Milliequivalents, Millimoles, and Milliosmoles

Electrolytes vs Nonelectrolytes

- Compounds in solution are often referred to as either electrolytes or nonelectrolytes
 - Electrolytes are compounds that in solution dissociate to varying degrees into "ions" which have an electrical charge
 - Examples: NaCl, KCl, MgSO₄
 - Nonelectrolytes are compounds which do not dissociate in solution
 - Examples: dextrose, urea

Cations versus Anions

- In solution ions move in a direction opposite their charge
- Cations: positively charged ions
 - When placed in a solution the ions move to the negative electrode (or the cathode)
 - Examples: Na⁺, K⁺, Ca⁺⁺, Mg⁺⁺
- Anions: negatively charged ions
 - When placed in solution the ions move towards the positive electrode (or the anode)
 - Examples: Cl⁻, HC0₃⁻, S0₄⁻, HP04⁻

Terminology

- Mole= Avogadro's number (6.023 x 10²³) of molecules
- Molecular Weight (MW)= weight in grams of one mole of compound
- Millimoles (mmole)= 1000 x moles
 - g/mole = mg/mmole
- Valence= amount of charge of an ion
- Equivalents (Eq)= number of univalent counter ions needed to react with each molecule of substance
 - HCI has 1 equivalent per mole in that one mole of H⁺ reacts with one mole of Cl⁻

Milliequivalent

- In the United States, the concentration of electrolytes in solution is expressed in terms of milliequivalents (mEq)
 - EXCEPTION: Phosphorous is usually referred to in terms of mmoles
 - Note: in Europe concentrations of electrolytes are often expressed in terms of millimoles per liter or micromoles per liter)
- Refers to the chemical activity of an electrolyte
- Is related to the total number of ionic charges in solution and considers the valence (charge) of each ion
- For a given chemical compound, the milliequivalents of cations equals that of anions
 - Example: a solution of NaCl will contain the same number of milliequivalents of Na⁺ (the cation) as it will Cl⁻ (the anion).
- There is a trend to shift from using mEq to using mg of the given ion. Beware that this can be confusing! They are not EQUIVALENT!!! And mg of a given ion is not equivalent to mg of the compound. (i.e., mEq CaCl2 is not equal to mg CaCl2 which is not equal to mg Ca ion.

Milliequivalents

 mEq = represents amount in milligrams, of a solute equal to 1/1000 of its gram equivalent weight taking into account the valence of the ions.

Equivalent weight = formula weight divided by the total valence

mEq = mg x valence atomic, molecular or formula weight

mg = mEq x atomic, molecular or formula weight valence

Equiv Weight (g) = atomic, molecular or formula weight valence

Calculations with Milliequivalents

Converting millieqivalents to weight

Converting weight to milliequivalents

Converting mg% to mEq/L

Listing of Atomic Weights, Valences, and Equivalent Weights for Common Ions

	Atomic/Formula Weight	Valence	Equiv Wt (Atomic/valence)
Al+++	27	3	9
NH4 ⁺	18	1	18
Ca++	40	2	20
Fe ⁺⁺⁺	56	3	18.7
Mg++	24	2	12
K+	39	1	39
Na⁺	23	1	23
C ₂ H ₃ 0 ₃ -	59	1	59
HC0 ₃ -	61	1	61
C0 ₃	60	2	30
CI-	35.5	1	35.5
S0 ₄ -	96	2	48

Converting Millieqivalents to Weight

What is the concentration of a solution containing 4 mEq/L of KCI? Step 1: Calculate the molecular weight of KCI MW of potassium (K) = 39

MW of chloride (Cl) = 35.5 MW KCl = MW K + MW CL = 39 + 35.5 = 74.5 g

Step 2: Calculate equivalent weight Equiv weight = molecular weight KCl divided by valence Since valence of KCl = 1, Equiv weight = 74.5/ 1

Step 3: 1 mEq KCl = 1/1000 x 74.5 g = 0.0745 g = 74.5 mg

Step 4: 4 mEq KCl = 74.5mg x 4 = 298 mg/ml

OR using the equation listed before:

mg = mEq x atomic, molecular or formula weight valence mg/ml = mEq/ml * atomic, molecular or formula weight valence

$$\frac{\left(4\times74.5\right)}{1}=298mg/ml$$

Converting Weight to Milliequivalents

How many mEq of KCI are in 1.5g of KCI?

Step 1: Calculate the molecular weight of KCl MW of potassium (K) = 39 MW of chloride (Cl) = 35.5 MW KCl = MW K + MW CL = 39 + 35.5 = 74.5 g

Step 2: Calculate equivalent weight Equiv weight = molecular weight KCl divided by valence Since valence of KCl = 1, Equiv weight = 74.5/ 1

Step 3: 1 mEq KCl = 1/1000 x 74.5 g = 0.0745 g = 74.5 mg

Step 4: 1 mEq KCl = 74.5 mg; 1.5 g KCl = 1500 mg; How many mEq in 1500 mg?

 $\frac{1mEq}{XmEq} = \frac{74.5mg}{1500mg}$ X = 20.1 mEq

Converting mg% to mEq/L

Convert the expression 10 mg% of Ca⁺⁺ to mEq/L

- Step 1: Calculate the atomic weight of Ca⁺⁺ Atomic weight of Ca⁺⁺=40
- Step 2: Calculate equivalent weight Equiv weight = molecular weight Ca⁺⁺ divided by valence Since valence of Ca⁺⁺ = 2, Equiv weight = 40/2 = 20 g

Step 3: 1 mEq Ca⁺⁺ = 1/1000 x 20 g = 0.020 g = 20 mg

Step 4: 10 mg% Ca⁺⁺= 10 mg/100ml = 100 mg per liter

20 <i>mg</i>	_100 <i>mg</i>	
1mEq	XmEq	X = 5 mEq/L

Millimoles

• Remember:

- Molecular Weight = g/mole
- Millimole = 1/1000 of a mole

• Key Equation (by definition):

$$\frac{g}{mole} = \frac{Xg}{1mole}$$

Molecular WT (g/m)

 Conversions to remember: 1 mole = 1000 millimoles g/mole = mg/millimole

Millimoles Example

Calculating amount

- How many milligrams of monobasic sodium phosphate (MW 138) are in 1 millimole

$$\frac{g}{mole} = \frac{Xg}{1mole}$$

Molecular WT (g/m)

Since the Molecular Wt is 138

 $\frac{138\,g}{mole} = \frac{Xg}{1mole}$ X = 138 g in 1 mole

1 millimole = 0.138 g = 138 mg

Osmolarity vs Osmolality

Measures of osmotic concentration

- Osmolarity: millimoles of solute per liter of solution
- Osmolality: millimoles of solute per kilogram of solvent
- Osmolarity is NOT ALWAYS equivalent to Osmolality (beware of terminology!)

mOsmol/L = wt of substance (g/L) x number of species x 1000MW (g)

Osmolarity

How many milliosmoles are in 1 liter of 10 mg% Ca++?

Remember:

mOsmol/L = <u>wt of substance (g</u>/L) x number of species x 1000 MW (g)

Step 1: Identify the atomic weight of Ca⁺⁺ (Atomic weight of Ca⁺⁺=40) Step 2: 10 mg% Ca⁺⁺= 10 mg/100ml = 100 mg per liter Step 3: 10 mg% Ca⁺⁺= 10 mg/100ml = 100 mg per liter= 0.1 g/L Step 4: mOsmol/L = 0.1 (g/L) = x 1 x 1000 = 2.5 mOsm/L

Therefore in each liter of 10mg% of Ca⁺⁺ there are 2.5 mOsm

Conclusions

- Simple approaches can be used to convert to amount (or concentration) expressed in metric units such as grams or g/L to mEq, mmoles or mOsm.
- Pharmacists should understand
 - The difference between mg (mg/ml), mEq, mmoles and mOsm
 - How to convert between the various units of measures