Florida International University CHR 3201 Fluid Mechanics, Fall 2022 Midterm \# 1

Instructor: Arturo S. Leon, Ph.D., P.E., D.WRE

Student Name: \qquad Arturo Leon \qquad Panther ID: \qquad \checkmark You will have 1 h 15 minutes to complete the exam. The exam is closed book and closed notes. Only one page (front and back) with handwritten equations are allowed

1. (30 points). Find the force " P " needed to hold the $5-\mathrm{m}$-long cylinder in position as shown in the figure below.

Mercury ($\mathrm{S}=13.6$)

At equilibrium: $\sum F_{x}=0$ horizontal forces

$$
\begin{equation*}
F_{\mathrm{Hg}}=P+F_{\text {salty water }} \text {.. } \tag{1}
\end{equation*}
$$

$$
F_{H g}=\gamma \bar{h} A=13.6 \times 9800 \times\left(\frac{4}{2}\right)(4 \times 5)=5^{\prime} 331,200 \mathrm{~N}
$$

$$
\text { Fealty water }=\gamma \bar{h} A=1.035 \times 9800 \times\left(\frac{2}{2}\right) \times(2 \times 5)
$$

$\operatorname{In}(1)$

$$
\begin{aligned}
& P=51229,770 \mathrm{~N} \\
& P=5,229 \cdot 8 \mathrm{kN}
\end{aligned}
$$

2. ($\mathbf{3 0}$ points) The U-tube shown in the figure below is filled with mercury and accelerated. Find the pressure at point B if the acceleration $\boldsymbol{a}=20 \mathrm{~m} / \mathrm{s}^{2}$ and $L=1 \mathrm{~m}$.

3. (40 points) A $30-\mathrm{m}$-long vessel, with a cross-section shown in the figure below, carries a load of 6000 kN .
(a) (20 points) Find the distance (D) from the top of the vessel to the liquid top level if the vessel mass is 120000 kg and the liquid has a specific gravity (S) of 1.4.
(b) ($\mathbf{2 0}$ points) Is the vessel stable? The center of gravity (\mathbf{G}) of the vessel and load is located as shown below.

a) $\mathrm{D}=$?

Total Weight
*
Total weight

$$
=7,176 \mathrm{kN}
$$

* Buoyancy $=\gamma \forall_{\text {submerged }}=1.4 \times 9800 \quad \forall_{\text {submerged }}$

$$
\begin{gathered}
\text { Y submerged }=30[(2-D) 8+4 \times 3] \\
\therefore 7,176 \times 1000=1.4 \times 9800 \times 30[(2-D) 8+12] \\
D
\end{gathered}
$$

$$
\begin{aligned}
& \text { b) Stable? } G M=\frac{I_{0}}{\forall_{s}}-G C \ldots(1) \\
& \forall S=30[(2-1.32) 8+12]=523.2 \mathrm{~m}^{3} \\
& I_{0}=\frac{b h^{3}}{12}=\frac{30 \times 8^{3}}{12}=1280
\end{aligned}
$$

* We need to find the position of the centroid of the submerged volume. Use as reference the bottom of the vessel.

$$
\begin{aligned}
& \text { the bottom of the vessel. } \quad 2-1.32=0.68 \\
& y_{c} \cdot A=\sum y_{c i} A i \\
& 17.44 y_{c}=(2-1.32) 8\left(3+\frac{0.68}{2}\right)+\frac{2}{3}(3)(12) \\
& y_{C}=\frac{18.17+24}{17.44}=2.42 \mathrm{~m} \text { (from the } \\
& \text { vessel bottom } \\
& G C=3.2-2.42=0.78 \mathrm{~m} .
\end{aligned}
$$

In (1) $G M=\frac{1280}{523.2}-0.78$

$$
G M=1.67 \mathrm{~m}>0
$$

Vessel is Stable

