lectin; anterograde and retrograde transport possible; often conjugated to HRP for detection; transgene encoding WGA can be used to label genetically defined neural circuits
Tetanus toxin, fragment C (TTC)	Transsynaptic (retrograde)	Transgene encoding TTC can be used to label genetically defined neural circuits; nontoxic fragment
Pseudorabies virus (PRV)	Transsynaptic	Does not infect primates, including humans; bartha strain most commonly used for tracing studies; less virulent, only retrograde transport
Herpes simplex virus (HSV)	Transsynaptic	Broad host range, including humans

