Florida International University

CWR 3201 Fluid Mechanics, Fall 2021

Mid-term \# 2

Instructor: Arturo S. Leon, Ph.D., P.E., D.WRE

Student Name: \qquad Panther ID: \qquad
\checkmark You will have 50 minutes to complete the exam. The exam is closed book and closed notes.
Only one page (front and back) with handwritten equations are allowed

1. (35 points) Neglecting viscous effects and assuming uniform velocity profiles, find the horizontal force component acting on the dam shown in the figure below. The river width is 100 m .

2. ($\mathbf{3 0}$ points) The $25-\mathrm{m}$ long, $100-\mathrm{mm}$ diameter pipe with a friction factor of 0.020 is used to pump $30^{\circ} \mathrm{C}$ water from a reservoir as shown below. Determine the maximum elevation of the pump if the flow discharge is 15 L / s right before cavitation. Use $\mathrm{P}_{\text {vapor }}\left(30^{\circ} \mathrm{C}\right)=4.24 \mathrm{kPa}$ (Absolute pressure), $\mathrm{P}_{\text {atm }}=101.3 \mathrm{kPa}$ (Absolute pressure), and water specific weight at $30^{\circ} \mathrm{C}, \gamma=9.768 \mathrm{kN} / \mathrm{m}^{3}$. The pipe entrance local loss coefficient K is 0.8.

3. (35 points) Water is pumped between two reservoirs in a pipeline with the following characteristics: $D=300 \mathrm{~mm}, L=70 \mathrm{~m}, f=0.025, \Sigma K=2.5$. The radial-flow pump characteristic curve is approximated by the formula $H_{P}=30+12.7 Q-110 \mathrm{Q}^{2}$, where H_{P} is in meters and Q is in $\mathrm{m}^{3} / \mathrm{s}$.

If $z_{2}-z_{1}=50 \mathrm{~m}$, and the minimum required flow discharge is $150 \mathrm{~L} / \mathrm{s}$, determine the minimum number of pumps required to meet the minimum flow discharge. Would you use pumps in parallel or in series? Justify your answer.

