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CHAPTER FIVE 
Network Hydraulics 
5. ETWORK HYDRAULICSE 

The fundamental relationships of conservation of mass and energy 
mathematically describe the flow and pressure distribution within a pipe 
network under steady state conditions. To begin, parallel and series pipe 
systems are considered in Section 5.1. The basic concepts applied in these 
simple systems to determine the pipe flow rates and nodal pressure heads are 
then extended to full networks. Four mathematical formulations are discussed 
(Sections 5.2 and 5.3). Quasi-dynamic flow for tank modeling under time 
varying conditions is then presented. Finally, flow conditions that change in the 
short term are analyzed using conservation of mass with conservation of 
momentum to include the impact of dynamic changes. 

Notation for this section can become confusing since a number of 
subscripts and counters are used. To summarize, the subscripts i and l identify 
nodes and pipes, respectively. The pipe flows are typically summed over the 
sets of pipes providing flow to or carrying flow from a node. To avoid 
confusion with pipe lengths, L, the set of incoming and outgoing pipes are 
defined as Jin and Jout, respectively. Depending upon the conservation of energy 
formulation, head losses in pipes are summed over the set of pipes in a loop, 
lloop, or path, lpath. The notation with the letter n followed by an identifier is 
used for the number of components such as nnode, npipe, nloop, and nploop for 
the number of network nodes, pipes, closed loops, and pseudo-loops, 
respectively. The subscript j is used as an identifier in summations and defined 
for the specific equation including an identifier for a node at one end of a pipe. 
To compute the nodal heads and pipe flows a set of nonlinear equations is 
solved by an iterative process. The counter m is used to define the iteration 
number and added to the unknown variable as a superscript in parentheses, i.e., 
Q(m). Lastly, variables are shown in italics and matrices and vectors are denoted 
by bold characters. 

5.1    SIMPLE PIPING SYSTEMS 

Simple piping systems provide insight into the understanding of pipe networks. 
Variation of total head through a network is seen in a set of pipes in series. 
Analysis of pipes in parallel is the first application of the conservation of mass 
at a junction and conservation of energy around a loop. In addition to the 
physical understanding that they offer, simplification of these systems to 
equivalent pipes reduces computations during analysis. 
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5.1.1  Pipes in Series 

As shown in Figure 5-1, a series of pipes may have different pipe diameters 
and/or roughness parameters. The total head loss is equal to the sum of the head 
loss in each pipe segment or: 
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where lpath is the number of pipes in series, Kl is the coefficient for pipe l 
containing information about the diameter, length, and pipe roughness, n is the 
exponent from the head loss equation, and Ql is the flow rate in pipe l.   

If no withdrawals occur along the pipe, each pipe carries the same flow rate 
but the rate of head loss in each pipe may be different. If we use the same head 
loss equation for all pipes (i.e., the same n), we can take Q out of the 
summation or: 
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where s
eqK  is the equivalent K coefficient for series of pipes. If flow is 

turbulent, the Kl’s are constant and a single equivalent s
eqK  can be computed for 

all turbulent flows.  

A B C D

 
 D1 = 30 cm D2 = 20 cm     D3 = 40 cm 
 L1 = 2000 m  L2 = 1000 m     L3 = 2000 m 
 f1 = 0.022  f2 = 0.025     f3 = 0.021 
                         zA = 20 m,  zB = 25 m, zC = 32.5 m, zD = 37.5 m 
Figure 5-1: Pipes in series with data for Example 5.1. 

Example 5.1 

Problem:  For a flow rate of 0.04 m3/s, determine the pressure and total heads at 
points A, B, C, and D for series pipes shown in Figure 5-1. Assume fully 
turbulent flow for all cases and the pressure head at point A is 40 m. 
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Solution: The pressure and total heads are computed using the energy equation 
along the path beginning at point A. Given the pressure head and elevation, the 
total head at point A is: 
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Note the velocity and velocity head are: 
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The velocity head is four orders of magnitude less than the static head so it 
can be neglected. Neglecting velocity head is a common assumption in pipe 
network analysis. 

All energy loss in the system is due to friction. So following the path of 
flow the total heads at A, B, C, and D are: 
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The pressure heads are: 
at point B 
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at point C 
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and at point D 
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Example 5.2 

Problem:  For the series pipe system in Example 5.1, find the equivalent 
roughness coefficient and the total head at point D for a flow rate of 0.03 m3/s. 

Solution:  By Eq. 5-2, the equivalent pipe loss coefficient is equal to the sum of 
the pipe coefficients or: 
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 Note that pipe 2 has the largest loss coefficient since it has the smallest 
diameter and highest flow velocity. As seen in Example 5.1, although it has the 
shortest length, most of the head loss occurs in this section. The head loss 
between nodes A and D for Q = 0.03 m3/s is then: 

mhQKQKQKQKh DA
f

s
eq

DA
f 5.7)03.0(8290 22

3
2

2
2

1
2 =⇒=++== −−  

We can also confirm the result in Example 5.1 by substituting Q = 0.04 
m3/s in which case: 
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 mHhHH D
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that would be equivalent to the earlier result if Example 5.1 was carried to 2 
decimal places. 

5.1.2  Pipes in Parallel 

When one or more pipes connect the same locations (junctions), the hydraulics 
are much more interesting. The relationships in these small networks lead to the 
fundamental relationships for full network modeling. Locations A and B in 
Figure 5-2 are described as nodes or junctions of several pipes. As in Example 
2.1, conservation of mass must be preserved at these locations. That is, in 
steady state the known incoming flow at node A must balance with the 
outgoing flows in pipes 1, 2, and 3. Similarly, the incoming flows to node B in 
the incoming pipes 1, 2, and 3 must equal the known withdrawal at node B. 

 qA = qB = Q1 + Q2 + Q3 (5-3) 

where Ql and qj define the flow rate in pipe l and the nodal withdrawal/supply 
at node j, respectively. The mass balance for node B provides the same 
information as the above and is redundant.   
 

A B

(L1 = 300 ft, D1 = 14 in, CHW, 1 = 120)

(L2 = 200 ft, D2 = 16 in, CHW, 2 = 130)

(L3 = 400 ft, D3 = 18 in, CHW, 3 = 110)

qA = 10 cfs
HA = 80 ft

qB = 10 cfs
HB = ?

 

Figure 5-2: Pipes in parallel with data for Example 5.3. 

The second relationship that must hold is that the head loss in pipes 1, 2, 
and 3 must be the same. Since all begin at a single node (A) and all end at a 
single node (B) and the difference in head between those two nodes is unique, 
regardless of the pipe characteristics the head loss in the pipes is the same or: 

 LLLLBA hhhhHH ====− 3,2,1,  (5-4) 

where HA and HB are the total heads at nodes A and B, respectively, hL,l is the 
head loss in pipe l, and Lh  is the single value of head loss between nodes A and 
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B. Eq. 5-4 is a statement of conservation of energy for a pipe and is used in 
several formulations for solving for flows and heads in a general network. 

In other network solution methods, we write conservation of energy for 
closed loops. A closed loop is a path of pipes that begins and ends at the same 
node. Pipes 1 and 2 form a closed loop beginning and ending at node A. 
Starting at node A around the path, energy, hL,1, is lost as water flows from A to 
B. As we follow the path back to node A to close the loop, we gain energy, hL,2, 
since we are moving in the direction opposite to the flow. We can write the path 
equation around the loop and manipulate it to show: 

 2,1,2,1,2,1, 0 LLLLALLA hhhhHhhH =⇒=+−⇒=+−  (5-5) 

Now using Eq. 5-3 and either Eqs. 5-4 or 5-5, we can determine the head 
loss and flow for each pipe and an equivalent pipe coefficient, p

eqK . In any pipe 
network system the nodal inflows and outflows (qA and qB) and at least one 
nodal head’s total energy (HA in this case) must be known to provide a datum 
for the pressure head. For steady flow conditions in the network in Figure 5-2, 
we have a total of seven unknowns, node B’s total energy (HB), three pipe flows 
(Q1, Q2, and Q3) and three head losses (hL,1, hL,2, and hL,3).  

Eq. 5-4 provides two independent equations relating the head losses (hL,1 = 
hL,2, and hL,1, = hL,3). The third equation is that the head loss in any pipe equals 
the difference in head between nodes A and B (the first part of Eq. 5-4). 
Conservation of mass at node A (Eq. 5-3) is the fourth relationship. The final 
three equations are the head loss versus discharge equations:  
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We can substitute Eq. 5-6 in the mass balance equations (Eq. 5-3) with hL 
equal to each pipe’s head loss or: 
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In this equation, all terms except for hL are known. After solving for hL, the 
unknown pipe flows can be computed by Eq. 5-6 and HB can be determined in 
Eq. 5-4. 

Like pipes in series, an equivalent pipe coefficient can be computed for 
parallel pipes. In Eq. 5-7, hL can be pulled from each term on the left hand side 
or for a general discharge and three parallel pipes: 
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The equivalent coefficient is then: 
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where p
eqK is the equivalent pipe coefficient for parallel pipes. As shown in the 

last term, Eq. 5-9 can be generalized for lp parallel pipes.  
The head loss between the two end nodes is:  

 n
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p
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Example 5.3 

Problem:  Given the data for the three parallel pipes in Figure 5-2, compute (1) 
the equivalent parallel pipe coefficient, (2) the head loss between nodes A and 
B, (3) the flow rates in each pipe, and (4) the total head at node B.  

Solution:  (1) The equivalent parallel pipe coefficient allows us to determine the 
head loss that can then be used to disaggregate the flow between pipes. The loss 
coefficient for the Hazen-Williams equation for pipe 1 with English units is: 
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Similarly, K2 and K3 equal 0.0286 and 0.0439, respectively. 
The equivalent loss coefficient is: 
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 (2 and 4) The head loss between nodes A and B is then: 
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(4) So the head at node B, HB, is:  

 HA – HB = hL = 80 – HB = 0.43 ft  ⇒  HB = 79.57 ft 

(3) The flow in each pipe can be computed from the individual pipe head loss 
equations since the head loss is known for each pipe (hL = 0.43 ft). 
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The flows in pipes 2 and 3 can be computed by the same equation and are 4.32 
and 3.43 cfs, respectively. The sum of the three pipe flows equals 10 cfs, which 
is same as inflow to node A. 

5.2    SYSTEM OF EQUATIONS FOR STEADY FLOW 

Conservation of mass at a junction node (Eq. 5-3) and conservation of energy 
(Eq. 5-1) can be extended from parallel pipes to general networks for steady 
state hydraulic conditions. The resulting set of simultaneous quasi-linear 
equations can be solved for the pipe flows and nodal heads for steady state and 
step-wise (quasi) dynamic (known as extended period simulation or EPS) 
analyses. EPS analysis requires an additional relationship describing changes in 
tank levels due to inflow/outflows and is discussed in later sections. Only 
steady state hydraulics is considered in Sections 5.2 and 5.3. 

5.2.1   Conservation of Mass   

As defined earlier, a junction node is a connection of two or more pipes. 
Although demands are distributed along pipes, these demands are lumped at 
junctions and defined as qnode. Conservation of mass at a node was presented in 
Section 2.1.2.1. For a junction node i, conservation of mass can be written as: 
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 (5-11) 

where qi is the external demand (withdrawal), Jin,i and Jout,i are the set of pipes 
supplying and carrying flow from node i, respectively, and inJl ∈ denotes that l 
is in the set of pipes in Jin. This equation can be written for every junction node 
in the system. 
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5.2.2  Conservation of Energy 

The second governing law is that energy must be conserved between any two 
points. Along the path between nodes A and B that only includes pipes, 
conservation of energy is written as: 
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where HA and HB are the total energy at nodes A and B, hL,l, Kl, Ql are the head 
loss, loss equation coefficient and flow rate in pipe l and n is the exponent from 
the head loss equation.  

The sign for the flow rate is defined using the ⎣ ⎦lQ  symbol and this symbol 
does not have its conventional meaning. This symbol is intended as a short 
form notation and reminder of how the signs of this relationship should be 
interpreted. The absolute value of Q is raised to the power of n and the sign of 
the pipe term is based on the flow direction. If flow is moving from node A 
toward node B then the sign should be taken positive and a negative sign is 
used if flow is away from B toward A. Eq. 5-12 can be written for a closed or 
pseudo-loop or a single pipe. lpath defines the set of pipes in the path.  

A closed loop is one that begins and ends at the same node. Since each 
location in the network has a unique energy the net energy loss around a closed 
loop is zero. For a loop beginning and ending at node A: 

 00 , ===− ∑
∈ lloopl
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where lloop is the set of pipes in the closed loop. 
A pseudo-loop is a path of pipes between two points of known energy such 

as two tanks or reservoirs. Eq. 5-12 applies directly to pseudo-loops. Pseudo-
loop equations include additional information regarding the flow distribution 
and are needed for some solution methods. Finally, Eq. 5-12 also applies 
directly for individual pipes with HA and HB being the total heads at the two 
ends of the single pipe or: 

 ⎣ ⎦ n
llBA QKHH =−  (5-14) 

5.2.3   Systems of Equations 

The unknowns in a steady state hydraulic analysis are the flows in each pipe, Q, 
and the total energy head at each junction node, H. In a system with nnode 
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nodes and npipe pipes, the total number of unknowns is nnode + npipe. Four 
equation formulations can be developed to solve for these unknowns. They can 
be expressed in terms of unknown pipe flows or nodal heads. All sets are 
nonlinear due to the energy loss relationships and require iterative solutions. 
The Newton-Raphson method is the most widely used iterative solution 
procedure in network analysis. Its convergence properties have been studied in 
detail by Altman and Boulos (1995). At least one point of known energy is 
required to provide a datum (or root) for the nodal heads. The four solution 
approaches are summarized below and mathematical details are presented in 
Section 5.3.  

5.2.3.1 Loop Equations 

The smallest set of equations is the loop equations that include one equation for 
each closed loop and pseudo-loop for a total of nloop + nploop equations where 
nloop and nploop are the number of closed and pseudo-loops, respectively. The 
unknowns in the loop equations are ∆Q’s that are defined as the corrections to 
the flow rate around each loop. Beginning with a flow distribution that satisfies 
conservation of mass, the corrections maintain those relationships. When zero 
corrections are needed in all loops, the flow rates in each loop and each pipe 
has been found. After the flows have been determined, Eq. 5-12 is applied 
beginning at a location of known total energy (e.g., root) to determine the nodal 
heads. 

The Hardy Cross method is one approach to solve the loop equations. This 
method first determines corrections for each loop independently then applies 
the corrections to compute the new pipe flows. With the new flow distribution, 
another set of corrections is computed. Hardy Cross introduced this method in 
1936 and, although amendable to hand calculations, it is not efficient compared 
to methods that consider the entire system simultaneously. Epp and Fowler 
(1970) presented a more efficient method that simultaneously solves for all 
loop corrections using the Newton-Raphson method with the corrections as the 
unknowns. 

5.2.3.2 Node-Loop Equations 

Wood and Rayes (1981) compared a number of solution algorithms with their 
modified linear theory (flow adjustment) method and showed that this approach 
was efficient and robust. Modified linear theory solves directly for the pipe 
flow rates rather than the loop equation approach of loop flow corrections. 

The nloop + nploop loop equations (Eq. 5-12) incorporate the concept of 
energy conservation and nnode node equations (Eq. 5-11) introduce 
conservation of mass. The total number of independent equations is nnode + 
nloop + nploop that number is equal to the number of unknown pipe flow rates, 
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npipe. A Newton’s type method is used to solve for the Q’s directly rather than 
the loop flow rate corrections, ∆Q’s. As in the loop equations, after the pipe 
flow rates are found, they are substituted in Eq. 5-12 beginning at a point of 
known energy to compute the nodal heads. 

5.2.3.3 Node Equations 

The node equations can be rewritten in terms of the nodal heads by writing Eq. 
5-14 for pipe l that connects nodes j and i as: 
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These terms are substituted for the flow rate in Eq. 5-11 for each pipe and 
one equation of the form of Eq. 5-15 is written for each node. This substitution 
combines the conservation of energy and mass relationships resulting in nnode 
equations in terms of the nnode unknown nodal heads, H. Shamir and Howard 
(1968) solved these equations using the Newton-Raphson method. After the 
nodal heads are computed, they can be substituted in Eq. 5-15 to compute the 
pipe flow rates. 

5.2.3.4 Pipe Equations 

The previous methods solve for the pipe flows, Q, or nodal heads, H, in a 
nonlinear solution scheme then use conservation of energy to determine the 
other set of unknowns. Haman and Brameller (1972) and Todini and Pilati 
(1987) devised a method to solve for Q and H simultaneously. They wrote the 
node equations (Eq. 5-11) with respect to the pipe flows and Eq. 5-14 for each 
pipe including both the pipe flows and the nodal heads. Although the number of 
equations (nnode + npipe) is larger than the other methods, the solution times 
and the convergence to the true solution are similar or better. In addition, the 
algorithm does not require defining loops that may be a time consuming task. 

5.3   SOLUTION ALGORITHMS FOR STEADY FLOW 

5.3.1   Solution of the Loop Equations 

5.3.1.1 Hardy Cross Method (Single Loop Adjustment Algorithm) 

The oldest and probably best known solution method for pipe networks is the 
Hardy Cross method that is found in most textbooks and taught in 
undergraduate hydraulics courses (Cross 1936). As noted in Section 5.2.3.1, the 
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method solves the energy equations for loops and pseudo-loops for a loop flow 
correction. Although a set of loop equations must be solved for the system, this 
algorithm was developed for hand calculations and solves one loop at a time. 
One closed loop equation is written (Eq. 5-12) for each loop. For closed loops 
that contain only pipes, the loop equation for loop LP by Eq. 5-13 is:  
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In this equation, the sign of Ql is applied to the term and the absolute value 
is raised to the exponent n. The sign is based on the flow direction relative to 
loop LP and discussed in more detail below. 

Since the flow rates that satisfy the set of loop equations are not known, a 
loop equation is expanded to a Taylor series truncated at the first order term or: 
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where Q(m-1) is the estimate of the flow at iteration m-1 and ∂ FLP / ∂ Ql is the 
derivative of the LPth loop equation with respect to the lth pipe flow, Ql. 
Defining ∆Q = Q(m) – Q(m-1) and substituting in Eq. 5-17:  
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The development of Eq. 5-18 is equivalent to the Newton-Raphson method 
except that ∆Q is computed rather than the updated flow Q(m). In addition, the 
Hardy Cross method simplifies the determination of the correction term by 
considering each loop independently rather than all loops simultaneously. Since 
all pipes in a loop will have the same correction, a single ∆Q is determined by 
Eq. 5-18. The numerator of Eq. 5-18 is computed from Eq. 5-16 with 
appropriate signs for flow directions. Standard convention is to define 
clockwise flow in each loop as positive. If F(Q) equals zero, the equation has 
been satisfied.  

The denominator is the sum of the absolute values of the derivative terms 
of Eq. 5-16 evaluated at Q(m-1). The individual gradient terms are: 
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For loop LP, Eq. 5-18 is then: 
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  (5-20) 

where the denominator becomes an absolute value because the signs of hL and 
Ql are the same. 

A similar equation can be written for each loop in the network. Since a 
first-order Taylor series is used to approximate a nonlinear equation, a single 
set of corrections is likely insufficient to converge to the true flows and the 
process must be repeated until all loops equations are satisfied within a desired 
tolerance. 

In summary, the Hardy Cross algorithm consists of the following steps. 
 
1) Define loops and set m = 0. Assume an initial set of pipe flows that 

satisfy conservation of mass at all nodes. Note that the loop 
corrections will maintain conservation of mass after this initial step. 

2) Update m = m + 1 
3) Compute the sum of head losses around a loop by solving Eq. 5-16 

for each loop substituting Q(m-1) for Q. This sum is the numerator of 
Eq. 5-20. 

4) Compute the denominator of Eq. 5-20 for each loop. Note that the 
denominator is the sum of the absolute values of n hL /Q over the set 
of pipes in the loop, lloop.  

5) Compute the loop correction, ∆QLP, by solving Eq. 5-20. 
6) Repeat steps 3-5 for each loop. 
7) Apply correction factors to all l pipes or:  

∑
∈

− ∆±=
)(

)1()(

lncplp
lp

m
l

m
l QQQ   

     where ncp(l) is the set of one or two loops in the network that contain 
pipe l. 

8) Check if all ∆Q’s are less than specified small tolerance. If so, stop. 
If not, go to step 2. 
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 The equations above account for the flow direction change without 
modification. In the numerator, the appropriate sign is taken from the flow rate 
as defined by the initially assumed flow rate and relative to the loop being 
considered. Absolute values are always taken in the denominator. A negative 
flow relative to the initially defined loops denotes that the flow is in the 
opposite direction of the original assumption with the computed magnitude. 

In step 7, the corrections are applied with similar logic. A positive 
correction implies a larger flow in the clockwise direction. Thus, ∆Q is added 
to pipes with assumed positive flow directions. If the assumed direction is 
counter-clockwise, the correction is subtracted from the Q(m-1). This convention 
is also applied if the actual flow directions is opposite of the assumed direction. 

In the approach described above, the loop corrections are applied after all 
corrections have been computed. It is possible to be more sophisticated by, for 
example, applying the corrections as the method proceeds through an iteration. 
However, although the Hardy Cross method is acceptable for hand calculation, 
it is not efficient for or applied to large systems so these improvements are not 
considered here. 

Example 5.4 

Problem:  Determine the flow rates in the pipes in the three loop network in 
Figure E5-4a and the nodal heads at all nodes using the Hardy Cross method 
and the Hazen-Williams equation. With the flow rates, compute the energy at 
node 5. 

Solution:  Step 1: m = 0. Following the procedure outlined above, the first step 
is to define a set of loops. Four loops are identified in Figure E5-4b. The head 
loss around the closed loops I, II and III is zero since the loops begin and end at 
the same node and the node has a unique total head (as in the parallel pipe 
analysis in Section 5.1.2). A pseudo-loop is defined between the two reservoirs 
and the difference in energy between the locations is 200 ft. The positive 
direction is defined in the clockwise direction for all loops. 

Assuming the flow directions shown on Figure E5-4b, the loop equations 
are shown below. For Loop P (the pseudo-loop) starting at reservoir 1 and 
continuing along a path to reservoir 2: 
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2002000
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We have added the sign convention relative to the loop and the initially 
assumed flow directions. Pipe 1 is assumed to flow in the counter-clockwise 
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direction relative to loop P and its term is given a negative sign. A positive flow 
in pipe 1 denotes that the flow direction is from the tank to node 1. If flow is 
assumed incorrectly and flow is actually from node 1 toward the tank in pipe 1, 
the sign is switched to a negative. In this case, pipe 1’s head loss term in Loop 
P will be positive (the initially assumed negative sign times the negative sign 
from the flow term).  

I 

II 

III 

P 

1 2 

6 7 

5 4 

3 

1 2 

3 4 

5 6 

7 

8 

9 

10 

P

 
Figure E5-4b: Example hydraulic analysis pipe network with defined loops 
and assumed flow directions. 

Pipe 9 is assumed to flow from node 3 to node 2 that is positive relative to 
loop P and its head loss term is positive. The direction of flow through the 
pump is also clockwise but the pump provides a head gain so it is given a 
negative sign. No sign convention is applied to the pump since it can only be 
non-negative, that is, a positive flow or zero. 

For loop III beginning and ending at node 3: 
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Again, positive signs are given for flow moving clockwise relative to the 
loop. Thus, pipe 9 is positive relative to loop P but negative in loop III. 

For loop II (beginning and ending at node 6): 
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Finally, loop I begins and ends at node 1: 
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Any pipe that appears in two loops has a negative sign in one loop equation 
and a positive in the other equation. This convention must also be considered 
when updating flows. 

The K for each pipe is given in Table E5-4a using: 

 85.187.473.4
HWCD

LK =  

with Q in cfs, D and L in ft. Table E5-4a also gives a set of pipe flow rates that 
satisfy conservation of mass. Initial pipe flows were determined for the 
sequence of nodes 1, 3, 2, 6, 7, and 5. The last node is then checked to confirm 
system mass balance. Since the total network demand is 28 cfs, the flows in 
pipe 1 and the pump must equal 28 cfs. To begin, the flow in pipe 1 is assumed 
to be 20 cfs. At a given node, all but one outflow pipe flows are assumed and 
the last value is computed by the node’s mass balance equation.  

Step 2: Set m = m + 1 = 1 

Table E5-4a: Initial data and K coefficients for Example 5.4. 
Pipe 1 2 3 4 5 

Unode Tank 1 1 2 6 
Dnode 1 2 6 7 5 

K 0.00584 0.0645 0.0645 0.349 0.233 
Q(0) 20 9 11 6 5.5 

hL 1.49 3.76 5.45 9.60 5.45 
nhL/Q 0.138 0.774 0.918 2.96 1.83 

 

Pipe 6 7 8 9 10 P 
Unode 7 6 5 3 3 Tank 
Dnode 4 7 4 2 4 3 

K 1.42 55.2 13.6 82.8 82.8  
Q(0) 3.5 0.5 0.5 1 1 8 

hL 14.37 15.31 3.77 82.79 82.79 180 
nhL/Q 7.60 56.7 14.0 153.33 153.33 15.0 

* Unode and Dnode are the initially assumed upstream and downstream nodes, respectively. 

Step 3: Compute sum of the head losses around each loop using the values 
listed in Table E5-4a for the assumed flow conditions and the loop equations 
defined in Step 1. The sums are listed in Table E5-4b. Using the initial guess, 
the residual of loop P’s energy equation, Fp, is: 
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Step 4: The computed sums of absolute values of the derivatives are also 
listed in Table E5-4b. For loop P: 
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Note that last term is the derivative of the pump equation with respect to Q. 
Step 5 and 6: Compute the correction for each loop using Eq. 5-20. 
For loop P: 

 576.0
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Table E5-4b gives the values for all loops. 

Table E5-4b: Loop corrections for iteration 1 of Hardy Cross 
method example. 

Loop P I II III 

Σ hL 97.55 -7.40 20.46 -23.97 
Σ n | hL/Q| 169.25 61.37 80.12 317.23 

∆Ql -0.576 0.121 -0.255 0.076 
 
Step 7:  The loop corrections are applied to each pipe as follows. For pipe 

1, the pseudo-loop’s correction is applied with a negative sign since the 
correction is in the clockwise direction and pipe 1 is assumed to flow in the 
counter-clockwise direction or: 

 576.20)576.0(20)0(
1

)1(
1 =−−=∆−= PQQQ  

Corrections for loops P and I are applied to pipe 2 since it is located in both 
loops. Loop P’s correction is negative since pipe 2 flow is assumed to flow in 
the counter-clockwise direction for that loop (negative) and the loop I 
correction is positive since pipe 2’s flow is clockwise relative to that loop. 
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Similarly for the other pipes: 
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Nodal flow balances continue to be conserved and can be verified. It is 
worthwhile to compute those balances to check if a computational or sign error 
has been introduced. In this case, pipe 10 is rounded down to preserve the mass 
balance for node 10. 

Step 8:  The maximum correction is 0.576 cfs so iterations continue. Go to 
step 2. 

To provide some insight into the sign convention, consider pipe 1 during 
the first iteration. If we had assumed that pipe 1’s flow was from node 1 to the 
tank and the flow was exiting the tank, the sign on Q1 would be negative (i.e., 
Q1 = -20). In calculating the correction, the denominator of ∆QP would be the 
same since the absolute value of the individual terms are summed. The 
resulting numerator would also be the same because a different sign would be 
applied to the pipe 1 term or: 
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  Pipe 1 would be positive since the assumed flow from node 1 to the tank is a 
clockwise flow relative to loop P. However, the actual flow would carry a 
negative sign (shown in parenthesis) since flow was opposite of the assumed 
direction. Thus, the numerator and correction term would not change. 

Based on the flow direction assumption, the flow is in the positive 
(clockwise) direction for loop P so the correction would be added to Q1 or:  



 

5-20       CHAPTER FIVE 

 

 576.20)576.0(20)0(
1

)1(
1 −=−+−=∆+= PQQQ  

Thus, the magnitude for the next iteration would be same as above and the 
negative sign would denote that the flow was in the opposite direction of the 
assumption (node 1 to tank). 

A number of iterations are required for the Hardy Cross method to 
converge to the solution. Flow values and the loop corrections are given in 
Table E5-4c and d, respectively, for 11 additional iterations until the largest 
loop correction is less than 0.02 cfs. Values in the tables are computed without 
rounding in the spreadsheet that performed the calculations. 

The total head at node 5 can be computed by beginning a path at either 
reservoir 1 or 2. Starting at reservoir 1 with a head of 200 ft, a path to node 5 is 
pipes 1, 3, and 5. Signs on the energy loss terms are based on flow directions in 
the path. Since flow goes from the tank to node 1, energy is lost as the water 
travels through pipe 1. Similarly, energy is lost as flow moves from node 1 to 6 
in pipe 3 and from node 6 to 5 in pipe 5. The overall energy equation is then:  
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Table E5-4c: Pipe flow values for Hardy Cross iterations. 
 Pipe Flow (cfs) 

m 1 2 3 4 5 6 7 8 9 10 P 
2 20.80 9.58 11.22 5.96 5.74 3.45 0.49 0.74 0.38 0.82 7.20 
3 21.01 9.89 11.11 6.16 5.91 3.37 0.20 0.91 0.27 0.72 6.99 
4 21.12 9.80 11.31 6.05 5.89 3.47 0.43 0.89 0.24 0.64 6.88 
5 21.19 9.93 11.26 6.14 5.99 3.41 0.27 0.99 0.21 0.60 6.81 
6 21.23 9.86 11.36 6.06 5.97 3.45 0.39 0.97 0.20 0.57 6.78 
7 21.25 9.91 11.34 6.10 6.03 3.41 0.31 1.03 0.19 0.56 6.75 
8 21.26 9.86 11.39 6.05 6.02 3.43 0.38 1.02 0.19 0.56 6.75 
9 21.26 9.88 11.38 6.07 6.05 3.40 0.33 1.05 0.19 0.55 6.74 
10 21.27 9.86 11.41 6.04 6.04 3.41 0.37 1.04 0.19 0.55 6.74 
11 21.27 9.87 11.40 6.05 6.06 3.40 0.35 1.06 0.19 0.55 6.73 

 
Node 5’s head can also be computed starting at reservoir 2. In this path, 

energy is gained as water is lifted by the pump and lost as water moves from 
node 3 to 4 in pipe 10. The energy at node 5 is greater than at node 4 since 
water is flowing from node 5 to 4 in pipe 8. The head loss in pipe 8 therefore 
must be added in the path equation from reservoir 2 to node 5 or: 
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Slight differences result from the two paths since the Hardy Cross iterations 
were stopped before full convergence. 

Table E5-4d: Loop corrections for Hardy Cross iterations. 
Iteration Loop P Loop I Loop II Loop III 

2 -0.227 -0.342 0.020 -0.260 
3 -0.203 0.108 -0.177 -0.093 
4 -0.111 -0.200 0.026 -0.081 
5 -0.073 0.055 -0.104 -0.040 
6 -0.035 -0.106 0.019 -0.027 
7 -0.022 0.026 -0.056 -0.011 
8 -0.008 -0.054 0.010 -0.009 
9 -0.007 0.012 -0.029 -0.003 
10 -0.002 -0.027 0.006 -0.003 
11 -0.003 0.006 -0.015 -0.001 

5.3.1.2 Simultaneous Loop Equation Solution (Simultaneous Loop 
Flow Adjustment Algorithm) 

In the Hardy Cross method, each loop correction is determined independently 
of the other loops. As seen in Figure E5-4b, several loops may have common 
pipes so corrections to those loops will impact energy losses around more than 
one loop. Epp and Fowler (1970) developed a more efficient approach by 
simultaneously computing corrections for all loops. As in the Hardy Cross 
method, an initial solution that satisfies continuity at all nodes is required. For a 
simultaneous loop equation solution, Eq. 5-16 for loop LP becomes: 
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where ncp(l) is the set of one or two loops in the network that contain pipe l 
(e.g., loops P and I for pipe 2 in Example 5.4). The sign convention on the pipe 
flow relative to the loop is the same as for the Hardy Cross method. The 
Newton-Raphson method is then used to solve Eq. 5-21 for the ∆Q’s. A system 
of linear equations must now be iteratively solved rather than the single 
equations of the Hardy Cross method. 

A first order Taylor series approximation of Eq. 5-21 for loop LP is: 
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where ncl(LP) is the set of loops that have a common pipe with loop LP (e.g., 
loops I and III for loop II in Example 5.4). In vector form for all loops 
simultaneously Eq. 5-22 can be written as: 

 JL  ∆Q = -F(Q(m-1))  (5-23) 

where Q(m-1) is the vector of npipe pipe flow, ∆Q is the [1 x (nloop+nploop)] 
vector of loop flow corrections and F(Q(m-1)) is the [1 x (nloop+nploop)] vector 
of residuals of the loop conservation of energy equations (Eq. 5-14) evaluated 
at Q(m-1). Residuals are the values of the right hand side at the trial values of Q. 
The objective is for all of those terms to equal zero such that all loop equations 
are satisfied. 

JL equals ∂ F/ ∂ (∆Q) and is the Jacobian matrix of first derivatives of the 
loop equations evaluated at Q(m-1). JL is square [(nloop+nploop) x 
(nloop+nploop)], symmetric and positive definite. The rows in JL correspond to 
the loop equations and the columns are related to the loop corrections. 

The LPth diagonal term of the Jacobian is the sum of the first derivatives of 
the lloop pipes in loop LP or the summation in the first term in Eq. 5-22. This 
term is also equivalent to the denominator of Eq. 5-20. 

The difference between the simultaneous loop method and the Hardy Cross 
method is that some of the off-diagonal terms are non-zero. The Jacobian term 
in row LP (loop LP’s conservation of energy equation) and column lp (common 
loop) corresponds to the gradient term for the pipe that is common to loops LP 
and lp. These terms are equal to zero if the loops do not have common pipes. If 
the loops have common pipes, these terms are the negative of the sum of the 
absolute values of QhnQF L /−=∂∂−  for pipes that appear in loop LP and 
lp. The negative sign results because the flow direction in loop lp is opposite to 
loop LP. An example of forming Eq. 5-23 is given in Example 5.5. 

Once the matrices are formed, Eq. 5-23 can be solved by any linear 
equation solver for ∆Q. The pipe flows are updated by the loop corrections as 
in the Hardy Cross method (i.e., Q(m) = Q(m-1) +/- ∆Q). The solution algorithm is 
the same as the Hardy Cross method except steps 5 and 6 are reduced to a 
single step and all corrections are computed simultaneously. Since the 
equations are nonlinear, several iterations may be necessary to converge to the 
solution, like the Hardy Cross method. To end the algorithm, one of several 
stopping criteria can be applied: (1) number of iterations allowed or (2) the 
magnitude of the change in loop flow rates, ∆Q. 

As in the Hardy Cross method, if a pipe’s flow direction changes from the 
assumed value, the signs for that pipe head loss terms are switched for all loops 
containing the pipe during the next iteration in the loop equations using the sign 
convention noted above. The direction change does not alter the coefficient 
matrix, JL, or the signs on the individual terms. The diagonal terms are the sum 
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of the absolute values of the gradients and the off-diagonal terms are always 
negative. 

Example 5.5 

Problem:  Determine the flow rates in the pipes in the three loop network in 
Example 5.4 and the nodal heads at all nodes using the simultaneous loop 
method and the Hazen-Williams equation. 

Solution:  The Example 5.4 starting point is used again in this example. 
Equation 5-23 is solved to provide the simultaneous loop corrections. For the 
example network, the four loop equations were developed in Example 5.4 for 
loops P, I, II, and III as: 
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The coefficient matrix terms are the gradients of the loop equations with 
respect to each loop flow correction or: 
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The diagonal terms are identical to the denominator of the Hardy Cross 
correction:  
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where lloop is the number of pipes in loop LP. From the values in Table E5-4a 
and b, a symmetric coefficient matrix can be filled. The rows 1-4 correspond to 
loops P, I, II, and III. As shows in step 4 of Example 5.4: 
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The off-diagonal terms are the gradients for pipes that appear in loop LP 
and another loop, lp or: 
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where ncpipe (LP,lp) is the set of pipes that are common to loops LP and lp 
(e.g., pipe 2 for loops I and P). The value in row 1 (corresponding to loop 
equation P) and column 2 (corresponding to loop I) is the gradient of the only 
common pipe 2 with respect to the flow correction in loop I or: 
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As noted above, this gradient is also )(/ PI QF ∆∂∂ . 
The remaining diagonal terms are given in Table E5-4b and the off-

diagonals correspond to pipes common to two loops (Table E5-4a). Pipe 2 
appears in loops P and I, pipe 9 appears in P and II, pipe 4 is located in I and II 
and pipe 6 is in loops II and III. No pipe is common to loops P and II so the 
coefficients are zero in those locations (column 3-row 1 and column 1-row 3). 
The JL matrix is then: 
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The right hand side of the equation is the computed value of the equation 
with the current flow estimates that were computed for the Hardy Cross method 
and listed in the second row of Table E5-4b. 

 F(Q(0))T = [97.55. -7.40, 20.46, -23.97]  
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For example, row 3 corresponds to loop II: 
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The system of linear equations, JL ∆Q = -F, is solved for the unknown flow 
corrections. 
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Resulting in: 

 ∆QT = [ ∆QP, ∆QI, ∆QII, ∆QIII ]T = [-0.942, -0.525, -0.665, -0.404]T  

The corrections are applied using the equations shown in Example 5.4, step 
7. For example, the flow rates in pipes 1 and 2 become: 

416.9525.0942.09)0(
2

)1(
2 =)−(+)−(−=∆+∆−= IP QQQQ  

The loop flow corrections are still large so additional iterations are needed 
to converge to the solution. Since flow corrections are made on all loops 
simultaneously, this method converges in four iterations (to an absolute change 
in Q of 0.001 cfs) compared to 11 for the Hardy Cross method (with a larger 
tolerance). The results are summarized in Tables E5-5a and b.  

Since the flow rates from the Hardy Cross and simultaneous loop methods 
are the same the nodal heads will be the same for both results. 

5.3.2  Solution of the Node-Loop Equations (Flow Adjustment Algorithm) 

Using the loop equations to represent conservation of energy, Wood and 
Charles (1972) developed the linear theory (Flow Adjustment) method by 
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coupling the loop equations with the node equations. Wood and Rayes (1981) 
later showed that a modified linear theory (presented here) exhibits superior 
convergence characteristics compared with the original linear theory method. 

Table E5-5a: Pipe flow values for the simultaneous loop  
correction method. 

Iter. Pipe Flow (cfs) 

m 1 2 3 4 5 6 7 8 9 10 P 
2 20.94 9.42 11.53 5.88 6.17 3.24 0.36 1.17 0.46 0.60 7.06 
3 21.21 9.79 11.43 6.04 6.07 3.39 0.36 1.07 0.25 0.54 6.79 
4 21.27 9.84 11.43 6.03 6.07 3.39 0.36 1.07 0.19 0.54 6.73 
5 21.27 9.85 11.43 6.03 6.07 3.39 0.36 1.07 0.19 0.54 6.73 

Table E5-5b: Loop corrections for simultaneous loop  
correction iterations. 

Iteration Loop P Loop I Loop II Loop III 
1 -0.942 -0.525 0.053 -0.404 
2 -0.271 0.100 0.097 0.060 
3 -0.053 0.001 0.002 0.004 
4 -0.005 0. 0. 0.001 

 

In the modified method, rather than solve for loop corrections and be 
required to provide a feasible initial solution, conservation of energy around a 
loop (Eq. 5-16) is written directly in terms of the pipe flow rates or for a closed 
loop: 

 ⎣ ⎦ 0)( == ∑
∈lloopl

n
ll QKQF  (5-24) 

However, the number of unknown pipe flows is equal to the number of 
pipes (np) but only nloop + nploop equations of the form of Eq. 5-16 are 
available. Therefore, these equations are coupled with the nodal conservation of 
mass equations (Eq. 5-11):  

 qQQ
outin Jl

l
Jl

l =− ∑∑
∈∈

 

With conservation of mass, the number of equations is nnode node 
equations plus nloop closed loop equations and nploop pseudo-loop equations 
or a total of np equations written in terms of the np unknown pipe flow rates.  

These nonlinear equations are also solved iteratively by applying the 
Newton-Raphson method. Taking a Taylor series expansion of a loop equation 
results in: 
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where F is the loop equation (Eq. 5-16) and Q(m-1) are the known pipe flows for 
the previous iteration and Q(m) is the unknown flow rates at iteration m. This 
equation can be rearranged with the known terms on the right hand side as: 
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 (5-25) 

A similar relationship can be written for conservation of mass. It is linear 
with respect to the unknowns, Q(m) since the gradient terms and the functions F 
can be evaluated at Q(m-1). Eq. 5-25 can be written in matrix form as: 

 JNL Q(m) = FNL = - F + JNL Q(m-1) (5-26) 

where JNL is the Jacobian of the node-loop equations and FNL is the vector of 
functions of known values from the previous iteration. JNL and FNL vary 
between iterations as Q moves toward the solution. F is the vector of residuals 
computed by substituting Q(m-1) in the node-loop equations. 

The rows in JNL correspond to the conservation of mass and energy 
equations and the columns relate to the unknown pipe flow rates. For the 
conservation of mass equation for node i, the terms in the corresponding row in 
JNL will be 0 if the pipe is not connected to node i, +1 if the pipe is carrying 
flow to the node (i.e., the pipe is in the set Jin,i, e.g., pipes 6 and 8 for node 4 in 
Example 5.4) and –1 if the pipe is in set Jout,i and carries water from node i (e.g., 
pipes 2 and 3 for node 1 in Ex. 5.4). For the conservation of energy equations, 
the gradient terms are the same as the Hardy Cross terms (Eq. 5-21) (i.e., |n 
hL/Q| = |nKQ n-1|), if the pipe appears in the loop, and zero, otherwise. The full 
term becomes more complex when a pump appears in the loop (Example 5.6). 

JNL and FNL are evaluated at Q(m-1) and Eqs. 5-26 are solved for the new 
pipe flows, Q(m). This iterative process continues until a defined stopping 
criteria is met, such as when the absolute or percentage difference between two 
iterations flows, Q(m) and Q(m-1), is less than a tolerance for all pipes or a 
limiting number iterations are completed. Since conservation of mass is solved 
as part of Eq. 5-26, the initial solution does not have to satisfy this condition.  

Example 5.6 

Problem:  Determine the flow rates in the pipes in the three loop network in 
Example 5.4 and the nodal heads at all nodes using the modified linear theory 
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method and the Hazen-Williams equation. Use the same starting point as 
Example 5.4. 

Solution:  The node-loop equations consist of the node equations written with 
respect to the pipe flow (Eq. 5-11) and the loop equations (Eq. 5-16). 
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These 11 equations can be solved for the 10 pipe flows and 1 pump flow. 
An arbitrary positive flow direction has been assigned to each pipe that is 
consistently applied in the conservation of mass and energy equations. For 
example, pipe 2 is positive when water flow from node 1 to node 2. Thus, it is 
an outflow from node 1 and is given a negative sign in that conservation of 
mass equation. It is an inflow to node 2 and given a positive sign in that node’s 
mass balance equation. In addition, choosing clockwise as positive in all 
conservation of energy equations, flow from node 1 to 2 is counterclockwise 
(negative) in loop P and clockwise (positive) in loop I. Using our convention 
for taking the sign of the flow rate, flows that are opposite of the assumed 
direction become negative and change the signs on the terms. For example, if 
Q2 became –2 with n = 1.85 then:  

⎣ ⎦ .61.32)( 85.185.1
2

85.1
2 −=−=−= QQ  

Thus, negative flows are possible and distinguish the proper magnitude and that 
the assumed direction was incorrect. 
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As noted above, the columns in the coefficient matrix, JNL, for these 
equations correspond to pipes and the rows correspond to the nodes plus loop 
equations. The first seven (nnode) rows of the right hand side vector are nodal 
demands (Eq. 5-11). For node 6, the non-zero Jacobian terms correspond to 
pipes 3, 5 and 7. For that node, pipe 3 is in inflow pipe and 5 and 7 outflow 
pipes so the gradients for these pipes are:  
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where FN,6 denotes the node equation for node 6. The sixth row in JNL is: 

 [ ]000010101006row −−=NL,J  

The loop equations are linearized by a Taylor series expansion and the 
terms in the gradient matrix, lLP QF ∂∂ , are the derivatives of loop equation for 
loop LP with respect to flow in pipe l or n hL,l /Ql for the pipes in the loop and 
zero otherwise. The sign for the term relates if the assumed flow is clockwise 
(+) or counter-clockwise (-) relative to the loop. Therefore, values of the last 
four rows of JNL corresponding to the loop equations come directly from the 
last row of Table E5-4a. Based on the assumed flow directions, the signs are: 
(Loop P = [-1, -2, 9, -Pump]), (Loop I = [2, -3, 4, -7]), (Loop II = [-5, 6, 7, -8]), 
and (Loop III  = [-4, -6, -9, 10]). 

For the initial point used in the Hardy Cross method, JNL is: 
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The right hand side of Eq. 5-24 for the node equations is equal to the nodal 
demand, q, demonstrating that the linearization of the node results does not 
alter the equation. For node 6 with the assumed flows the RHS is:  
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The reader can confirm that an unbalanced assumption of pipe flows gives the 
same results (e.g., Q3 = +10, Q5 = -5.5 and Q7 = -0.5). 

The last four rows are more than the deviations in the energy balances (i.e., 
-F(Q)) as in the simultaneous loop solution. The additional terms are the 
gradients of the loop equations (the last four rows of JNL) times the present flow 
estimates (Q(m-1)). For loop I that contains only pipes, the right hand side is: 
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The resulting relationship is different for loop P that contains a pump. 
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The full loop equation is included in the first term including the energy 
difference for pseudo-loops. The gradient of the energy difference is zero so it 
does not appear in the second term. 

For the first iteration, the resulting right hand side is: 
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The system of linear equations (JNL Q(1) = FNL, Eq. 5-24) are then solved 
for the unknown Q(1): 

]06.7,600.0,46.0,17.1,36.0,24.3,17.6,88.5,53.11,42.9,42.9,94.20[)1( =TQ  

Updating JNL and the RHS values, the method converges to the solution in 3 
iterations as shown in Table E5-6. 

Table E5-6: Pipe flows for 4 iterations of the modified linear theory 
method for the pipe equations. 

 Pipe 

m 1 2 3 4 5 6 7 8 9 10 P 
0 20 9 11 6 5.5 3.5 0.5 0.5 1 1 8 
1 20.94 9.42 11.53 5.88 6.17 3.24 0.36 1.17 0.46 0.60 7.06 
2 21.21 9.79 11.43 6.04 6.07 3.39 0.36 1.07 0.25 0.54 6.79 
3 21.27 9.84 11.43 6.03 6.07 3.39 0.36 1.07 0.19 0.54 6.73 
4 21.27 9.84 11.43 6.03 6.07 3.39 0.36 1.07 0.19 0.54 6.73 

5.3.3 Solution of the Node Equations (Simultaneous Node Adjustment 
Algorithm) 

The pipe head loss equation for pipe l that connects nodes i and j: 

 ⎣ ⎦ n
llijlL QKHHh =−=,  (5-27) 

can be transformed to nodal head equation as: 
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Shamir and Howard (1968) solved used this transformation to form nnode 
node equations for the nodal heads using the Newton-Raphson method. 
Substituting Eq. 5-28 in Eq. 5-24 for a general node i gives: 
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where the summation is over the pipes entering or leaving the node. In the head 
difference, the node for which the mass balance is written is always the second 
term. The sign notation, [ ]ij HH − , provides the flow direction. If Hi is greater 
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than Hj, flow is from node i towards j (an outflow) and the sign is negative. 
When Hj exceeds Hi, the sign is positive and flow is supplied to node i from 
node j (an inflow). 

For node i, application of the Newton-Raphson method yields: 
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where H(m-1) are the nodal heads for the previous and present iterations and 
ncnode(i) is the set of nodes that are connected by pipes to node i and node i 
(e.g., nodes 2, 4, 6, and 7 for node 7). In matrix form for all equations and 
nodes: 

 JN ∆H = - FN  (5-31) 

where JN is the Jacobian matrix of the node equations with respect to the 
changes in nodal heads and FN is the residuals of the node equations. Both JN 

and FN are evaluated at ∆H equal to zero or the present iteration’s head 
estimates. It should be noted that the square Jacobian matrix (nnode x nnode ) 
is symmetric and positive definite. 

For pipe l that connects nodes i and j, the Jacobian terms gradients for the 
conservation of mass at node i are:  
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(5-32b) 

Regardless of the flow direction, the gradient sign for the flow balance at 
node i are all positive for Hi terms while the terms for the connecting nodes j 
are all negative.   

After Eq. 5-31 are solved for ∆H, the heads are updated by subtracting the 
nodal corrections or: 
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The process is completed iteratively until the changes in nodal heads for all 
nodes are less than a tolerance or a desired number of iterations are completed.  

The overall process is: 
1) Initialize m = 0 and define starting set of nodal heads, H(0). 
2) Set m = m + 1 
3) Compute nodal balances using Eq. 5-29 and gradients using Eq. 5-32  
4) Solve the system of equations 5-31 for ∆H  
5) Update nodal heads using Eq. 5-33 
6) Check stopping criteria. If satisfied, stop. If not satisfied, go to step 2. 

Example 5.7 

Problem:  Determine the nodal heads at all nodes in the three loop network in 
Example 5.4 using the modified linear theory method and the Hazen-Williams 
equation. Assume an initial head vector,  

H(0),T = [198, 193, 195, 175, 188, 190, 184] 

Compute the flow rate in pipe 4. 

Solution:  Given the initial head distribution (step 1), we can now update the 
values at m=1 (step 2). 

Step 3: As listed in Example 5.6, the nodal mass balance equations are: 
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For the node equation solution, these seven equations are written in terms 
of the seven nodal heads as: 
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Since this form is nonlinear, all nnode equations are linearized about the nnode 
corrections.  

To set up the linear equations, the pipe flows are computed using the 
previously computed K’s (Table E5-4a) and the initial nodal heads and are 
listed in Table E5-7a. For pipe 1 and node 1: 
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The gradient of the flow rate in pipe 1 with respect to a change in head at 
node one is given by Eq. 5-32b: 
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The gradient term for each pipe is listed in the last row of Table E5-7a.  

Table E5-7a: Pipe flows computed with the defined initial nodal heads. 
Pipe 1 2 3 4 5 

K 0.00584 0.0645 0.0645 0.349 0.233 
(Hi - Hj) 2 5 8 9 2 

Q(0) 23.368 10.474 13.50 5.785 3.20 
Q/n (Hi  - Hj) 6.316 1.131 0.911 0.347 0.863 
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Table E5-7a (cont.): Pipe flows computed with the defined initial nodal 
heads. 

Pipe 6 7 8 9 10 
K 1.416 55.20 13.60 82.79 82.79 

(Hi - Hj) 9 6 13 2 20 
Q(0) 2.715 0.302 0.976 0.134 0.464 

Q/n (Hi  - Hj) 0.163 0.027 0.041 0.036 0.013 
 

For the first iteration, the nnode x nnode coefficient matrix, JN, is: 
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The diagonal terms are the sum of the gradients for that node. For node 2,  
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where the individual terms were taken from Table E5-7a. The off-diagonal 
terms are equal to the gradients of the node equation with respect to the 
adjacent node and are always negative. 

For example, the change in node 2’s mass balance due to a change in head 
at node 3 is: 
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This term is placed in row two for mass balance at node 2-column 3 for 
connecting node 3. A change in the head at node 2 causes an equal change in 
the mass balance at node 3. So the term also appears in row (node equation) 
three – column (connecting node) two.   

The right hand side of the system of equations is FN, the residuals of the 
nodal balance equations. They are computed by substituting the summed head 
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values in the mass balance equations listed above. For example for node 6 at 
iteration 0 the residual is: 
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Their values are shown in first row of Table E5-7b. The signs of these 
terms are then changed in the solution of Eq. 5-31. The set of equations 5-31 is 
then: 
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Step 4: The first iteration solution for ∆HT = [-0.333, -0.921, -2.520, 3.684, 
0.782, -2.575, -0.301].   

Step 5:  The updated nodal heads are listed in Table E5-7c where H (1) = H(0) 
- ∆H.  For node 1: 

 333.198)333.0(0.1981
(0)
1

(1)
1 =−−=∆−= HHH  

Step 6: A large change in nodal heads was applied so return to step 2 
(m=2). The nodal mass balance equations are evaluated again and mass balance 



 

NETWORK HYDRAULICS     5-37 

 

has not been achieved (Table E5-7b). The nodal heads are updated two more 
times and the values converge as seen in Table E5-7c. 

After the flows have converged after iteration 3, the flow rate in pipe 4 can 
be computed by: 
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Table E5-7b: Residuals of the nodal balance equations, FN, computed using 
the nodal heads at the beginning of iteration. To solve the set of equations 

these residuals are multiplied by –1 in Equation 5-31. 

 Node 

Iteration 1 2 3 4 5 6 7 

0 -0.606 0.822 0.330 -0.845 -2.779 5.002 0.372 
1 0.085 -0.024 0.010 -0.0.65 -0.646 0.503 0.047 
2 -0.001 0 0 -0.001 -0.028 0.027 0.001 
3 0 0 0 0 0 0 0 

 

Table E5-7c: Nodal heads for the three iterations.  

 Node 

Iteration 1 2 3 4 5 6 7 

0 198 193 195 175 188 190 184 
1 198.333 193.921 197.52 171.316 187.218 192.575 184.301 
2 198.320 193.864 197.523 170.603 185.948 192.445 184.154 
3 198.320 193.863 197.522 170.584 185.860 192.446 184.145 

5.3.4 Solution of the Pipe Equations  

In the loop equation formulation, head losses were balanced around a series of 
pipes between points with a known difference in energy. Hamam and Brameller 
(1972) for gas networks and Todini and Pilati (1987) for water networks wrote 
conservation of energy for each pipe (Eq. 5-14) resulting in a set of npipe 
equations with the npipe pipe flows and the nnode nodal heads as unknown. 
They coupled these equations with the node equations written in terms of the 
pipe flows (Eq. 5-11) to form a set of npipe plus nnode equations for an equal 
number of unknowns. The method is also known as the hybrid or gradient 
approach. For additional background on the method, see Osiadacz (1991). 
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For the four-pipe network shown in Figure 5-3, the pipe equations include 
one equation for each node and each pipe. With the assumed set of pipe flow 
directions, the node equations are the conservation of mass relationships or:  

FQ2:  + Q1 – Q2 – Q3 – q2 = 0  {node 2} 

FQ3:  + Q2 – Q4 – q3 = 0  {node 3} 

FQ4:  + Q3 + Q4 – q4 = 0  {node 4} 

The pipe equations are written for each pipe with the nodal head and pipe 
flow on the left-hand side of the equation. The friction loss equation is given a 
positive sign, so the upstream source node head has a negative sign and the 
downstream head takes a positive sign. The equations for pipes 1 to 4 in the 
four-pipe network are: 

 FP,1: K1 ⎣ ⎦ nQ1  + H2 - H1 = 0   {pipe 1} 

 FP,2: K2 ⎣ ⎦ nQ2  - H2 + H3 = 0  {pipe 2} 

 FP,3: K3 ⎣ ⎦ nQ3  - H2 + H4  = 0  {pipe 3} 

 FP,4: K4 ⎣ ⎦ nQ4  - H3 + H4 = 0  {pipe 4} 

where H1 and all K’s are known.  

3

2

4

H1 = 50

(1)

(2) (3)

(4) q4 = 2.5q3 = 2.0

 

Figure 5-3: Four pipe example network for pipe equations formulation. 
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The notation, ⎣ ⎦ nQ1 , represents that the absolute value of the pipe flow 1 is 

raised to the power n and the sign of the pipe flow is applied to the head loss 
equation term. The flow’s sign also is applied in the node equations. Thus, a 
negative flow is acceptable and defines a flow that is in the opposite direction 
from the initial assumption. In our example, conservation of mass and energy 
comprise seven equations written with respect to four pipe flows and three 
nodal heads. Applying the Newton-Raphson method (but solving for the 
changes in flow and head) for pipe l that connects nodes i and j gives: 
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  (5-35) 

The derivatives of the mass balance equations (FQ) are 1 (outflow pipe), -1 
(inflow pipe) or 0 (not connected to node). The right-hand side is calculated by 
substituting in the present estimates of the flow rates and defined as dq. For 
node 2, Eq. 5-34 becomes:  
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(+1) ∆Q1  + (-1)∆Q2  +(-1)∆Q3 = -(+Q1

(m-1)- Q2
(m-1)

 - Q3
(m-1) - q2) = - dq2  

  {FQ,2: node 2} (5-36a) 

Similarly for nodes 3 and 4: 

  +∆Q2  -∆Q4  = -(+Q2
(m-1)

 -Q4
(m-1)

 - q3) =- dq3     {FQ,3: node 3}  (5-36b) 

    +∆Q3 +∆Q4 = -(+Q3
(m-1)+Q4

(m-1)-q4)=- dq4     {FQ,4: node 4} (5-36c) 

For the energy balances, the derivatives with respect to the nodal heads are 
1 (sink node), -1 (source node), and 0 (not connected to pipe). The derivatives 
with respect to pipe flow are 1−nQKn . The right-hand side is computed using 
the present iterations flows and nodal heads and defined as dE. For pipe 1, Eq. 
5-35 is: 
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1
11

−nQKn ∆Q1  +(+1) ∆H2 = -(H2 + K1 Q1
n -H1) = -dE1    {FP1: pipe 1}   (5-37a) 

The gradient for the head at node one is zero since it is a fixed head 
reservoir. Node 2 is the downstream (sink) node so its gradient is positive and 
the pipe flow term is evaluated at the present Q(m-1). For clarity the m-1 iteration 
counter is not included in all pipe equations.   

For pipes 2 to 4, the gradient equations are: 

1
22

−nQKn  ∆Q2  - ∆H2  + ∆H3  = -(-H2 + H3 + K2 Q2
n) = - dE2   {FP2: pipe 2} 

  (5-37b) 

1
33

−nQKn  ∆Q3  - ∆H2  + ∆H4 = -(-H2+H4+K3 Q3
n)= - dE3  {FP3: pipe 3} 

  (5-37c) 

1
44

−nQKn ∆Q4  - ∆H3  + ∆H4  = -(+H3 - H4+ K4 Q4
n)=  - dE4   {FP4:  pipe 4} 

  (5-37d) 

These seven equations (Eq. 5-36 a-c and 5-37 a-d) can be solved for the 
changes in nodal head and flow. The new iterations values are then computed 
by:  

 H(m) = H(m-1) + ∆H(m) (5-38) 

 Q(m) = Q(m-1) + ∆Q(m) (5-39) 

Todini and Pilati (1987) generalized this formulation in matrix form. 
Conservation of energy (in the pipes) and mass (at the nodes) equations (Eq. 5-
16 and 5-24) can be written in matrix form as: 

 FP(Q,H) = A11 Q(m) + A12 H(m)= 0 (5-40) 

 FQ(Q,H) = A 21 Q(m) – q= 0  (5-41) 

respectively.  
Looking back at the node and pipe equations written at the beginning of 

this section, you will note that the coefficients on the flows entering and leaving 
node 2 are 1, -1, -1, and 0 for pipe flows 1-4, respectively. These values are 
identical to the coefficients in the column related to nodal head H2 in the pipe 
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equations. These coefficients comprise the matrices, A12 and A21. A21 is the 
connectivity, also known as the topological, matrix and A21

 = A12
T. The terms in 

the A12 matrix identify the network connections and take on values of 1, -1 and 
0. Each column corresponds to a pipe and values of -1 are assigned to the 
upstream node for the pipe, 1 to outlet node of the pipe and 0 if the pipe is not 
connected to the node. For the four pipe network,  
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A11 is defined as: 
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Note that the rows in A21 correspond to nodes 2 – 4. 
Applying the Newton-type solution scheme to the system of equations 

gives: 

 dFP(Q,H) = n A11 ∆Q(m) + A12 ∆H(m) = - dE (5-43) 

 dFQ(Q,H) = A21 ∆Q(m) = - dq  (5-44) 

The resulting equations for the four-pipe network are given in Eqs. 5-37a-d 
and 5-36a-c. The right-hand side terms are shown for the four-pipe network as 
the residuals in the mass and energy balance equations at iteration m-1. This set 
of equations is solved for ∆Q and ∆H and H(m) and Q(m) are updated by: 

 H(m) = H(m-1) + ∆H(m) (5-45) 

 Q(m) = Q(m-1) + ∆Q(m) (5-46) 

As in the earlier methods, the absolute or relative changes in flow or head 
or the number of iterations can be used as stopping criteria.   

The overall procedure for solving the pipe equations is: 
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1) Initialize m = 0 and define starting set of nodal heads, H(0), and pipe 
flows, Q(0) 

2) Form matrix A12 
3) Set m = m + 1 
4) Form matrix nA11 using Eq. 5-42.  
5) Compute nodal balance error (dFQ = -dq) using Eq. 5-16 and pipe 

balance error (dFH = -dE) with Eq. 5-24 
6) Solve system of equations (Eq. 5-43 and 5-44) for ∆H and ∆Q 
7) Update nodal heads and pipe flows using Eqs. 5-45 and 5-46. 
8) Check stopping criteria. If satisfied, stop. If not satisfied, go to step 3. 
 
Assume that all pipes are identical in the four-pipe network and the Hazen-

Williams equation is applied with K = 0.935 and n = 1.852. Also assume that 
the flows in the four pipes are [4.5, 2, 2, 0.5] and the nodal heads are [40, 35, 
30]. The head in the reservoir, H1, is 50. The A21 is given above and A11 
diagonal matrix is computed by KQ n-1 = KQ0.852. For pipe 1, K|Q|0.852= 0.935 
(|4.5|)0.852 = 3.37 and the term in the solution matrix is 1.852 K|Q|0.852 = 6.24. 
The overall left hand side matrix is: 

 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−−

−
−
−

=⎥
⎦

⎤
⎢
⎣

⎡

0001100
0001010
0000111
11096.0000
101013.300
0110013.30
00100024.6

21

1211

0A
AAn

 

where the upper left portion is nK|Q|n-1, the upper right is A12, the lower left is 
A21, and the lower right are zeros corresponding to the node equation 
coefficients on the nodal heads. 

The right hand side of the equations is the errors in the equations. For pipe 
1, dE1 is computed from Eq 5-37a: 

 -(K1 Q1
n+ H2 - H1) =- dE1 =-(0.935 (4.5)1.852 + 40 – 50) = - 5.16 

For node 2 (Eq. 5-36a): 

 -(+Q1 - Q2 - Q3 - q2) = -dq2  = -(4.5- 2 - 2 - 0) = - 0.5 

After computing values for each equation, the transpose of the right hand 
side vector is:  
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 [ ] [ ] TT 05.05.074.462.662.116.5 −−=−− dqdE   

and the full matrix equation is: 
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Solving for ∆Q and ∆H gives: 

 [ ] [ ] TT 68.030.416.5253.0253.0247.00 −−−=∆∆ HQ  

Substituting this vector in Eq. 5-45 and 5-46 gives the next iteration’s pipe 
flow and nodal heads or: 

 [ ] [ ] TT 68.3070.3084.34247.0253.2247.25.4=HQ  

Repeating the process for another iteration gives the final solution of:  

 [ ] [ ] TT 62.3069.3085.3424.026.224.25.4=HQ  

Example 5.8 

Problem:  For the Example 5.4 network, determine the flow rates in the pipes 
and the nodal heads at all nodes using the gradient method and the Hazen-
Williams equation. Assume an initial head vector, H(0) T = [198, 193, 195, 175, 
188, 190, 184] and an initial pipe flow vector, Q(0) T = [20, 9, 11, 6, 5.5, 3.5, 0.5, 
0.5, 1, 1, 8]. 

Solution:  Given the initial head and flow distribution (step 1), we can now 
update the values at m=1 (step 2). The set of equations for pipe equations are 
comprised of the head loss relationship for each pipe in terms of the nodal 
heads and pipe flows (conservation of energy):  
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Pipe 1: ⎣ ⎦ ⎣ ⎦ 0111111111, =+−⇒=−= HHQKQKHHh res
nn

resL  

Pipe 2: ⎣ ⎦ ⎣ ⎦ 0212222212, =+−⇒=−= HHQKQKHHh nn
L  

Pipe 3: ⎣ ⎦ ⎣ ⎦ 0613333613, =+−⇒=−= HHQKQKHHh nn
L  

Pipe 4: ⎣ ⎦ ⎣ ⎦ 0724444724, =+−⇒=−= HHQKQKHHh nn
L  

Pipe 5: ⎣ ⎦ ⎣ ⎦ 0565555565, =+−⇒=−= HHQKQKHHh nn
L  

Pipe 6: ⎣ ⎦ ⎣ ⎦ 0476666476, =+−⇒=−= HHQKQKHHh nn
L  

Pipe 7: ⎣ ⎦ ⎣ ⎦ 0767777767, =+−⇒=−= HHQKQKHHh nn
L  

Pipe 8: ⎣ ⎦ ⎣ ⎦ 0458888458, =+−⇒=−= HHQKQKHHh nn
L  

Pipe 9: ⎣ ⎦ ⎣ ⎦ 0239999239, =+−⇒=−= HHQKQKHHh nn
L  

Pipe 10: ⎣ ⎦ ⎣ ⎦ 043101010104310, =+−⇒=−= HHQKQKHHh nn
L  

Pump: 
0)9376.0240(

)9376.0240(

32
2

2
32

=+−−−⇒

−−=−=

HHQ

QHHh

resp

presp  

and the conservation of mass at each node in terms of the pipe flows: 

 

0:7
0:6

0:5
0:4
0:3

0:2
0:1

7764

6753

585

41086

3109

2942

1321

=−+−
=−−−

=−−
=−++
=−+−−

=−+−
=−−−

qQQQNode
qQQQNode

qQQNode
qQQQNode
qQQQNode

qQQQNode
qQQQNode

P

 

From the node equations, A21 is:  
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The rows of A21 represent nodes and the columns of the pipes. For example, 
row 1 corresponds to node 1. The values in the matrix equal the coefficients on 
the pipe flows in the node equation. Row 1 is then 1 for pipe 1, -1 for pipes 2 
and 3, and 0 for all others. Column 11 corresponds to the pump flow and only 
has a non-zero for node (row) 3. Examining the pipe equations and the 
coefficients on the nodal heads we can confirm that A21 = A12

T. 
Step 3:  m=1 
Step 4: At iteration 1, the initial flow values are used to compute matrix 

A11. For pipe 1, the diagonal term is:  

 138.0)2000584.0(85.1 85.01)0(
11 ==

−n
QnK  

The full nA11 matrix is:  
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Step 5: It is unlikely that the initial guess will be the correct flow and nodal 
head values. Therefore, the conservation laws (Eq. 5-16 and 5-24 and written 
above for the example network) will not be satisfied. To determine the residuals 
(dE and dq), the assumed values H(0) and Q(0) are substituted. Since we 
developed the flows so that they balance at node, dq equals zero but dE does 
not. For pipe 1: 

 ⎣ ⎦ 509.0198200)20(00584.0 85.1
11.111 −=+−=+−= HHQKdE res

n  

The full vector is:  

dET
 = [-0.509, -1.240, -2.549, -0.576, 3.447, 5.371, 9.311, -9.228, 80.794, 

62.794, 15.006]T 
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and  

 dqT = [0, 0, 0, 0, 0, 0, 0]T 

Step 6: The vector computed in step 5 is the right hand side of the system of 
equations.  
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The unknowns are the vectors, ∆H and ∆Q. The coefficient matrix is (with 
truncated nA11 terms): 
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Solving for ∆H and ∆Q gives ∆HT = [0.38, 1.30, -0.87, -2.28, -2.22, 2.45, 
1.07] and ∆QT = [0.94, 0.42, 0.53, -0.13, 0.67, -0.27, -0.14, 0.67, -0.54, -0.40, -
0.94]. 

Step 7: The new nodal heads and pipe flows are then computed by Eqs. 5-
45 and 5-46: 
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 H(1) = H(0) + ∆H(1) 

 Q(1) = Q(0) + ∆Q(1) 
resulting in: 

 HT = [198.38, 194.30, 194.13, 172.72, 185.78, 192.45, 185.07]  

and  

 QT = [20.94, 9.42, 11.53, 5.87, 6.17, 3.23, 0.36, 1.17, 0.46, 0.60, 7.06] 

Step 8: The changes during iteration were large so at least one additional 
iteration is needed. Return to step 2. The results for the remaining three 
iterations are given in Tables E5-8a and b. 

Table E5-8a: Convergence of nodal head with iterations of the pipe method 
solution. 

Iteration Node 1 2 3 4 5 6 7 
1 198 193 195 175 188 190 184 
2 198.38 194.30 194.13 172.72 185.78 192.45 185.07 
3 198.34 193.95 196.88 170.71 185.96 192.49 184.26 
4 198.33 193.89 197.48 170.66 185.96 192.48 184.20 
5 198.33 193.89 197.54 170.66 185.96 192.48 184.20 

Table E5-8b: Convergence of pipe flow with iterations of the  
pipe method solution. 

Iteration Pipe 1 2 3 4 5 6 7 8 9 10 Pump 
1 20 9 11 6 5.5 3.5 0.5 0.5 1.0 1.0 8.0 
2 20.94 9.42 11.53 5.87 6.17 3.23 0.36 1.17 0.46 0.60 7.06 
3 21.21 9.79 11.43 6.04 6.07 3.39 0.36 1.07 0.25 0.54 6.88 
4 21.27 9.84 11.43 6.03 6.07 3.39 0.36 1.07 0.19 0.54 6.73 
5 21.27 9.85 11.43 6.03 6.07 3.39 0.36 1.07 0.19 0.54 6.73 

5.4    FIRE FLOW ANALYSIS  

A critical factor in water distribution design is the ability to supply adequate 
pressure during extreme conditions such as fires. This design criterion is based 
on the fact that fire flow requirements often exceed the normal domestic, 
industrial, and other demands imposed on the water system. Fire flow is defined as 
the rate of water flow at a specified residual pressure and for a specified duration 
that is necessary to control a major fire in a specific structure (AWWA M31). This 
localized demand can be estimated as discussed in Chapters 4 and 7. Pressure 
requirements vary between 20 and 40 psi (138 – 275 kPa) during fire and 
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normal demand conditions. Minimum pressures are selected based on local 
regulations and general guidelines. If the pressures are not acceptable, the 
design or operations must be modified to meet the pressure requirements. 

Four approaches can be used to determine if pressure requirements are 
satisfied during a fire demand. The first is to define the fire demand at one or 
more nodes and the demands at other nodes and solve the system of equations 
for that condition. All hydraulic analysis methods discussed in this chapter 
assume that the specified nodal demands are satisfied regardless of the pressure 
that would result in meeting the demand. Although the equations may converge 
to a valid mathematical solution, the resulting pressures may not be feasible 
from a design perspective or from a cavitation point of view. 

The alternative approaches determine the fire flow that can be provided and 
insure that the pressure is satisfied at the fire location (Figure 5-5). One 
technique is to add an emitter with a large discharge coefficient (e.g., 10,000) 
just downstream of the fire node (Fig. 5-5b). The emitter elevation is set to the 
desired total head (the actual elevation plus the required pressure head). The 
numerical solution determines the maximum flow that can be supplied with the 
nodal head greater than the desired total head and can be compared to the 
desired fire supply. The emitter discharge coefficient must be sufficiently large 
so that the computed total head is (nearly) equal to the input junction elevation 
(elevation plus pressure requirement). A smaller emitter coefficient will not 
give the maximum achievable fire flow.  

The third technique is to add a short pipe to the fire flow node that is 
connected to a reservoir with total head equal to the elevation plus desired 
pressure head at the fire flow node (Figure 5-5c). The short pipe should have a 
negligible head loss (resistance) by using a large diameter and low roughness 
coefficient. The flow in the pipe to the reservoir equals the demand at the junction 
node. This configuration results in the same system as the emitter. 

In the fourth technique, the mathematical relation between the flow in the 
connecting pipe and the reservoir head can be expressed in terms of the target 
pressure and available flow. Under this condition, the fire flow available qa at a 
target pa can be computed from (Boulos et al, 1997): 
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where n
fs qqc )/(= , qs designates the static demand at the junction node, ps is 

the static pressure, qf is the normal fire flow demand, pf is the pressure at the 
normal fire demand, and n is a flow exponent that is dependent on the head loss 
expression used. The above expression represents the exact analytical solution 
of the basic pressure-flow equilibrium relationship and is applicable to any 
system of consistent units. 
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(a)

(b) qA,fire

(c)

Hemit = zA+ pmin/γ

qA

qA

qA,fire

Hres = zA+ pmin/γ
A

A

A

 
Figure 5-5: Representations to determine fire flow capacity of a system at 
node A (a). An emitter is added adjacent to the original node (b) and the 
fire flow is passed through the emitter. Alternatively, a reservoir is 
attached by a short pipe (c) and flow to the reservoir is the maximum fire 
flow that can be satisfied while meeting the pressure requirements at node 
A. In both cases, the total head at the downstream location is set equal to 
node A’s elevation plus the desired pressure head. 

Care must be taken when analyzing the results from these configurations. 
The additional flow coming to the fire flow node causes higher pipe flows (and 
head losses) throughout the system. Although the fire location’s pressure head 
is maintained by the emitter or reservoir, pressures at other nodes may not be 
acceptable. For example, if the fire is near the source, downstream nodes at 
higher elevations may have low (or negative) pressure heads. Thus, the full 
system results, not only the fire node’s pressure head, must be reviewed to 
determine if the results are satisfactory. 

Example 5.9 

Problem:  Use the emitter approach to determine the maximum flow that can be 
provided at node 3 under the average demand condition in the network 
considered in Example 5.4. Assume that the required total head at the node is 
290 ft (221 ft node elevation plus 30 psi (69 ft)). 

Solution:  Table E5-9 lists the emitter flow for a range of emitter coefficients 
and the computed total heads as computed by a hydraulic analysis model. Note 
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that the 4 cfs nodal demand is supplied in addition to the emitter discharge. In 
this case, an emitter coefficient over about 50 provides essentially the same 
result. 

Table E5-9: Node data for various emitter coefficients. 

Emitter 
coefficient 

Total head 
(ft) 

Emitter discharge 
(cfs) 

Total node withdrawal 
(cfs) 

1 292.01 0.93 4.93 
10 290.16 2.60 6.60 
20 290.04 2.70 6.70 
100 290.00 2.73 6.73 

 
5.5   UNSTEADY FLOW CONDITIONS 

Steady flow hydraulic modeling provides a snapshot of the conditions in a 
distribution system assuming that the hydraulic conditions have reached 
equilibrium. In general, however, demands vary over time, pump operations are 
altered or pumps may fail in a sudden event perhaps due to a power failure. 
These temporal variations cause the pressure and flow distributions to change 
and can be modeled by three approaches.  

The first and most common approach is known as extended period 
simulation (EPS). An EPS is a series of steady state simulations and is an 
available option in most hydraulic analysis software. An EPS begins with an 
initial set of tank levels, a given demand distribution and duration and a set of 
operation decisions. A steady state simulation is completed for the initial set of 
demands to determine the pressure and flow distribution including flow rates 
into/out of tanks. Using the tank flow rates and the demand duration, a mass 
balance calculation is completed to update the tank levels. The new tank levels 
are then used as the fixed grade node elevations for the next steady state 
hydraulic analysis and time step. The demands may be changed between time 
steps. Many hydraulic analysis models allow operation conditions to be altered 
based upon the hydraulic condition, such as a pump being turned on/off as a 
function of a tank’s water level. The resulting tank flows from a second steady 
hydraulic analysis are used to update the tank water levels for the third time 
period. This process is repeated until the entire simulation duration is 
completed. 

The time step between tank level changes in an EPS is typically on the 
order of hours. This increment is acceptable under most normal operating 
conditions, particularly for a well-designed system. However, demands may 
change dramatically at shorter time steps, or operation conditions may be 
altered rapidly. These changes can cause problems such as low pressure areas 
that may result in backflows into the system. More detailed modeling may be 
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necessary to detect these problems that would not be apparent when steady state 
is reached. 

Dynamic conditions can be modeled by two approaches. Transient 
simulation modeling (also known as water hammer analysis or distributed 
parameter approach) solves the full momentum equation at a time step on the 
order of seconds or less. Transient analysis is used to examine sudden changes 
in the system (e.g., pipe or pump failure). The second approach, dynamic 
simulation (also known as a lumped parameter or rigid column approach), 
approximates the full momentum equation assuming that the water acts as a 
rigid column. This simplification permits examination of variations that impact 
the system on the order of minutes, such as demand changes. A comparison of 
the various methods can be found in Wood et al (1990). All three simulation 
approaches are discussed in this section. Transient analysis is introduced in this 
chapter and presented more fully in Chapter 9.  

5.5.1  Extended Period Simulation 

In EPS, the only dynamic variables are the tank levels. As noted above, an EPS, 
also known as a quasi-steady state analysis, consists of a series of steady state 
simulations with tank levels being updated between steady state analyses. The 
data requirements for an EPS are discussed in this section with the physical 
description of the tank, nodal demands as a function of time, and operational 
controls. 

5.5.1.1 Governing Equations 

As noted, steady state flow rates are computed in all pipes with the tank levels 
fixed at their elevations at the beginning of the simulation period. The flow rate 
into or out of a tank is assumed constant over the duration of the steady state 
simulation. The new tank levels are computed using the tank mass balance 
equation (Eq. 2-7): 
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where QT,in and QT,out are the tank inflow and outflow and AT is the area of the 
tank and HT is the tank water level. For a discrete time step of duration ∆t and a 
constant diameter tank, Eq. 5-48 can be written as: 
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where HT,t and HT.t+∆t are the tank levels at the beginning and end of the time 
step ∆t, respectively. 

The flow rates in Eq. 5-49 are provided by the hydraulic analysis and ∆t 
and HT,t are known. Most tanks are cylindrical and the tank diameter is 
sufficient to compute the cross sectional area, AT. In other cases, some models 
accept a volume versus elevation relationship. The tank storage volume is 
tracked over time and related to the water level. 

In addition, the tank bottom elevation and the range of allowable storages 
are needed to determine if the tank can accept/supply the inflow/outflow. 
During a time step a tank may fill or empty to the defined bounds, this time can 
be computed using Eq. 5-49 with the ending elevation equal to the upper/lower 
bound. If the tank status does change during a time increment, the period until 
the change is analyzed with the initial tank levels. The time until the change is 
computed and a second steady state simulation completed with the tank being 
isolated by closing the pipe connected to the tank. When a new demand 
condition is introduced, any isolated tank is checked to see if it should be 
opened by comparing the tank level and the total head at the node at end of the 
pipe connecting the tank to the system. 

5.5.1.2 Demand Patterns 

In addition to physical data about the tanks, the temporal variation of demand 
must be supplied to the simulation model by a demand pattern. The demand 
pattern is a set of multipliers that scale the base demand previously established 
by the user in the junction data. A typical pattern covers a 24-hour cycle to 
analyze tank level changes during an average day when designing a network or 
for selecting pump operations on a daily basis. Development of diurnal demand 
factors is presented in Chapter 7. 

As an example, the demand pattern for a node with a base demand of 200 
gpm is given in Table 5-1 and plotted in Figure E5-10a. The demand factors or 
multipliers scale the base demand resulting in the withdrawal pattern shown in 
the table. The simulation time step is not necessarily equal to the demand 
pattern time step but the demand pattern step should be an integer multiple of 
the simulation time step. The average daily demand is often used as the base 
demand so the average demand multiplier is equal to one. 

Table 5-1: Demand pattern multipliers and demands for a node  
with a 200 gpm base demand. 

Time 0-2 hr 2-4  4 -6  6 -8  8-10  10-12 12-14 14-16 16-18 18- 20 20 –22 22 -24 
Multiplier 0.75 0.6 0.5 1.1 1.25 1.2 1.1 1.1 1.35 1.2 1.0 0.85 
Demand 150 120 100 220 250 240 220 220 270 240 200 170 
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5.5.1.3 Controls 

Utilities often develop operation rules for turning pumps on or off and shutting 
valves in pipes. Many network models are capable of incorporating this logic as 
controls within the hydraulic simulation. The model then executes these 
controls as network conditions dictate providing realistic operations within a 
single model run. 

System controls are often simple (rule-based) logic statements relating pipe 
or pump operation status (open or closed) to tank levels, nodal pressures or 
times. For example, turn on pump C (open pump line) if the water level in tank 
2 falls below 32 m or shut tank valve (close pipe) between 10 am and 2 pm or if 
the pressure at node 104 is greater than 40 psi. 

More complex if-then statements can activate a status change based on 
multiple conditions or change operations as a sequence of events occur (Boulos 
et al 1998). An example is making pipe closure decisions based on time of day 
and system pressures or tank levels; shut a tank valve (close pipe) if the time 
between 10 am and 2 pm and the pressure at node 104 is greater than 40 psi 
else if the clocktime is between 2 and 4 pm shut the pipe if the level in tank 4 is 
below 140 ft. A second example is to turn on a pump when tank levels are 
below a given level then off once the tnak reaches an acceptable level; turn 
pump C on if the water level in tank A is below 82 m and turn pump C off if the 
water level in tank A is above 88 m. 

Example 5.10 

Problem:  Solve an extended period simulation by modifying the network in 
Example 5-4 with the data listed in Table E5-10a. Apply the demand pattern in 
Table 5-1 to all nodes. A cylindrical tank replaces the reservoir 1. The tank 
diameter and bottom elevation are 75 and 350 ft, respectively, and the 
minimum and maximum water levels are 10 and 50 ft, respectively. Initially, 
the tank is empty. 

A second pump is added in parallel to pump 1 and connects the network 
(node 3) to reservoir 2 (Table E5-10a). Only one pump will operate at any time. 
If the tank is not completely full, pump 1 will be run. When the tank is full, 
pump 1 will be turned off and the smaller pump 2 will be switched on. This 
operation will be reversed when the tank is emptying from a full condition. 

Given the flows in pipe 1, compute the tank level at 2 and 4 hours. Confirm 
that the control rules have been properly implemented. System layout is as 
shown in Figure 5-4a with pumps in parallel connecting reservoir 2 to node 3. 
 
Solution:  This network was input to a hydraulic model and the results are 
summarized in Table E5-10b and Figures E5-10a and b. Table E5-10b lists the 
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tank water surface elevation (WSE) variation over the course of the day. Figure 
E5-10a is a plot of the tank WSE and demand pattern. At lower demand periods 
the tank is stable or filling including a rapid rise from midnight to near 4 am 
while the tank empties during higher demands. Although the demand varies 
significantly, this pattern maintains a relatively constant pump discharge when 
pump 1 is operating (Figure E5-10b). A pump should be selected such that it 
can provide a constant flow near its rated pump capacity to minimize energy 
and pump maintenance costs.  

Table E5-10a: Pipe diameters and pump curves for Example 5.10. 

Pipe/pump Diameter (inches) / 
pump curve (ft) 

1 30 
2 24 
3 24 
4 20 
5 20 
6 18 
7 18 
8 18 
9 24 
10 24 
1 240 – 0.15 Q2 

2 240 – 0.4167 Q2 

Table E5-10b: Pipe flow rates during each 2 hour flow period and water 
surface elevation in tank 1 (at end of period).  

Note beginning tank water surface elevation was 360 ft. 

Time (hours) Pipe flow (cfs) Tank WS elevation (ft) 

0-2 12.64 380.60 
2-4 14.75 400.00 
4-6 0 400.00 
6-8 -11.86 397.88 
8-10 -4.12 391.15 
10-12 -2.15 387.66 
12-14 0.85 389.05 
14-16 0.72 390.23 
16-18 -6.07 380.34 
18-20 -1.14 378.48 
20-22 4.36 385.59 
22-24 7.71 398.15 
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Figure E5-10a: Tank water surface elevation and demand pattern for 
Example 5.10. 
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Figure E5-10b: Pump flow rates during EPS simulation in Example 5.10. 

To compute the tank level at hour 2 (2 am), we apply Eq. 5-49. Since the 
demand in the system is low, flow is entering the tank at a rate of 12.64 cfs. The 
initial tank elevation was 360 ft (the tank level is 10 ft) so the tank elevation at 
2 am is computed by: 
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The tank level is still with the acceptable range.  
A similar calculation is completed for time 4 hours (4 am). Again the 

network demand is low so the tank level is rising. Substituting the inflow and 
starting elevation in Eq. 5-49 gives: 

T

am
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== )( 42
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This water level exceeds the maximum water level before 4 am. Therefore, 
pipe 1 must be closed to stop water from entering the tank before it overtops. 
The closure time is computed using the tank mass balance equation with the 
unknown as the closure time or: 
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At about one and a half hours after the demand change, the tank line is 
closed. Since the tank is full, the control rules are activated. By the defined rule, 
when the tank was filled the larger pump (i.e., pump 1) is shut down and the 
smaller pump (i.e., pump 2) is switched on (Figure E5-10b). This operation is 
maintained until 6 am (Figure E5-10b) when the demand begins to increase and 
the water is withdrawn from the tank (Figures E5-10a). 

5.5.2  Dynamic Simulation 

During a steady state or EPS simulation, demand loading and operating 
conditions are assumed to change instantaneously and steady state is reached 
immediately after a change occurs. In other cases, the transition between the 
various hydraulic conditions may be important. Dynamic simulation (lumped 
parameter approach), considers gradually varied flow and slow moving 
transients under the assumption that water acts as a rigid-column. A rigid-
water-column is assumed to have constant density that is not affected by the 
changes in water pressure. Full transient analysis (distributed parameter 
approach) considers an elastic-water-column in which water density may be 
variable (Chapter 9). 
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5.5.2.1 Governing Equations 

In a dynamic state, pressure waves and forces cause flow variations. As such, 
the governing equations are conservation of mass and momentum, rather than 
conservation of mass and energy. As under steady state conditions, 
conservation of mass is flow balance at a node. Conservation of momentum is 
applied to a pipe element (Figure 5-6) in which the net force on the fluid equals 
the time rate of change of momentum in the element or: 

 am
dt
mVdFFFF f ==−−=∑ )(

21  (5-50) 

where F1 and F2 are the forces at the end of the element due to the total head of 
the fluid and Ff is the force due to friction. This balances with the rate of 
change of momentum of the fluid in the element that has mass, m, and velocity, 
V. This rate of change is equal to the mass times the acceleration, a, of the fluid 
mass. Thus, Eq. 5-50 is Newton’s Second Law (F = ma). 
 

Q F2 F1 

Ff 

h1 

h2 

HGL 
hL 

 

Figure 5-6: Force balance on a pipe segment with length, L, and cross 
section area, A. 

The end forces are equal to the force due to the pressure and gravity or: 

 11
1

1 HAzpAF γ
γ

γ =⎥
⎦

⎤
⎢
⎣

⎡ +=  (5-51) 

where A is the cross sectional pipe area and γ is the specific weight of water. A 
similar term is written for the left side. The friction force is the force caused by 
the energy loss in the pipe element, hL, or: 
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 Lf hAF γ=  (5-52) 

The rate of change of momentum can be expanded to consist of similar 
terms as: 
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Assuming that the only head loss is due to pipe friction and substituting 
terms in Eq. 5-50 results in a relationship similar to conservation of energy 
except that the right hand side is not equal to zero during unsteady conditions 
(Wood et al, 1990): 

 ⎣ ⎦ td
dQ

Ag
LQKHH n =−− 21  (5-54) 

A generalized form presented by Sevuk (1979) is: 
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where the head difference in Eq. 5-54 becomes the partial of H with respect to x 
and the coefficient, KL, equals K/L or a unit length coefficient.  

5.5.2.2 Solution Methods for Gradually Varied Flow 

Eqs. 5-54 and 5-55 can be written for a single pipe or a set of pipes for a closed 
or pseudo-loop. These equations can be combined with conservation of mass to 
form several different sets of equations that can be solved for the total heads 
and the pipe flows. Formulations parallel those for steady state and vary with 
the form for conservation of energy.  

Two general solution approaches are taken. The first integrates the flow 
equations and approximates the friction loss term by the ending time 
conditions. The result is a mathematical structure that is similar to steady state 
modeling but with an additional term in the energy balance from the 
momentum change (Eq. 5-53). Models following this approach are presented 
with some detail below. The second approach is to numerically solve the 
generalized form of conservation of energy (Eq. 5-55) as a partial differential 
equation (Sevuk, 1979) or as an ordinary differential equation (Onizuka, 1986; 
Shimada, 1989; and Dunlop, 1999). These approaches are not presented here in 
detail. 
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5.5.2.21 Simultaneous Loop Corrections.  Wood et al (1990) formulated the 
loop equations (Simultaneous Loop Adjustment Method) in terms of gradually-
varied flow. They compared their results with water hammer transient models 
and showed that the lumped model was acceptable in some transient cases. The 
algorithm as presented requires fixed nodal demands so only physical system 
changes such as valve closure and source head variations can be examined. 

In this formulation, a loop equation is written for each closed and pseudo-
loop of the form of Eq. 5-54: 

 ∑∑
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where the BA HH and are the average total nodal heads at the ends of the loop 
and Qi and iLh , are the flow rate and average head loss in component i.  

These ordinary differential equations are written in a discrete form in terms 
of the change in flow rate over a short time increment, ∆t, or: 
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The average boundary head values are assumed to be known or, for a closed 
loop, to be equal (i.e., BA HH = ). The head loss is taken as the initial head loss 
plus the one-half of the change in head loss over the incremental time step or: 

 
2)(

,
,,

lp

incplp lp

iLt
iLiL

Q
Q
h

hh
∆

∂
∂

+= ∑
∈

 (5-58) 

where the gradients are the changes in head loss due to a change in flow and are 
evaluated at time t. ∆Qlp is the change of flow during the time step in loop lp 
that contains pipe i. It was assumed that the half of the flow change will provide 
a good approximation of the average head loss for the time period. For a closed 
loop, the equation becomes: 
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 (5-59) 

All values are known from physical data or from the flow distribution at time t. 
One equation is written for each of lloop loops in terms of the lloop flow 
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changes. The system of lloop equations is linear in terms of the lloop unknown 
∆Ql’s due to the average head loss change assumption. Once the loop flow 
changes are computed, the flows are updated for the next time step by: 

 ∑
∈
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lp
t
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tt
i QQQ  (5-60) 

The algorithm then proceeds to the next time step and computes the flow 
change for that time step.   

If variable nodal demands were introduced, mass balance at each node must 
be preserved. An iterative approach would likely be necessary that begins with 
a solution that satisfies conservation of mass at the next time step or 
conservation of mass could be explicitly included in a formation like that in the 
previous section.  

Onizuka (1986) solved the loop equations with time varying nodal demands 
by formulating and solving the set of ordinary differential equations (Eq. 5-54) 
with conservation of mass using the Runge-Kutta fourth order scheme.  

5.5.2.2.2 Node-Loop Equations.  Holloway (1985) and Islam and Chaudhry 
(1998) structured the equations in a node-loop formulation resulting in npipe 
equations for the npipe flow rates. For a closed loop, the nodal heads in Eq. 5-
54 are the total pressure at the same point (beginning and end of the loop). 
Thus, it becomes: 
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This equation is solved forward in time for the values of Qt+∆t by separating 
variables and integrating over time: 
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Holloway (1985) suggested that the friction loss term on the left-hand side 
may be approximated in several ways: 
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 (5-63) 

 tQQQQK nntttttt ∆⎥⎦
⎤

⎢⎣
⎡ ++

−∆+∆+ 2/)(
1

 (5-64) 



 

NETWORK HYDRAULICS     5-61 

 

 tQQQQK nnttntttt ∆⎥⎦
⎤

⎢⎣
⎡

⎟
⎠
⎞⎜

⎝
⎛ +

−−∆+∆+ 2/
11

 (5-65) 

The first approximation (Eq. 5-63) maintains linearity with respect to the 
unknowns Qt+∆t. Holloway compared this integration approximation with the 
two nonlinear forms (Eq. 5-64 and 5-65) and demonstrated equivalent results. 
Substituting Eq. 5-63 in Eq. 5-62 and manipulating gives:  
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Eq. 5-66 is written for each closed and pseudo-loop as in modified linear 
theory for steady flow. The node equations written in terms of the pipe flows at 
time t + ∆t provide nnode additional equations. The set of linear equations are 
solved for the flow rates at time t + ∆t. Once those flows have been calculated, 
a new set of linear equations for the next step can be formulated. Time varying 
demands are introduced in the node equations. The time step can affect the 
convergence of the results but no general rule was provided. 

Shimada (1989, 1992) formulated the node-loop equations as ordinary 
differential equations (ODE) and updated flow directly using more stable ODE 
methods (Runge-Kutta fifth order with a variable time step and the Kaps-
Rentrop semi-implicit scheme)). These solution algorithms are better equipped 
to solve so-called stiff ODEs such as Eq. 5-54, particularly as the system 
changes (e.g., valve closures) are rapid. Shimada (1989) validated the model 
with comparisons with full transient (water hammer) solutions. 

5.5.2.2.3 Pipe-Node Equations. Ahmed and Lansey (1999) formulated the 
pipe-node equations (hybrid or gradient method) in an integral form similar to 
Holloway (1985). The advantage of this method is that same advantage that the 
pipe-node formulation has in steady state analysis; loops do not need to be 
identified that allows larger systems to be more easily analyzed.  

Like the steady state formulation, conservation of energy is written for a 
single pipe (or general component).  

 ⎣ ⎦ td
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where Hil and Hjl are the piezometric heads at the upstream node (i) and 
downstream node (j) of pipe l. 

The time derivative was approximated by an explicit backward difference 
that results in: 
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 Combined with the nodal balance equations, a nonlinear system of pipe 
equations is formed that can be solved for the pipe flows and nodal heads using 
a gradient algorithm based method. Several alternative schemes to approximate 
the head loss can be applied including a linear formulation. This method and 
Holloway’s have only been documented on slowly varying conditions. 
Additional testing of these approaches is necessary.  

Dunlop (1999) solved the ODE formulation of the pipe-node equations 
using Gear’s method. In addition, he demonstrated that pressure dependent 
demands could be determined simultaneously within the method and that a 
range of components could be analyzed. Sevuk (1979) posed the pipe-node 
formulation with partial differential equations and used an implicit scheme for 
solving the resulting quasi-linear hyperbolic PDEs.  

5.5.3  Water Hammer Simulation 

The dynamic simulation that we have just considered involves the acceleration 
and deceleration of a fluid mass. It is powerful solution technique in that, unlike 
the EPS approach, it explicitly accounts for the inertia in the water column. 
However, the limitation with the rigid column approach also lies in its basic 
assumption that the length of water in each pipe acts as single mass with a 
uniform velocity in each conduit. The question is how such a coordination of a 
whole mass of fluid is achieved: what law actually specifies that what happens 
at one end of a pipe at one instant must also happen at the same instant at the 
other?   

In fact, when a column of fluid is rapidly accelerated, a small amount of 
mass does accumulate within the pipe, thus mobilizing not only inertia terms, 
but also fluid compressibility. It is this compressibility that sends a pressure 
signal through the pipe, and informs the whole column of the changes taking 
place within it. The price of this approach is that we must now discretize the 
pipe, breaking it up into pieces that explicitly permit the propagation of a 
pressure signal. This approach has greater computation demands, but also 
permits a greater degree of pressure and velocity variation within the pipe. 
These compressible or water hammer models often result in more realistic 
unsteady flow calculations than those associated with the rigid model. This 
interesting and important topic is developed in more detail in Chapter 9. 

5.6   PRESSURE DRIVEN ANALYSIS    

The solution methods described to this point can be described as demand driven 
analyses (DDA). In these formulations, the demand at nodes is predefined and 
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is satisfied regardless of the nodal pressure; even when the pressure is negative. 
In most cases, this result is acceptable under normal operating conditions as 
pressure defines an acceptable state and if the pressure is less than an allowable 
value, the system must be changed.  

To understand how the system will operate under low pressure conditions, 
a pressure driven analysis (PDA) can be posed. In a PDA, the nodal withdrawal 
is dependent upon the pressure at the node. Demand locations were represented 
by emitters (Reddy and Elango, 1989). As seen in Section 5.4, the withdrawal 
is related to the nodal pressure by the orifice equation: 

 ϕpCq emit=  (5-69) 

The problem with direct application of this relationship is that the discharge is 
not bounded above. If the pressure is high, the discharge may be higher than the 
consumer demand. Therefore, the discharge should be limited to the flow 
provided when the demand is reached. At the lower bound, the withdrawal 
equals zero if the pressure is equal to less than 0. Some researchers suggest that 
demand will be modified with the pressure beyond what is expected from Eq. 
5-69. For example, in a reliability analysis Wagner et al (1988) proposed: 
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where qdem is the consumer demand, pavl, pdes, and pmin are the available, design 
and minimum allowable pressures at the node, and α is a coefficient typically in 
the range of 0.5 to 0.7. These bound relationships and new function forms can 
be introduced in the steady state formulations presented in Section 5.3.  

Problems: 

Problem 1. A pipeline consists of four pipes in series with physical data listed 
below. Flow only exits through the most downstream pipe (pipe D). For a flow 
rate of 0.5 m3/s, 

a) Compute the equivalent head loss coefficient 
b) Compute the total head loss occurring through four pipes 

Table P5-1: Data for series pipes (including K value). 
Pipe Diameter (cm) Length (m) Friction factor K = f L/(D 2g) hL (m) 

A 100 150 0.021 0.1606 0.040 
B 90 200 0.024 0.2718 0.068 
C 80 100 0.027 0.1720 0.043 
D 70 125 0.031 0.2821 0.071 
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Problem 2. The same four pipes in Prob. 5-1 are now placed in parallel. For a 
head loss from the upstream to downstream nodes of 0.6 m,  

a) Compute the equivalent head loss coefficient 
b) Compute the total flow occurring through the four pipes 

Table P5-2: Data for series pipes (including K value). 
Pipe Diameter (cm) Length (m) Friction factor K = f L/(D 2g) Q (m3/s) 

A 100 150 0.021 0.1606 1.93 
B 90 200 0.024 0.2718 1.49 
C 80 100 0.027 0.1720 1.87 
D 70 125 0.031 0.2821 1.46 

Problem 3.  Using the data below, fill in the following blanks in the output 
tables (Tables E5-3a and b). The network layout is shown in Figure P5-3. 

a) Pipe flow in pipe 10 (flow is from the reservoir (node 8) to node 7) 
b) Pipe flow in pipe 4 
c) Friction factor in pipe 1 
d) Velocity in pipe 7 
e) Pump flow rate 
f) Confirm the energy balance in the loop containing node 1 
g) Confirm the energy balance over the pseudo-loop 
h) Demand at node 3 
i) Total and pressure heads for node 6 

Table P5-3a: Junction data for Problem 5-3. 
Node ID Elevation 

(m) 
Demand  
(m3/hr) 

Head 
(m) 

Pressure 
(m) 

Junc 1 80 450 103.66 23.66 
Junc 2 80 150 105.85 25.85 
Junc 3 75  102.32 27.32 
Junc 4 100 187.5 120.98 20.98 
Junc 5 80 750 100.7 20.7 
Junc 6 80 187.5   
Junc 7 150 187.5 170.1 20.1 
Resvr 8 210 -1512.5 210.0 0. 
Resvr 9 10 -775 10.0 0. 

Problem 4.   
a) Set up the network in Problem 5-3 in a network solver. Use the Darcy-

Weisbach equation for concrete pipes; e = 1.5 mm.  
b) Simulate the system 1.5 times the original nodal demands. Examine the 

friction factor and the nodes with minimum total head. 
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Figure P5-3: Problem 5-3 network. 

Table P5-3b: Link data for Problem 5-3. (Note negative flows denote flow 
direction is opposite of assumed direction as defined by nodes.) 

Link ID Upst. 
Node 

Downst. 
Node 

L 
(m) 

D 
(mm) 

e 
(mm) 

Flow 
(cmh) 

Velocity 
(m/s) 

Unit 
Headloss 
(m/km) 

Friction 
Factor 

Pipe 1 1 2 1000 300 1.5 -163.97 0.64 2.19  
Pipe 2 2 3 1000 300 1.5 208.64 0.82 3.53 0.031 
Pipe 3 1 4 1000 250 1.5 -286.03 1.62 17.32 0.032 
Pipe 4 2 5 1000 300 1.5  0.99 5.15 0.031 
Pipe 5 3 6 1000 250 1.5 -166.36 0.94 5.89 0.033 
Pipe 6 4 5 1000 250 1.5 309.62 1.75 20.28 0.032 
Pipe 7 5 6 1000 250 1.5 -188  7.51 0.033 
Pipe 8 4 7 1000 300 1.5 -783.15 3.08 49.12 0.031 
Pipe 9 7 6 1000 250 1.5 541.86 3.07 61.88 0.032 
Pipe 10 7 8 1000 400 1.5  3.34 39.9 0.028 

Pump 11 9 2      -95.85  

Table P5-3c: Pump curve. 
Pump Head (m) Pump Flow (m3/h) 

240 0 
180 500 
0 1000 

hp = 240 – 0.00024 Q2 
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Problem 5.    
a) Set up the network in Problem 5-3 in a network solver. Use the Hazen-

Williams equation with a CHW value of 120. 
b) Simulate the system with 1.5 times the original nodal demands. 

Examine the friction factor and the nodes with minimum total head. 
 
Problem 6. Input the system with the layout and assumed flow directions given 
in Figure P5-6. The results shown in the following problems may not exactly 
match the results from other computer models since slight differences in 
Hazen-Williams exponent and conversions from input units to the base unit of 
calculation may differ. The deviations, however, should be minor and care 
should be taken to confirm that the input data is correct (in particular minor loss 
coefficients). 

Table P5-6a:  Pipe data for Problem 5-6 (CHW value for all pipes is 130). 

Pipe Length (ft) Diameter (in) Minor loss  
coeff. 

1 1000 8 0 
2 1000 8 0 
3 1300 8 0 
4 1000 10 0 
5 1200 10 0 
6 1400 10 0 
7 1600 10 0 
8 2500 10 0 
9 2000 12 0 
10 900 10 0 
11 900 12 1 
12 1200 8 0 
13 1300 10 0 
14 1000 10 2 
15 500 12 5 

Table P5-6b: Pump data for Problem 5-6. 

Pump head (ft) Pump discharge (cfs) 

178 0 
150 5 
50 10 

* hp  = 178 – 0.8214 Q2.19 

Problem 7.  In the network for Problem 5-6, add a parallel pipe to pipe 8 with 
the length, diameter and roughness of 2500 ft, 12 in, and 130. Also a second 
identical pump in parallel to pump 16 and simulate the system with the same 
demands as Problem 5-6.   
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Figure P5-6: Problem 5-6 network layout. 

Table P5-6c: Node data for Problem 5-6. 

Node Demand 
(cfs) 

1 0 
2 0.5 
3 0 
4 0.5 
5 2 
6 1 
7 0.5 
8 1.5 
9 2 

10 -4.82 
11 -3.18 

 
Problem 8.  In the Problem 5-6 network, install pressure reducing valves in 
pipes 13 and 14 just downstream of nodes 6 and 5, respectively. Model the 
system with the PRV settings at 50 psi and at 65 psi. 
 
Problem 9.  For the Problem 5-6 network, determine maximum fire flow that 
can be supplied with a pressure of 30 psi at node 5 for the single pump system. 
 
Problem 10.  Using the network from Problem 5-7, change reservoir 11 to a 
tank with a diameter of 50 ft and minimum and maximum levels of 135 and 
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175 ft, respectively. The elevation at this location is 0 ft and the initial water 
level is 150 ft. Simulate a 24 hour EPS in four hour increments using the 
demand pattern given in Table P5-10a. Verify the changes in water level over 
time. 

Table P5-10a: Demand pattern for Problem 5-10. 

Time 
(hrs) 

Demand 
Multiplier 

0-4 0.75 
4-8 0.9 
8-12 1.1 
12-16 1.25 
16-20 1.0 
20-24 1.0 

 
Problem 11.  Using the network developed for Problem 5-10, add controls to 
operate the pumps based on the tank levels as follows. If the tank level is above 
155 ft, no pumps are on. If the tank level is below 145 ft, both pumps are 
operating and if the level is between 145 and 155 ft, one pump is on and the 
other is off. 
 
Problem 12.  Determine the flow distribution for the network shown in Figure 
P5-3 using the Hardy Cross method.  

Apply the Darcy-Weisbach equation with the friction factor in all pipes 
equal to 0.032 which assumes fully turbulent conditions in all pipes. A constant 
f simplifies the analysis and avoids computing the gradients of the friction 
factor with respect to the flow rate (e.g., with the Swamee-Jain equation). The 
resulting K values are given in Table P5-12a. 

The nodal demands and pipe and pump characteristics are listed in Tables 
P5-3a-c. Flow directions are assumed on the Figure P5-12 and values are given 
in Table P5-12a. Note that pipes 3, 5, and 10 flow in the opposite direction of 
that shown in Figure P5-12 so the negative assumptions are correct to achieve 
mass balance. Although the flow directions for those pipes are reversed, the 
signs on the flow rates will be in the proper direction (see below). The purpose 
in this problem is to demonstrate how to handle an incorrect flow direction 
assumption. 
 
Problem 13.  Solve Problem 5-12 using the simultaneous loop equation method 
using the same initial solution. 
 
Problem 14.  Solve Problem 5-12 using the loop-node equation method using 
the same initial pipe flow rates.  
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Table P5-12a: Initial flow rates, head loss coefficients, head losses and 
derivative terms for Problem 5-3 network. 

Pipe 1 2 3 4 5 6 7 8 9 10 P 

Flow 
(cmh) 

200 287.5 -250 250 -87.5 287.5 212.5 725 487.5 -1400 887.5 

Flow 
(cms) 

0.0556 0.0799 -0.0694 0.0694 -0.0243 0.0799 0.059 0.2014 0.1354 -0.389 0.2465 

K (for 
cms) 

1088 1088 2708 1088 2708 2708 2708 1088 2708 258 ** 

hL 3.36 6.94 13.06 5.25 1.60 17.27 9.43 44.13 49.65 39.05 50.96 
nhL/Q 120.9 173.8 376.0 151.1 131.6 432.5 319.6 438.3 733.3 200.8 1533.6* 

* Absolute value of the derivative of the pump equation with respect to pump discharge 
** The pump equation for Q in cms is hp = 240 – 3110 Qp

2 

2 2
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Figure P5-12: Problem 5-12 network with assumed flow directions. Note 
that the flow directions for pipes 3, 5, and 10 are assumed incorrectly.  

Problem 15.  Solve Problem 5-12 using the node equation method. Use the 
following initial solution. The pipe flows corresponding to the assumed nodal 
heads are found by the D-W equation (Eq. 5-26) and are listed in Table P5-15b. 
With the negative signs these flows follow the correct flow distribution. 

Problem 16.  Solve Problem 5-12 using the pipe equation method. Use the 
initial solutions for flow rates from Problem 5-12 and the nodal heads from 
Problem 5-15. 
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Table P5-15a: Initial nodal heads for node equation solution. 
Node 1 2 3 4 5 6 7 

Total head (m) 103.66 105.85 102.32 120.98 100.7 108.22 170.1 
Nodal demands 

(m3/hr) 
450 150 375 187.5 750 187.5 1875 

Nodal demand 
(m3/s) 

0.125 0.042 0.104 0.052 0.208 0.052 0.052 

Table P5-15b: Computed flow rates for the given initial set of nodal heads. 
Node 1 2 3 4 5 6 7 8 9 10 Pump 
Flow 
(m3/s) 

0.0449 0.057 -0.08 0.0688 -0.0467 0.0865 0.0527 0.2125 0.1512 -0.393 0.2153 

Flow 
(m3/h) 

161.5 205.0 -287.9 247.7 -168.1 311.6 189.7 764.9 544.2 -1415.2 775.0 

Solutions: 

1.   a)  To compute the equivalent head loss coefficient for pipes in series the 
head loss coefficients, Kl, are summed or by Eq. 5-2: 

 ∑
=

=
lpath

l
l

s
eq KK

1

 

The K for each pipe is computed in the last column of Table P5-1 with n = 
2. The equivalent K is then: 

8865.02821.01720.02718.01606.0

4321
1

=+++=

+++== ∑
=

KKKKKK
lpath

l
l

s
eq  

b) The total head loss is:  

mQKh s
eqL 22.0)5.0(8865.0 2 ===  

This value is equal to the sum of the head losses for the individual segments 
(Table P5-1). 
 
2. a) To compute the equivalent head loss coefficient for pipes in parallel the 
inverse head loss coefficients, Kl, are summed or by Eq. 5-2: 
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The K for each pipe is computed in the last column of Table P5-1. The 
equivalent K is then: 
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b) The total flow rate is then: 

 smQmQQKh s
eqL /74.66.00132.0 32 =⇒===  

This value is equal to the sum of the flow in the individual pipes (Table P5-2). 
 
3.  a) Pipe flow in pipe 10 is found by conservation of mass: 

( ) hrmhrssmVD  V A  Q
2

/5.1512/3600)/34.3(
4

)400.0(
4

3
2

====
ππ  

In the output file, Q10 = -1512.5 m3/h. 
b) Pipe flow in pipe 4 

Use the nodal mass balance for node 5. In this equation, Q7 has a negative 
sign since that flow is assumed to be from node 5 to node 6 or: 

Q4 + Q6 - Q7  = q5 = Q4 + 309.62 - (-188) = 750 ⇒  Q4 = 252.38 m3/h 

The negative sign in the model output for node 7 implies that the flow is 
actually from node 6 to node 5. 
c) Friction factor in pipe 1 

The friction factor can be determined from the Darcy-Weisbach equation 
or: 

 031.0
)81.9(2)3.0(

)64.0(1000)1000/1000(19.2
2

22

=⇒=== ff
gD

VLfh f   



 

5-72       CHAPTER FIVE 

 

d) Velocity in pipe 7 
By continuity: 

smVVV
D

VAQ /06.1
4

)25.0(
4

)3600/1(188 77

2

7

2
7

777 =⇒==== ππ
 

e) Pump flow rate 
Since the pump head is given as (with a positive sign since the negative 

head loss is a gain) we can substitute in the pump equation for Q: 

Hp = 240 – 0.00024 Q2 = 95.85 ⇒  Q =  775 m3/h 

f) Confirm the energy balance in the loop containing node 1 
This loop consists of four pipes (1, 4, 6, and 3). The sum of the head losses 

in this loop should equal zero. Negative signs are given to flows in the counter-
clockwise direction: 

0)1000/1000(32.17)1000/1000(28.20
)1000/1000(15.5)1000/1000(19.23,6,4,1,

=+−
+−=+++ LLLL hhhh

 

The sum equals zero confirming conservation of energy. 
g) Confirm the energy balance across the pseudo-loop. 

The pseudo-loop begins at node 9 through the pump and pipes 4, 7, 9 and 
10 to node 8. Energy losses are given negative signs if the flow is toward node 
8 and positive (a gain if away from node 8) or: 

m

HhhhhhH LLLLp

210)1000/1000(9/39)1000/1000(88.61)1000/1000(51.7

)1000/1000(15.5)85.95(10810,9,7,4,9

=+++

−−−==++++−
 

The head gains/losses balance to the difference in head between the two 
reservoirs. 
h) Compute the nodal demand for node 3.   

By conservation of mass at the node: 

 Q2 + Q5 = q3 = 208.64 – (-166.36) = 375 m3/h 

i) Total and pressure heads for node 6.  
Starting at the known total head at node 7, we can substrate the head losses 

in the connecting pipe 9 to find the total head at node 6 or: 

 H7 - hL,9 = 170.1 – 61.88 =108.22 m = H6 
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The pressure head for node 6 from definition of the total head and the given 
elevation: 

H6 = z6  + p6/γ = 108.22 = 80 + p6/γ => p6/ γ  = 28.22 m  
=> p6 =28.22 (9810) = 276.8 kPa 

4.  a) The minimum total head was 100.7 m at node 5. The friction factors 
were near 0.031 except for pipe 10 (f = 0.028).  

b) The minimum total head was located at node 4 and many nodes had 
negative total heads. The friction factors were in the range of 0.031. Negative 
heads are not realistic but demonstrate that the system of equations can be 
solved mathematically, even for this condition. 
 
5.  a)  The minimum total head was at node 5 but the head was 135.72 m. 
Although both the friction factor and CHW were for the same pipe type, the 
equivalent friction factors were all less than 0.023 with some as low as 0.018 
for this case compared to 0.03 for the D-W equation.  

Note the differences in heads were affected by a different flow distribution 
and more flow from the pump (with less head).  

b) The minimum total head also occurred at junction 5 and was less than 40 
m. The velocities in this system were excessive and resulted in negative 
pressures. The equivalent friction factors, f, were still less than 0.023 and most 
were less than 0.018. The impact was significantly less than when using the D-
W equation. 
 
6. Tables P5-6d and e present results from the numerical simulation. The pump 
is operating near the midpoint of the pump curve and velocities are in the 
normal range of 3-5 ft/s for most pipes. 

Positive flows show that the assumed flow directions were correct except 
for pipe 14. Reviews of the nodal heads confirm that flow moves from node 5 
to node 9 (Table P5-6e) that is the opposite of the assumed condition resulting 
in the negative sign on the pipe 14 flow. A negative head loss for the pump 
indicates a head gain across that link. The total heads for all nodes are presented 
in Table P5-6e. 

 
7. The new pump was connected to the same end nodes as pump 1. Similarly, 
the pipe was linked to nodes 1 and 6. As seen in Table P5-7a and b, the parallel 
pipe and pumps allowed more flow to be supplied from reservoir 10 with more 
energy. The total head at node 1 increased about 8 ft. Heads throughout the 
network were raised 6-8 ft.   

The flow entering the nodes from the reservoir was 8.02 cfs compared to 
4.81 cfs for the single pump. Virtually no flow entered the system from the 
tank. As a result, the flow pattern changed throughout the network compared to 
the condition in Problem 5-6. Flow direction changed in several pipes as seen 
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by the negative flow rates. Due to the large pump heads, flow moves toward 
node 3 (nearest the tank) through pipe 6 supplying that node with the majority 
of its flow. The tank significantly affects heads in that portion of the network. 
The operational impact can be determined by closing pipe 15 and examining 
the change in the system. 

 
8. The PRV’s (links 17 and 18) are installed with the downstream node at new 
nodes (12 and 13) as shown in Figure P5-8. 

Table P5-6d: Problem 5-6 pipe results. 
Pipe Flow 

(cfs) 
Velocity 

(ft/s) 
Unit Headloss 

(ft/kft) 
1 1.2 3.44 5.81 
2 0.07 0.2 0.03 
3 0.75 2.15 2.43 
4 2.18 4 5.91 
5 0.63 1.16 0.6 
6 0.72 1.31 0.75 
7 0.25 0.46 0.11 
8 1.44 2.65 2.76 
9 1.78 2.26 1.67 
10 0.68 1.25 0.68 
11 0.81 1.03 0.41 
12 0.66 1.88 1.9 
13 1.32 2.41 2.32 
14 0.68 1.25 0.74 
15 3.18 4.04 7.43 

Pump 4.82 0 -152.12 

Table P5-6e: Problem 5-6 node results. 

Node Total Head (ft) 

1 152.12 
2 146.31 
3 146.29 
4 143.12 
5 142.95 
6 145.23 
7 145.6 
8 146.21 
9 142.21 

Res. 10 0 
Res. 11 150 
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Table P5-7a: Node results with parallel pumps. 

Node Total Head (ft) 

1 160.77 
2 152.68 
3 150 
4 148.06 
5 148.05 
6 152.46 
7 152.63 
8 153.68 
9 147.84 

Res. 10 0 
Res. 11 150 

Table P5-7b: Problem 5-7 pipe results. 

Pipe Flow 
(cfs) 

Velocity 
(ft/s) 

Unit Headloss 
(ft/kft) 

1 1.43 4.11 8.09 
2 0.79 2.26 2.68 
3 0.58 1.65 1.49 
4 2.4 4.41 7.09 
5 0.14 0.26 0.04 
6 -1.13 2.07 1.76 
7 0.08 0.14 0.01 
8 1.6 2.93 3.32 
9 1.33 1.7 0.98 
10 0.9 1.66 1.16 
11 0.55 0.7 0.2 
12 0.94 2.69 3.68 
13 1.66 3.03 3.55 
14 -0.34 0.63 0.21 
15 -0.01 0.02 0 
18 2.58 3.28 3.32 

Pump 1 4.01 0 -160.77 
Pump 2 4.01 0 -160.77 

 
For a setting of 50 psi the pressures are reduced at nodes 12 and 13 to the 

desired 50 psi (Table P5-8a). Energy losses to node 9 reduce the pressure at that 
node to 49.3 psi. Note the flow rates in pipes 13 and 14 are different due to 
their different diameters and length but will have the same head loss. Pipe 13 
carries 0.93 cfs while pipe 14 has a flow rate of 1.07 cfs. 

With the PRV’s settings at 65 psi, the valves are fully open since the total 
heads at nodes 12 and 13 do not have pressures above the permissible 65 psi 
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(Table P5-8b). The pressure distribution is identical to that computed in 
Problem 5-6. 

6 12 18

17 12

13

13
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9
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Figure P5-8: Portion of Problem 5-6 network with PRV’s to reduce 
pressure at node 9. 

Table P5-8a: Node data for Problem 5-8 with PRV settings at 50 psi. 

Node Demand 
(cfs) 

Total 
head (ft) 

Pressure 
head (psi) 

1 0 152.3 65.99 
2 0.5 146.39 63.43 
3 0 146.25 63.37 
4 0.5 142.54 61.76 
5 2 142.27 61.65 
6 1 145.54 63.06 
7 0.5 145.84 63.19 
8 1.5 146.43 63.45 
9 2 113.81 49.31 
12 0 115.39 50 
13 0 115.39 50 

Res. 10 -4.81 0 0 
Res. 11 -3.19 150 0 

 
9. The maximum fire flow can be determined by trial and error or adding an 
emitter or reservoir near node 5. A short pipe (10ft with diameter 36 in and CHW 
= 130) is attached between node 5 and a reservoir with elevation of 69.23 ft (30 
psi) as shown in Figure P5-9. This pressure is equal to the required pressure 
head at node 5. 

Under this condition, the reservoir receives a flow of 10.88 cfs and the 
pressure head at node 5 is 30 psi. This flow rate is the additional flow beyond 
the 2 cfs that can be supplied under the defined demand condition. All other 
nodes have pressures exceeding 30 psi.  
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Table P5-8b: Nodal pressure data for Problem 5-6 network  
with PRV’s set at 65 psi. 

Node Pressure head (ft) 

1 65.92 
2 63.4 
3 63.39 
4 62.01 
5 61.94 
6 62.93 
7 63.09 
8 63.35 
9 61.63 

12 62.93 
13 61.94 

 
If the fire was located at node 3 and a similar pipe/reservoir was added to 

that location, a flow of 16.3 cfs could be supplied to node 3 with a pressure of 
30 psi. However, several other nodes including nodes 4, 5, and 9 had pressure 
slightly below 30 psi. Is this condition acceptable? As noted in the earlier 
discussion, clear definitions of satisfactory, reliable operating conditions must 
be set when performing this type of analysis. 

9 7

12

14

5
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Figure P5-9: Network modification for fire flow. 

10.  Model results for tank 11 are shown in Table P5-10b. The final tank level 
is within 0.5 ft of the initial condition. The tank remained open throughout the 
simulation and the range of tank levels was about 25 ft. 
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The tank level at time 4:00 can be computed with the flow rate and the 
initial tank level using Eq. 5-49: 

 ( )
T

outTinTtTttT A
tQQHH ∆−+=∆+ ,,,,  

where HT,t=0 = 150, QT,in = 1.6 cfs, QT,out = 0 cfs, ∆t = 4 hrs = 14400 s, and AT = 
π DT

2/4= π (50)2/4 = 1963 ft2. Substituting those values above gives: 

 ftH hrstT 74.16174.11150
1963

14400)06.1(1504, =+=−+==  

The result is slightly off due to rounding of the flow rate in the output table. 
QT,in to five decimal places is 1.60054 cfs which provides the exact numerical 
result shown in Table P5-10b. Other times can be confirmed by a similar 
analysis. 
 

Table P5-10b: Tank level and flow data for tank 11. 
Time 
(hrs) 

Demand 
(cfs) 

Head 
(ft) 

0:00 1.6 150 
4:00 -0.84 161.74 
8:00 -1.29 155.57 
12:00 -1.2 146.14 
16:00 1.31 137.37 
20:00 0.36 146.94 
24:00 1.64 149.58 

 
11.  The parallel pumps are links numbered 16 and 17. The following simple 
rule statements meet the defined conditions. The exact format of these 
statements varies with the model used.  
 

LINK 16 CLOSED IF NODE 11 ABOVE 155 
LINK 17 CLOSED IF NODE 11 ABOVE 145 
LINK 17 OPEN IF NODE 11 BELOW 145 

 
The first condition in the problem is that no pumps should operate if the 

tank level is above 155 ft. Link 16 is off if the level is above 155 ft, and link 17 
is off if the level is above 145 ft, so both are off at levels above 155 ft. Since 
link 16 is on when the level is below 145 ft and pump 17 is off above 145 ft, a 
single pump operates in the 145-155 ft level range satisfying the second 
condition. Finally, pump 17 is turned on when the tank level drops below 145ft 
and both pump operate in this condition. 
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The resulting tank levels and the pump flow rates are listed in Table P5-11. 
The tank level begins between 145 and 155 ft and the level begins to fall. Only 
pump 16 is operating during the first two periods until the level reaches 144.41 
ft at time 12:00. Pump 17 is then switched on, but the tank level continues to 
drop with the higher demands. Both pumps operate until time 20:00 when the 
level is above 145ft. The tank then fills to a height near the initial level. In this 
model, the control statements are examined at the hydraulic time step of 4 
hours, so the pump switches are not made at the time when the passes 145ft but 
the next closest time interval.  

Table P5-11: Tank levels and pump flows for Problem 5-11 (EPS with 
controls). 

Time 
(hrs) 

Tank 11 level 
(ft) 

Pump 16 flow 
(cfs) 

Pump 17 flow 
(cfs) 

0:00 150.0 4.78 0 
4:00 151.84 4.79 0 
8:00 150.4 5.14 0 
12:00 144.41 4.49 4.49 
16:00 136.91 4.67 4.67 
20:00 145.75 5.28 0 
24:00 149.0 4.85 0 

 
12.  Define loops and set m = 0. Assume an initial set of pipe flows that satisfy 
conservation of mass at all nodes. To satisfy conservation of mass with an 
assumed flow in pipe 10 toward the reservoir requires that the flow is negative 
(or opposite of the assumed direction). In most cases, one would not begin the 
solution process with a negative flow but it may occur. More likely, a negative 
flow will result after a few iterations if the initial assumption was incorrect. As 
seen below, the mathematics is the same with the addition of verification of the 
flow direction when computing head losses around a loop. 

For the first iteration (m = 1), the loop corrections are computed using Eq. 
5-20:  
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Compute the numerator which is sum of head losses around a loop for each 
loop substituting Q(0) for Q.   

For loop P, the head loss is: 
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where each term’s sign comes from the assumed flow direction and ∆E is the 
difference in energy between reservoirs 8 and 9. The second sign in the 
parentheses comes from the direction of the flow rate at the current iteration. 
The only pipes with negative values in parentheses are those with the incorrect 
flow directions, i.e., 3, 5 and 10. Substituting the flows in m3/s: 

m

hL

68.6520096.5094.660.165.4905.39
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For the closed loops: 

⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦
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The denominator is the sum of the absolute values of n hL/Q. So signs are 
not of concern in this calculation. Using the values listed in Table P5-12 gives: 

1.27736.15338.1736.1313.7338.200)3110)(2(
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5.10805.4321.1513769.120
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The correction factors for the pseudo-loop is then (in m3/s): 
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The other loops’ values are listed in Table P5-12b. Note that the corrections 
for loops II and III are negative while loops’ P and I corrections are positive. 

Table P5-12b: Summary of calculations for loop corrections  
for iteration 1. 

Loop P  (-2-5+9-10+P) I   (-1-3+4-6) II    (2-4+5+7) III   (6-7+8-9)* 

∑ Lh:  -65.68 -2.32 9.52 2.32 

∑ Qhn L /:  2773.1 1080.5 776.1 1923.8 

∆Q (cms) 0.024 0.002 -0.012 -0.001 

∆Q (cmh) 85.3 7.7 -44.2 -4.3 
* Pipes in loop, that is, the set lloop for each loop. Signs denote the assumed flow directions. 

The pipe flows are then adjusted according to their original assumed flow 
directions. For example, pipe 1 only appears in loop I so it has one correction. 
Also, since it was assumed to be in the negative direction relative to the loop its 
correction is negative or: 
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where the negative signs on pipes 3, 5, and 10 mean that the flow direction is 
the opposite of the initially assumed direction. The iterations continue and the 
flows in m3/h are:  

m  Pipe 1 2 3 4 5 6 7 8 9 10 Pump 

0 200.0 287.5 -250.0 250.0 -87.5 287.5 212.5 725.0 487.5 -1400.0 887.5 
1 192.3 158.1 -257.7 301.9 -216.9 275.4 172.6 720.7 577.1 -1485.3 802.2 
2 200.7 204.7 -249.3 255.3 -170.3 313.6 181.1 750.4 538.9 -1476.8 810.7 
3 183.1 195.7 -266.9 267.7 -179.3 295.5 186.8 749.9 553.7 -1491.0 796.5 
4 182.6 204.8 -267.4 258.5 -170.2 305.5 186.0 760.4 543.7 -1491.5 796.0 
5 177.0 204.4 -273.0 260.1 -170.6 301.6 188.3 762.0 546.4 -1496.0 791.5 
6 175.8 207.0 -274.2 257.6 -168.0 304.0 188.4 765.7 543.9 -1497.0 790.5 
7 173.8 207.5 -276.2 257.6 -167.5 303.2 189.2 766.9 544.2 -1498.6 788.9 
8 173.1 208.3 -276.9 256.8 -166.7 303.8 189.3 768.3 543.5 -1499.3 788.2 
9 172.3 208.6 -277.7 256.7 -166.4 303.7 189.6 768.9 543.5 -1499.9 787.6 
10 171.9 209.0 -278.1 256.4 -166.0 303.9 189.7 769.4 543.2 -1500.2 787.3 
11 171.6 209.1 -278.4 256.3 -165.9 303.9 189.8 769.8 543.2 -1500.4 787.1 
12 171.4 209.3 -278.6 256.2 -165.7 303.9 189.9 770.0 543.1 -1500.6 786.9 
13 171.3 209.4 -278.7 256.2 -165.6 303.9 189.9 770.1 543.1 -1500.7 786.8 
14 171.2 209.4 -278.8 256.1 -165.6 303.9 189.9 770.2 543.0 -1500.7 786.8 
15 171.2 209.4 -278.8 256.1 -165.6 303.9 190.0 770.3 543.0 -1500.8 786.7 
16 171.1 209.5 -278.9 256.1 -165.5 304.0 190.0 770.4 543.0 -1500.9 786.6 
17 171.1 209.5 -278.9 256.1 -165.5 304.0 190.0 770.4 543.0 -1500.9 786.6 
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Thus, seventeen iterations were required to reach convergence. Note that 
the values are not the same as in Problem 5-3 since the friction factors were 
assumed to be equal to 0.032 and not determined by the Swamee-Jain equation 
(or Moody diagram). 

 
13.  The simultaneous loop equation method solves the system of equations 
(Eq. 5-23): 

 JL  ∆Q = -F(Q(m-1)) 

at each iteration m. 
For the first iteration (m=1) with m3/s as the flow unit:  
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where the diagonal terms are the terms in the denominator for each loop in the 
Hardy Cross method, e.g.:  
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The off-diagonal terms correspond to the absolute value of the sum of the 
gradients for pipes common to multiple loops, e.g.: 
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This value also appears in column 1 row 3 as the matrix is symmetrical. 
The vector, F(Q(0)), is the numerator terms from the Hardy Cross method 

or: 

 FT(Q(0)) = [-65.68, -2.32, 9.53, 2.32]T 

Solving the system of equations (Eq. 5-23) gives: 

∆QT =  [0.0272, 0.0075, 0.0047, 0.0117]T (m3/s)  
= [98.2, 26.9, 17.0, 42.0]T (m3/h) 

The pipe flows are then adjust according to their original assumed flow 
directions. For example, pipe 1 only appears in loop I so it has one correction. 
Also since it was assumed to be in the negative direction relative to the loop its 
correction is negative or: 
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The other pipes are: 
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These values are significantly different from the first iteration of the Hardy 
Cross method and the simultaneous loop method converge in only 3 iterations. 
The values at each iteration are shown below. 

Table P5-13: Pipe flow rates in m3/h with iteration number for the 
simultaneous loop equation solution. 

m Pipe 1 2 3 4 5 6 7 8 9 10 Pump 

0 200.0 287.5 -250.0 250.0 -87.5 287.5 212.5 725.0 487.5 -1400.0 887.5 
1 173.1 206.3 -276.9 259.9 -168.7 302.6 187.5 767.0 543.7 -1498.2 789.3 
2 171.1 209.5 -278.9 256.1 -165.5 304.0 190.0 770.4 543.0 -1500.9 786.6 
3 171.1 209.5 -278.9 256.1 -165.5 304.0 190.0 770.4 543.0 -1500.9 786.6 

 
14.  The modified linear method iteratively solves the set of linear equations 

 JNL Q(m) = FNL = - F + JNL Q(m-1) 

to update the pipe flow rates. 
JNL is comprised of the derivatives of the node and loop equations with 

respect to the individual pipe flows. The node equation gradients are 0, +1, and 
-1. These terms are the coefficients of the flow rates in the conservation of mass 
equations. Based on the assumed flow directions shown in Figure P5-12, the 
node equations are written with appropriate signs. For example for node 1, the 
equation is: 

 Q1 – Q3 = 0.125 m3/s 

Recall that the resulting flow rate in pipe 3 is 278.9 m3/h (0.0775 m3/s) 
toward node 1 or –278.9 m3/h. With 0.0475 m3/s toward node 1 in pipe, the 
negative flow satisfies continuity at the node. 

Thus, the coefficients for node 1 are zero except for pipe 1 with a +1 and 
pipe 3 with a –1. The remainder of the node equations can be written for the 
network and the coefficients appear in the first nnode (7) rows of the Jacobian 
matrix, JNL, (below). 

The last four rows are the gradients of the loop equation with respect to the 
individual pipe flows with the values for pipe l appearing in column l. These 
terms are: 
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where the sign is taken from the flow direction relative to the loop, that is, 
from ⎣ ⎦LPlQ . 
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For pipe 1 in loop I, the value is:  
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where the negative sign is applied based on the assumed flow direction. For 
pipe 3 in loop I, the value is computed by: 
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where the + sign on the term comes from the assumed clockwise flow and the 
negative sign on the flow rate denotes that the assumed flow direction is 
incorrect and is counterclockwise. The remainder of the matrix can be 
determined as shown above.   

The first nnode rows of the right hand side vector, - F + JNL Q(m-1), are the 
nodal demands. The last nloop + nploop rows that contain only pipes are: 
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or (n-1) times the sum of the head losses around the loop at Q(m-1), i.e., (n-1) 
times the residual values. For loop I,  
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Note that the sign convention for flow relative to the loop is obeyed for each 
term. With the D-W head loss equation (n = 2), these become the sum of the 
head losses or the values given in second row of Table P5-12b. The relationship 
is slightly different for loop P that contains a pump. 
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The resulting RHS vector is then: 
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The first nnode rows of the right hand side vector, - F + JNL Q(m-1), are the 
nodal demands and the last nloop + nploop rows are equal to: 
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or (n-1) times the sum of the head losses around the loop at Q(m-1), i.e., (n-1) 
times the residual values. With the D-W head loss equation, these become the 
sum of the head losses or the values given in second row of Table P5-12b. 

The resulting RHS is then: 
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The resulting set of equations is solved for the unknown pipe flow rates 
resulting in the values shown in Table P5-14 for iteration 1. Two additional 
iterations are needed to converge to the solution. 

Table P5-14: Flow rates in m3/h for node-loop equation solution to 
Problem 5-12. 

m Pipe 1 2 3 4 5 6 7 8 9 10 Pump 
1 200.0 287.5 -250.0 250.0 -87.5 287.5 212.5 725.0 487.5 -1400.0 887.5 
2 173.1 206.3 -276.9 259.9 -168.7 302.6 187.5 767.0 543.7 -1498.2 789.3 
3 171.1 209.5 -278.9 256.1 -165.5 304.0 190.0 770.4 543.0 -1500.9 786.6 
4 171.1 209.5 -278.9 256.1 -165.5 304.0 190.0 770.4 543.0 -1500.9 786.6 
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15.  The node equation formulation iteratively solves:  

 JN ∆H = - FN 

where the off-diagonal terms in the Jacobian matrix, JN, (Eq. 5-30a) are:  
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and the diagonal terms (Eq. 5-30b) are: 
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For node (row) equation 1 (i=1) and connected node (column) 2 (j=2),  
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This terms is also placed in row 2 (node 2) column 1 (connected node 1). 
The diagonal term for node 2 is the sum of the gradients for the connecting 

nodes including the reservoir or: 
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where the last term is the derivative of the pump equation. 
The RHS vector FN is the residual vector of the conservation of mass 

equations. For example for node 4: 
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F4 = Q8 – Q6 – Q3 – q4 = 0.2125 – 0.0865 – 0.0800 – 0.0521 = -0.0061 m3/s 

So –F4 equals 0.0061 in the RHS vector. Here the flow direction in pipe 3 
is away from node 4 based upon the nodal head values. 

Setting up the remainder of the terms equations results in JN and FN: 
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and 

- FN
T = [0.000156, -0.003, 0.000528, 0.00614, 0.000288, 0.000288, 0.02263]T 

Solving this system of equations gives the vector of corrections: 

 ∆HT = [4.50, 4.25, 4.40, 5.57, 4.59, 4.57, 4.85]T  

and the new heads are computed by H1 = H0 - ∆H to give: 

 H(1)T = [99.16, 101.60, 97.92, 115.41, 96.10, 103.65, 165.25]T 

This process is continued until the heads converge in three iterations as 
shown in Table P5-15c. Note that the initial solution in this problem was 
correct in terms of flow directions. 

Table P5-15c: Nodal heads for iterations of the nodal head equation 
solution of Problem 5-12. 

m Node 1 2 3 4 5 6 7 

1 103.66 105.85 102.32 120.98 100.70 108.22 170.10 
2 99.16 101.60 97.92 115.41 96.11 103.65 165.25 
3 99.04 101.49 97.81 115.29 95.99 103.53 165.12 
4 99.04 101.49 97.81 115.29 95.99 103.53 165.12 

 
16.  The solution of the pipe equations requires iteratively solving: 

 dFP(Q,H) = n A11 ∆Q(m) + A12 ∆H(m) = - dE (from 5-41) 
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 dFQ(Q,H) = A21 ∆Q(m) = - dq  (from 5-42) 

for ∆Q and ∆H. Then updating H(m) and Q(m) by: 

 H(m) = H(m-1) + ∆H(m) (from 5-43) 

 Q(m) = Q(m-1) + ∆Q(m) (from 5-44) 

First, we form the connectivity matrix A12,  
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The rows of A12 correspond to pipes and the columns of the matrix 
correspond to nodes. The non-zeros are based on the assumed flow directions in 
Figure P5-12. For pipe 3, the assumed source of flow is node 1 (-1) and the 
downstream sink is node 4 (1). A21 in Eq. 5-40 is the transpose to A12.  

A11 and the RHS are functions of the present values for H and Q. For m =1, 
we use the values given in Table P5-12a and P5-15b. nA11 is a diagonal matrix 
with the diagonal terms being the absolute value of the derivatives of the flow 
equation. For pipe 1, the equations with appropriate values substituted are: 
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Since water is assumed to flow from node 2 to 1 and our initial assumption 
is positive (200 m3/h = 0.0556 m3/s), the head balance is as shown with the 
positive one multiplier defining that direction in the equations. The flow 
direction in pipe 3, on the other hand, was incorrect which may occur in the 
initial assumption or during iterations to convergence. For pipe 3, the pipe 
equation and its derivatives are: 

⎣ ⎦
28.4)0694.0()1(5.270798.12066.103

:
2

3
2

33413,

=−++−=

=++− dEQKHHFP  

and 

 3760694.0)5.2707(21
33

3

3, =−==
∂

∂ −nP QKn
Q
F

 

As seen the negative sign is added to the head loss equation for the 
discharge. Also the derivative term is always positive. The diagonal terms of 
the n A11 for pipes 1-10 and the pump are 121, 174, 376, 151, 132, 432, 320, 
438, 722, 200, and 1534.  

The residual vector of the head loss equations is: 

[ ] [
]9.4485.02.1299.491.1

01.330.410.026.441.317.1
−−−
−−−−−=− TdE  

and the dq vector terms are all equal to zero. 
The resulting matrix equations are given below. The set of equations is 

solved for ∆Q and ∆H and the result is: 

[
]027.0027.0016.0012.0007.0

004.0022.0003.0008.0022.0008.0
−−−−
−−−−=∆ TQ  

and 

[ ]63.486.355.376.453.204.330.3 −−−−−−−=∆ TH  
 
The updated flow rates and nodal heads are computed by Eqs. 5-41 and 5-

42 and are listed in Table P5-16a and b for the three iterations required to 
converge to the solution. 
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Table P5-16a: Flow rates in m3/h for node-loop equation solution to 
Problem 5-12. 

m Pipe 1 2 3 4 5 6 7 8 9 10 Pump 

1 200.0 287.5 -250.0 250 -87.5 287.5 212.5 725.0 487.5 -1400. 887.5 
2 173.1 206.3 -276.9 259.9 -168.7 302.6 187.5 767.0 543.7 -1498.2 789.3 
3 171.1 209.5 -276.9 256.1 -165.5 304.0 190.0 770.4 543.0 -1500.9 786.6 
4 171.1 209.5 -276.9 256.1 -165.5 304.0 190.0 770.4 543.0 -1500.9 786.6 

Table P5-16b: Convergence of nodal heads for pipe equation solution. 

m Node 1 2 3 4 5 6 7 

1 103.66 105.85 102.32 120.98 100.70 108.22 170.10 
2 100.36 102.81 99.79 116.23 97.15 104.36 165.47 
3 99.04 101.49 97.81 115.29 95.99 103.53 165.12 
4 99.04 101.49 97.81 115.29 95.99 103.53 165.12 

 


