CWR 3201 Fluid Mechanics, Fall 2018

Fluid Statics

Arturo S. Leon, Ph.D., P.E., D.WRE
2.1 INTRODUCTION

Fluid Statics: Study of fluids with no relative motion between fluid particles.

- No shearing stress (no velocity gradients)
- Only normal stress exists (pressure)

![Diagram of fluid statics examples](image)

Fig. 2.1 Examples included in fluid statics: (a) liquids at rest; (b) linear acceleration; (c) angular rotation.
MOTIVATION

Source: asciencem.com, Youtube
(https://www.youtube.com/watch?v=jqpl4ME6rRY)
MOTIVATION (CONT.)

Youtube (https://www.youtube.com/watch?v=Zip9ft1PgV0)
MOTIVATION (CONT.)

Youtube (https://www.youtube.com/watch?v=9jLQx3kD7p8)
2.2 PRESSURE AT A POINT

- Pressure is an infinitesimal normal compressive force divided by the infinitesimal area over which it acts.

- From Newton’s Second Law (for x- and y-directions):

Fig. 2.2 Pressure at a point in a fluid.
2.2 PRESSURE AT A POINT

- Pressure in a fluid is **constant** at a point.
- Pressure is a **scalar** function.
- It acts **equally in all directions** at a point for both static and dynamic fluids.

As the element goes to a point \((\Delta x, \Delta y \to 0)\)

Fig. 2.2 Pressure at a point in a fluid.
2.3 DERIVATION OF GENERAL FORM OF PRESSURE VARIATION

- Newton’s Second Law in “x”, “y” and “z”-directions:

![Diagram showing forces acting on an infinitesimal element](image)

Fig. 2.3 Forces acting on an infinitesimal element that is at rest in the xyz-reference frame. The reference frame may be accelerating or rotating.
Using the Chain rule, the pressure change in any direction can be calculated as:

Then the pressure differential becomes:
2.4 FLUIDS AT REST

• The pressure differential (from the previous slide) is:

• At rest, there is no acceleration \((a = 0)\):

No pressure variation in the \(x\)- and \(y\)-directions (horizontal plane). Pressure varies in the \(z\)-direction only (\(dp\) is negative if \(dz\) is positive).

Pressure decreases as we move up and increases as we move down.
2.4 FLUIDS AT REST

2.4.1 Pressure in Liquids at Rest

• At a distance h below a free surface, the pressure is:

\[p = 0 \text{ at } h = 0. \]

Fig. 2.4 Pressure below a free surface.
2.4 FLUIDS AT REST

2.4.3 Manometers
Manometers are instruments that use columns of liquid to measure pressures.

• (a) displays a U-tube manometer used to measure relatively small pressures
• (b): Large pressures can be measured using a liquid with large γ_2.
• (c): Very small pressures can be measured as small pressure changes in p_1, leading to a relatively large deflection H.

Fig. 2.7 Manometers: (a) U-tube manometer (small pressures); (b) U-tube manometer (large pressures); (c) micromanometer (very small pressure changes).
Example: P.2.40. Find the gage pressure in the water pipe shown in Fig. P2.40
Example: P.2.41. For the inclined manometer containing mercury, shown in Fig. P2.41, determine the pressure in pipe B if the pressure in pipe A is 10 kPa. Pipe A has water flowing through it, and oil is flowing in pipe B.

![Manometer Diagram](image)
Example: P.2.42. The pressure in pipe B in Problem P2.41 is reduced slightly. Determine the new pressure in pipe B if the pressure in pipe A remains the same and the reading along the inclined leg of the manometer is 11 cm (Tip: See problems 2.41 and 2.42)
2.4 FLUIDS AT REST

2.4.4 Forces on Plane Areas

- The total force of a liquid on a plane surface is:

- After knowing the equation for pressure \((P = \gamma h)\):

![Diagram of force on an inclined plane area](image)
2.4.4 Forces on Plane Areas

\(\bar{h} \): Vertical distance from the free surface to the centroid of the area

\(p_C \): Pressure at the centroid

The centroid or geometric center of a plane figure is the arithmetic mean ("average") position of all the points in the shape.
2.4 FLUIDS AT REST

- The center of pressure is the point where the resultant force acts:
 - Sum of moments of all infinitesimal pressure forces on an area, A, equals the moment of the resultant force.

Fig. 2.8 Force on an inclined plane area.
\(\bar{y} \): Measured parallel to the plane area to the free surface

- The moments of area can be found using:

See Appendix C for centroids and moments
Fig. 2.9 Force on a plane area with top edge in a free surface.
Example: P.2.56. Determine the force P needed to hold the 4-m wide gate in the position shown in Fig. P2.56.
Example: P.2.62. At what height H will the rigid gate, hinged at a central point as shown in Fig. P2.62, open if h is:

a) 0.6 m? b) 0.8 m? c) 1.0 m?
2.4.5 Forces on Curved Surfaces

https://www.youtube.com/watch?v=zV-JO-l7Mx4

- Direct integration cannot find the force due to the hydrostatic pressure on a curved surface.

- A free-body diagram containing the curved surface and surrounding liquid needs to be identified.
Example: P.2.72. Find the force P required to hold the gate in the position shown in Fig. P.2.72. The gate is 5-m wide.
Example: P.2.77. Find the force P if the parabolic gate shown in Fig. P.2.77 is

a) 2-m wide and $H = 2$ m

b) 4-ft wide and $H = 8$ ft.
2.4 FLUIDS AT REST

2.4.6 Buoyancy (Archimedes’ principle)

https://www.youtube.com/watch?v=2ReflvqaYg8

- Buoyancy force on an object equals the weight of displaced liquid.

Fig. 2.12 Forces on a submerged body: (a) submerged body; (b) free-body diagram; (c) free body showing the buoyant force F_B.

V is the volume of displaced fluid and W is the weight of the floating object.
2.4 FLUIDS AT REST

2.4.6 Buoyancy (Archimedes’ principle)

- The buoyant force acts through the centroid of the displaced liquid volume.
- An application of this would be a hydrometer that is used to measure the specific gravity of liquids.
 - For pure water, this is 1.0
2.4 FLUIDS AT REST
2.4.6 Buoyancy (Hydrometers)

Fig. 2.13 Forces on a floating object.

Fig. 2.14 Hydrometer: (a) in water; (b) in an unknown liquid.

• Where Δh is the displaced height
• A: Cross-sectional area of the stem
• $S_x = \frac{\gamma_x}{\gamma_{water}}$
• For a given hydrometer, V and A are fixed.
Example: P.2.78. The 3-m wide barge shown in Fig. P.2.78 weighs 20 kN empty. It is proposed that it carry a 250-kN load. Predict the draft in:

a) Fresh water
b) Salt water \((S = 1.03)\)
2.4 FLUIDS AT REST

2.4.7 Stability

- In (a) the center of gravity of the body is above the centroid C (center of buoyancy), so a small angular rotation leads to a moment that increases rotation: unstable.
- (b) shows neutral stability as the center of gravity and the centroid coincide.
- In (c), as the center of gravity is below the centroid, a small angular rotation provides a restoring moment and the body is stable.

Fig. 2.15 Stability of a submerged body: (a) unstable; (b) neutral; (c) stable.
2.4 FLUIDS AT REST

Metacentric height

https://www.youtube.com/watch?v=QUgXf2Rj2YQ

Fig. 2.16 Stability of a floating body: (a) equilibrium position; (b) rotated position.

- The **metacentric height** \overline{GM} is the distance from G to the point of intersection of the buoyant force before rotation with the buoyant force after rotation.

- If \overline{GM} is positive: Stable
- If \overline{GM} is negative: Unstable
Fig. 2.17 Uniform cross section of a floating body.
Fig. 2.17 Uniform cross section of a floating body.
Example: P.2.94. The barge shown in Fig. P2.94 is loaded such that the center of gravity of the barge and the load is at the waterline. Is the barge stable?
Example: P.2.92. For the object shown in Fig. P2.92, calculate S_A for neutral stability when submerged.
Linearly Accelerating Containers

Source: asciencemcom, Youtube (https://www.youtube.com/watch?v=jqpl4ME6rRY)
Pressure within an Accelerating Container

Depth of point = 2.9 m Gage pressure = 28. kPa
Drag the ball to see the pressure change.

Source: Jon Barbieri and Peter Hassinger, "Pressure within an Accelerating Container"
http://demonstrations.wolfram.com/PressureWithinAnAcceleratingContainer/
2.5 LINEARLY ACCELERATING CONTAINERS

• When the fluid is linearly accelerating with horizontal \((a_x)\) and vertical \((a_z)\) components:

![Diagram of linearly accelerating tank](image)

- The derived pressure differential equation is:

Fig. 2.18 Linearly accelerating tank.
2.5 LINEARLY ACCELERATING CONTAINERS

- As points 1 and 2 lie on a constant-pressure line:

Fig. 2.18 Linearly accelerating tank.

\(\alpha \) = angle that the constant-pressure line makes with the horizontal.
Example: P.2.97. The tank shown in Fig. P2.97 is accelerated to the right at 10 m/s². Find:

a) P_A, b) P_B, c) P_C

Fig. P2.97
Example: P.2.99. The tank shown in Fig. P2.99 is filled with water and accelerated. Find the pressure at point A if $a = 20 \, \text{m/s}^2$ and $L = 1 \, \text{m}$.

![Diagram of a tank on an inclined plane]
• For a liquid in a rotating container (cross-section shown):

- In a short time, the liquid reaches static equilibrium with respect to the container and the rotating rz-reference frame.
- Horizontal rotation will not affect the pressure distribution in the vertical direction.
- No variation in pressure with respect to the θ-coordinate.

Fig. 2.19 Rotating container: (a) liquid cross section; (b) top view of element.

https://www.youtube.com/watch?v=RdRnB3jz1Yw
2.6 ROTATING CONTAINERS

- Between two points \((r_1,z_1)\) and \((r_2,z_2)\) on a rotating container, the static pressure variation is:
If two points are on a constant-pressure surface (e.g., free surface) with point 1 on the z-axis \([r_1=0]\):

- The free surface is a **paraboloid of revolution**.
Example: P.2.106. For the cylinder shown in Fig. P2.106, determine the pressure at point A for a rotational speed of 5 rad/s.
Example: P.2.107. The hole in the cylinder of Problem P2.106 is closed and the air pressurized to 25kPa. Find the pressure at point A if the rotational speed is 5 rad/s.