Florida International University
 CWR 3201 Fluid Mechanics, Fall 2021
 Final Exam

Instructor: Arturo S. Leon, Ph.D., P.E., D.WRE

Student Name:

\qquad Panther ID: \qquad
\checkmark You will have 2 hours to complete the exam. The exam is closed book and closed notes
\checkmark Only one page (front and back) with handwritten equations are allowed (no photocopies or artificially reduced text will be allowed)
\checkmark No cell phones or any type of communication device will be allowed.
\checkmark The final exam consists of five questions; however, the grading will be based on four questions only. If five problems are solved, the grading will consider the 4 solutions with the highest scores.

1. (25 points) Calculate the horizontal and vertical forces of the liquid ($\gamma=\mathbf{2 7 0 0} \mathbf{N} / \mathbf{m}^{\mathbf{3}}$) acting on the curved gate $A B C$. Assume $R=2 \mathrm{~m}$ and the gate width is 5 m .

2. (25 points) What is the water velocity V_{1} inside the pipe if the force needed to hold the orifice plate shown in the figure below is $50,000 \mathrm{~N}$? Hint: The orifice plate is circular.

3. (25 points) The rectangular canal shown in the figure below is to be widened so that it can carry twice the amount of water. Determine the additional width, \boldsymbol{L}, required if all other parameters (i.e., flow depth, bottom slope, surface material) are to remain the same.

4. ($\mathbf{2 5}$ points) The $\mathbf{2 4 0}$-mm-diameter pump represented in the figure below is used to move water in a piping system. The demand or system curve is $H_{p}(\mathrm{~m})=70+2500 Q^{2}$, where \boldsymbol{Q} is in cubic meters per second. Find the flow discharge ($\mathrm{m}^{3} / \mathrm{s}$) and pump head (m) if two pumps in parallel are used.

5. (25 points) The channel below carries a discharge of $30 \mathrm{~m}^{3} / \mathrm{s}$ of water with a velocity of $1.5 \mathrm{~m} / \mathrm{s}$. If the channel is designed for maximum hydraulic efficiency conditions, what should be the bottom (\boldsymbol{b}) and the height (y) of the channel?

Derivative rule for a power function: $\frac{d x^{n}}{d m}=n x^{n-1} \frac{d x}{d m}$

