Milliequivalents, Millimoles, and Milliosmoles

Electrolytes vs Nonelectrolytes

- Compounds in solution are often referred to as either electrolytes or nonelectrolytes
- Electrolytes are compounds that in solution dissociate to varying degrees into "ions" which have an electrical charge
- Examples: $\mathrm{NaCl}, \mathrm{KCl}, \mathrm{MgSO}_{4}$
- Nonelectrolytes are compounds which do not dissociate in solution
- Examples: dextrose, urea

Cations versus Anions

- In solution ions move in a direction opposite their charge
- Cations: positively charged ions
- When placed in a solution the ions move to the negative electrode (or the cathode)
- Examples: $\mathrm{Na}^{+}, \mathrm{K}^{+}, \mathrm{Ca}^{++}, \mathrm{Mg}^{++}$
- Anions: negatively charged ions
- When placed in solution the ions move towards the positive electrode (or the anode)
- Examples: $\mathrm{Cl}^{-}, \mathrm{HCO}_{3}{ }^{-}, \mathrm{SO}_{4}^{-}, \mathrm{HP04}$

Terminology

- Mole= Avogadro's number $\left(6.023 \times 10^{23}\right)$ of molecules
- Molecular Weight (MW)= weight in grams of one mole of compound
- Millimoles (mmole) $=1000 \times$ moles
- g/mole = mg/mmole
- Valence= amount of charge of an ion
- Equivalents (Eq)= number of univalent counter ions needed to react with each molecule of substance
- HCI has 1 equivalent per mole in that one mole of H^{+} reacts with one mole of Cl^{-}

Milliequivalent

- In the United States, the concentration of electrolytes in solution is expressed in terms of milliequivalents (mEq)
- EXCEPTION: Phosphorous is usually referred to in terms of mmoles
- Note: in Europe concentrations of electrolytes are often expressed in terms of millimoles per liter or micromoles per liter)
- Refers to the chemical activity of an electrolyte
- Is related to the total number of ionic charges in solution and considers the valence (charge) of each ion
- For a given chemical compound, the milliequivalents of cations equals that of anions
- Example: a solution of NaCl will contain the same number of milliequivalents of Na^{+}(the cation) as it will Cl^{-}(the anion).
- There is a trend to shift from using mEq to using mg of the given ion. Beware that this can be confusing! They are not EQUIVALENT!!! And mg of a given ion is not equivalent to mg of the compound. (i.e., $\mathrm{mEq} \mathrm{CaCl2}$ is not equal to mg CaCl 2 which is not equal to mg Ca ion.

Milliequivalents

- $\mathrm{mEq}=$ represents amount in milligrams, of a solute equal to $1 / 1000$ of its gram equivalent weight taking into account the valence of the ions.

Equivalent weight = formula weight divided by the total valence

$$
\mathrm{mEq}=\frac{\mathrm{mg} \mathrm{x} \text { valence }}{\text { atomic, molecular or formula weight }}
$$

$m g=\underline{m E q} \times$ atomic, molecular or formula weight valence

Equiv Weight $(\mathrm{g})=$ atomic, molecular or formula weight valence

Calculations with Milliequivalents

- Converting millieqivalents to weight
- Converting weight to milliequivalents
- Converting mg\% to mEq/L

Listing of Atomic Weights, Valences, and Equivalent Weights for Common Ions

	Atomic/Formula Weight	Valence	Equiv Wt (Atomic/valence)
Al^{+++}	27	3	9
NH_{4}^{+}	18	1	18
Ca^{++}	40	2	20
Fe^{+++}	56	3	18.7
Mg^{++}	24	2	12
$\mathrm{~K}^{+}$	39	1	39
Na^{+}	23	1	23
$\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{3}^{-}$	59	1	59
HCO_{3}^{-}	61	60	1
CO_{3}^{--}	35.5	2	30
Cl^{-}	96		48
SO_{4}^{-}			

Converting Millieqivalents to Weight

What is the concentration of a solution containing $4 \mathrm{mEq} / \mathrm{L}$ of KCl ?

> Step 1: Calculate the molecular weight of KCl
> MW of potassium $(\mathrm{K})=39$
> MW of chloride $(\mathrm{Cl})=35.5$
> $\mathrm{MW} \mathrm{KCI}=\mathrm{MW} \mathrm{K}+\mathrm{MW} \mathrm{CL}=39+35.5=74.5 \mathrm{~g}$

Step 2: Calculate equivalent weight
Equiv weight = molecular weight KCl divided by valence
Since valence of $\mathrm{KCl}=1$, Equiv weight $=74.5 / 1$
Step 3: $1 \mathrm{mEq} \mathrm{KCI}=1 / 1000 \times 74.5 \mathrm{~g}=0.0745 \mathrm{~g}=74.5 \mathrm{mg}$
Step 4: $4 \mathrm{mEq} \mathrm{KCl}=74.5 \mathrm{mg} \times 4=298 \mathrm{mg} / \mathrm{ml}$
OR using the equation listed before:
$m g=\underline{m E q} \times$ atomic, molecular or formula weight valence
$\mathrm{mg} / \mathrm{ml}=\mathrm{mEq} / \mathrm{ml}$ * atomic, molecular or formula weight
$\underline{(4 \times 74.5)}$

Converting Weight to Milliequivalents

How many mEq of KCl are in 1.5 g of KCl ?

Step 1: Calculate the molecular weight of KCl MW of potassium (K) = 39
MW of chloride $(\mathrm{Cl})=35.5$
MW KCl $=$ MW K + MW CL $=39+35.5=74.5 \mathrm{~g}$
Step 2: Calculate equivalent weight
Equiv weight = molecular weight KCl divided by valence Since valence of $\mathrm{KCl}=1$, Equiv weight $=74.5 / 1$

Step 3: $1 \mathrm{mEq} \mathrm{KCI}=1 / 1000 \times 74.5 \mathrm{~g}=0.0745 \mathrm{~g}=74.5 \mathrm{mg}$
Step 4: $1 \mathrm{mEq} \mathrm{KCl}=74.5 \mathrm{mg} ; 1.5 \mathrm{~g} \mathrm{KCl}=1500 \mathrm{mg}$; How many mEq in 1500 mg ?

$$
\frac{1 m E q}{X m E q}=\frac{74.5 m g}{1500 m g} \quad X=20.1 \mathrm{mEq}
$$

Converting mg\% to mEq/L

Convert the expression $10 \mathrm{mg} \%$ of Ca^{++}to $\mathrm{mEq} / \mathrm{L}$
Step 1: Calculate the atomic weight of Ca^{++}
Atomic weight of $\mathrm{Ca}^{++}=40$
Step 2: Calculate equivalent weight
Equiv weight = molecular weight Ca^{++}divided by valence
Since valence of $\mathrm{Ca}^{++}=2$, Equiv weight $=40 / 2=20 \mathrm{~g}$
Step 3: $1 \mathrm{mEq} \mathrm{Ca}^{++}=1 / 1000 \times 20 \mathrm{~g}=0.020 \mathrm{~g}=20 \mathrm{mg}$ Step 4: $10 \mathrm{mg} \% \mathrm{Ca}^{++}=10 \mathrm{mg} / 100 \mathrm{ml}=100 \mathrm{mg}$ per liter

$$
\frac{20 m g}{1 m E q}=\frac{100 \mathrm{mg}}{X m E q} \quad \mathrm{X}=5 \mathrm{mEq} / \mathrm{L}
$$

Millimoles

- Remember:
- Molecular Weight = g/mole
- Millimole = 1/1000 of a mole
- Key Equation (by definition):

Molecular WT (g/m)

- Conversions to remember:

1 mole = 1000 millimoles $\mathrm{g} / \mathrm{mole}=\mathrm{mg} / \mathrm{millimole}$

Millimoles Example

- Calculating amount
- How many milligrams of monobasic sodium phosphate (MW 138) are in 1 millimole

Molecular WT (g/m)
Since the Molecular Wt is 138

$$
\frac{138 g}{\text { mole }}=\frac{X g}{1 \text { mole }} \quad \mathrm{X}=138 \mathrm{~g} \text { in } 1 \text { mole }
$$

1 millimole $=0.138 \mathrm{~g}=138 \mathrm{mg}$

Osmolarity vs Osmolality

- Measures of osmotic concentration
- Osmolarity: millimoles of solute per liter of solution
- Osmolality: millimoles of solute per kilogram of solvent
- Osmolarity is NOT ALWAYS equivalent to Osmolality (beware of terminology!)

Osmolarity

$$
\mathrm{mOsmol} / \mathrm{L}=\frac{\text { wt of substance }(\mathrm{g} / \mathrm{L})}{\mathrm{MW}(\mathrm{~g})} \quad \mathrm{x} \text { number of species } \mathrm{x} 1000
$$

Osmolarity

How many milliosmoles are in 1 liter of $10 \mathrm{mg} \% \mathrm{Ca}^{++}$?

Remember:

$\mathrm{mOsmol} / \mathrm{L}=\mathrm{wt}$ of substance $(\mathrm{g} / \mathrm{L}) \times$ number of species $\times 1000$ MW (g)

Step 1: Identify the atomic weight of Ca^{++}(Atomic weight of $\mathrm{Ca}^{++=40)}$
Step 2: $10 \mathrm{mg} \% \mathrm{Ca}^{++}=10 \mathrm{mg} / 100 \mathrm{ml}=100 \mathrm{mg}$ per liter Step 3: $10 \mathrm{mg} \% \mathrm{Ca}^{++=} 10 \mathrm{mg} / 100 \mathrm{ml}=100 \mathrm{mg}$ per liter= $0.1 \mathrm{~g} / \mathrm{L}$ Step 4:
$\mathrm{mOsmol} / \mathrm{L}=\frac{0.1(\mathrm{~g} / \mathrm{L})}{40(\mathrm{~g})} \quad \mathrm{x} 1 \times 1000=2.5 \mathrm{mOsm} / \mathrm{L}$
Therefore in each liter of $10 \mathrm{mg} \%$ of Ca^{++}there are 2.5 mOsm

Conclusions

- Simple approaches can be used to convert to amount (or concentration) expressed in metric units such as grams or g / L to mEq , mmoles or mOsm.
- Pharmacists should understand
- The difference between $\mathrm{mg}(\mathrm{mg} / \mathrm{ml}), \mathrm{mEq}$, mmoles and mOsm
- How to convert between the various units of measures

