
Problem Solutions – Chapter 11

Problem 11.1.1 Solution
For this problem, it is easiest to work with the expectation operator. The mean function of the
output is

E [Y (t)] = 2 + E [X(t)] = 2 (1)

The autocorrelation of the output is

RY (t, τ) = E [(2 + X(t)) (2 + X(t + τ))] (2)
= E [4 + 2X(t) + 2X(t + τ) + X(t)X(t + τ)] (3)
= 4 + 2E [X(t)] + 2E [X(t + τ)] + E [X(t)X(t + τ)] (4)
= 4 + RX(τ) (5)

We see that RY (t, τ) only depends on the time difference τ . Thus Y (t) is wide sense stationary.

Problem 11.1.2 Solution
By Theorem 11.2, the mean of the output is

μY = μX

∫ ∞

−∞
h(t) dt (1)

= −3
∫ 10−3

0
(1 − 106t2) dt (2)

= −3
(
t − (106/3)t3

)∣∣10−3

0
(3)

= −2 × 10−3 volts (4)

Problem 11.1.3 Solution
By Theorem 11.2, the mean of the output is

μY = μX

∫ ∞

−∞
h(t) dt = 4

∫ ∞

0
e−t/a dt = −4ae−t/a

∣∣∣∞
0

= 4a. (1)

Since μY = 1 = 4a, we must have a = 1/4.

Problem 11.1.4 Solution
Since E[Y 2(t)] = RY (0), we use Theorem 11.2(a) to evaluate RY (τ) at τ = 0. That is,

RY (0) =
∫ ∞

−∞
h(u)

∫ ∞

−∞
h(v)RX(u − v) dv du (1)

=
∫ ∞

−∞
h(u)

∫ ∞

−∞
h(v)η0δ(u − v) dv du (2)

= η0

∫ ∞

−∞
h2(u) du, (3)

by the sifting property of the delta function.
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Problem 11.2.1 Solution

(a) Note that

Yi =
∞∑

n=−∞
hnXi−n =

1
3
Xi+1 +

1
3
Xi +

1
3
Xi−1 (1)

By matching coefficients, we see that

hn =
{

1/3 n = −1, 0, 1
0 otherwise

(2)

(b) By Theorem 11.5, the output autocorrelation is

RY [n] =
∞∑

i=−∞

∞∑
j=−∞

hihjRX [n + i − j] (3)

=
1
9

1∑
i=−1

1∑
j=−1

RX [n + i − j] (4)

=
1
9

(RX [n + 2] + 2RX [n + 1] + 3RX [n] + 2RX [n − 1] + RX [n − 2]) (5)

Substituting in RX [n] yields

RY [n] =

⎧⎪⎪⎨
⎪⎪⎩

1/3 n = 0
2/9 |n| = 1
1/9 |n| = 2
0 otherwise

(6)

Problem 11.2.2 Solution
Applying Theorem 11.4 with sampling period Ts = 1/4000 s yields

RX [k] = RX(kTs) = 10
sin(2000πkTs) + sin(1000πkTs)

2000πkTs
(1)

= 20
sin(0.5πk) + sin(0.25πk)

πk
(2)

= 10 sinc(0.5k) + 5 sinc(0.25k) (3)

Problem 11.2.3 Solution

(a) By Theorem 11.5, the expected value of the output is

μW = μY

∞∑
n=−∞

hn = 2μY = 2 (1)
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(b) Theorem 11.5 also says that the output autocorrelation is

RW [n] =
∞∑

i=−∞

∞∑
j=−∞

hihjRY [n + i − j] (2)

=
1∑

i=0

1∑
j=0

RY [n + i − j] (3)

= RY [n − 1] + 2RY [n] + RY [n + 1] (4)

For n = −3,
RW [−3] = RY [−4] + 2RY [−3] + RY [−2] = RY [−2] = 0.5 (5)

Following the same procedure, its easy to show that RW [n] is nonzero for |n| = 0, 1, 2.
Specifically,

RW [n] =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0.5 |n| = 3
3 |n| = 2
7.5 |n| = 1
10 n = 0
0 otherwise

(6)

(c) The second moment of the output is E[W 2
n ] = RW [0] = 10. The variance of Wn is

Var[Wn] = E
[
W 2

n

]− (E [Wn])2 = 10 − 22 = 6 (7)

(d) This part doesn’t require any probability. It just checks your knowledge of linear systems
and convolution. There is a bit of confusion because hn is used to denote both the filter
that transforms Xn to Yn as well as the filter that transforms Yn to Wn. To avoid confusion,
we will use ĥn to denote the filter that transforms Xn to Yn. Using Equation (11.25) for
discrete-time convolution, we can write

Wn =
∞∑

j=−∞
hjYn−j , Yn−j =

∞∑
i=−∞

ĥiXn−j−i. (8)

Combining these equations yields

Wn =
∞∑

j=−∞
hj

∞∑
i=−∞

ĥiXn−j−i. (9)

For each j, we make the substitution k = i + j, and then reverse the order of summation to
obtain

Wn =
∞∑

j=−∞
hj

∞∑
k=−∞

ĥk−jXn−k =
∞∑

k=−∞

⎛
⎝ ∞∑

j=−∞
hj ĥk−j

⎞
⎠Xn−k. (10)

Thus we see that

gk =
∞∑

j=−∞
hj ĥk−j . (11)

That is, the filter gn is the convolution of the filters ĥn and hn.
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In the context of our particular problem, the filter ĥn that transforms Xn to Yn is given in
Example 11.5. The two filters are

ĥ =
[
ĥ0 ĥ1

]′
=

[
1/2 1/2

]′ h =
[
h0 h1

]′ =
[
1 1

]′ (12)

Keep in mind that hn = ĥn = 0 for n < 0 or n > 1. From Equation (11),

gk = ĥk + ĥk−1 =

⎧⎪⎪⎨
⎪⎪⎩

1/2 k = 0
1 k = 1
1/2 k = 2
0 otherwise

(13)

Problem 11.2.4 Solution

(a) By Theorem 11.5, the mean output is

μV = μY

∞∑
n=−∞

hn = (−1 + 1)μY = 0 (1)

(b) Theorem 11.5 also says that the output autocorrelation is

RV [n] =
∞∑

i=−∞

∞∑
j=−∞

hihjRY [n + i − j] (2)

=
1∑

i=0

1∑
j=0

hihjRY [n + i − j] (3)

= −RY [n − 1] + 2RY [n] − RY [n + 1] (4)

For n = −3,

RV [−3] = −RY [−4] + 2RY [−3] − RY [−2] = RY [−2] = −0.5 (5)

Following the same procedure, it’s easy to show that RV [n] is nonzero for |n| = 0, 1, 2.
Specifically,

RV [n] =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−0.5 |n| = 3
−1 |n| = 2
0.5 |n| = 1
2 n = 0
0 otherwise

(6)

(c) Since E[Vn] = 0, the variance of the output is E[V 2
n ] = RV [0] = 2. The variance of Wn is

Var[Vn] = E
[
W 2

n

]
RV [0] = 2 (7)

(d) This part doesn’t require any probability. It just checks your knowledge of linear systems
and convolution. There is a bit of confusion because hn is used to denote both the filter that
transforms Xn to Yn as well as the filter that transforms Yn to Vn. To avoid confusion, we will
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use ĥn to denote the filter that transforms Xn to Yn. Using Equation (11.25) for discrete-time
convolution, we can write

Vn =
∞∑

j=−∞
hjYn−j , Yn−j =

∞∑
i=−∞

ĥiXn−j−i. (8)

Combining these equations yields

Vn =
∞∑

j=−∞
hj

∞∑
i=−∞

ĥiXn−j−i. (9)

For the inner sum, we make the substitution k = i+j and then reverse the order of summation
to obtain

Vn =
∞∑

j=−∞
hj

∞∑
k=−∞

ĥk−jXn−k =
∞∑

k=−∞

⎛
⎝ ∞∑

j=−∞
hj ĥk−j

⎞
⎠Xn−k. (10)

Thus we see that

fk =
∞∑

j=−∞
hj ĥk−j . (11)

That is, the filter fn is the convolution of the filters ĥn and hn. In the context of our particular
problem, the filter ĥn that transforms Xn to Yn is given in Example 11.5. The two filters are

ĥ =
[
ĥ0 ĥ1

]′
=

[
1/2 1/2

]′ h =
[
h0 h1

]′ =
[
1 −1

]′ (12)

Keep in mind that hn = ĥn = 0 for n < 0 or n > 1. From Equation (11),

fk = ĥk − ĥk−1 =

⎧⎪⎪⎨
⎪⎪⎩

1/2 k = 0
0 k = 1
−1/2 k = 2
0 otherwise

(13)

Problem 11.2.5 Solution
We start with Theorem 11.5:

RY [n] =
∞∑

i=−∞

∞∑
j=−∞

hihjRX [n + i − j] (1)

= RX [n − 1] + 2RX [n] + RX [n + 1] (2)

First we observe that for n ≤ −2 or n ≥ 2,

RY [n] = RX [n − 1] + 2RX [n] + RX [n + 1] = 0 (3)

This suggests that RX [n] = 0 for |n| > 1. In addition, we have the following facts:

RY [0] = RX [−1] + 2RX [0] + RX [1] = 2 (4)
RY [−1] = RX [−2] + 2RX [−1] + RX [0] = 1 (5)

RY [1] = RX [0] + 2RX [1] + RX [2] = 1 (6)

A simple solution to this set of equations is RX [0] = 1 and RX [n] = 0 for n �= 0.
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Problem 11.2.6 Solution
The mean of Yn = (Xn + Yn−1)/2 can be found by realizing that Yn is an infinite sum of the Xi’s.

Yn =
[
1
2
Xn +

1
4
Xn−1 +

1
8
Xn−2 + . . .

]
(1)

Since the Xi’s are each of zero mean, the mean of Yn is also 0. The variance of Yn can be expressed
as

Var[Yn] =
[
1
4

+
1
16

+
1
64

+ . . .

]
Var[X] =

∞∑
i=1

(
1
4
)iσ2 = (

1
1 − 1/4

− 1)σ2 = σ2/3 (2)

The above infinite sum converges to 1
1−1/4 − 1 = 1/3, implying

Var [Yn] = (1/3) Var [X] = 1/3 (3)

The covariance of Yi+1Yi can be found by the same method.

Cov[Yi+1, Yi] = [
1
2
Xn +

1
4
Xn−1 +

1
8
Xn−2 + . . .][

1
2
Xn−1 +

1
4
Xn−2 +

1
8
Xn−3 + . . .] (4)

Since E[XiXj ] = 0 for all i �= j, the only terms that are left are

Cov[Yi+1, Yi] =
∞∑
i=1

1
2i

1
2i−1

E[X2
i ] =

1
2

∞∑
i=1

1
4i

E[X2
i ] (5)

Since E[X2
i ] = σ2, we can solve the above equation, yielding

Cov [Yi+1, Yi] = σ2/6 (6)

Finally the correlation coefficient of Yi+1 and Yi is

ρYi+1Yi =
Cov[Yi+1, Yi]√

Var[Yi+1]
√

Var[Yi]
=

σ2/6
σ2/3

=
1
2

(7)

Problem 11.2.7 Solution
There is a technical difficulty with this problem since Xn is not defined for n < 0. This implies
CX [n, k] is not defined for k < −n and thus CX [n, k] cannot be completely independent of k. When
n is large, corresponding to a process that has been running for a long time, this is a technical
issue, and not a practical concern. Instead, we will find σ̄2 such that CX [n, k] = CX [k] for all n
and k for which the covariance function is defined. To do so, we need to express Xn in terms of
Z0, Z1, . . . , Zn1 . We do this in the following way:

Xn = cXn−1 + Zn−1 (1)
= c[cXn−2 + Zn−2] + Zn−1 (2)

= c2[cXn−3 + Zn−3] + cZn−2 + Zn−1 (3)
... (4)

= cnX0 + cn−1Z0 + cn−2Z2 + · · · + Zn−1 (5)

= cnX0 +
n−1∑
i=0

cn−1−iZi (6)
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Since E[Zi] = 0, the mean function of the Xn process is

E [Xn] = cnE [X0] +
n−1∑
i=0

cn−1−iE [Zi] = E [X0] (7)

Thus, for Xn to be a zero mean process, we require that E[X0] = 0. The autocorrelation function
can be written as

RX [n, k] = E [XnXn+k] = E

⎡
⎣(cnX0 +

n−1∑
i=0

cn−1−iZi

)⎛
⎝cn+kX0 +

n+k−1∑
j=0

cn+k−1−jZj

⎞
⎠
⎤
⎦ (8)

Although it was unstated in the problem, we will assume that X0 is independent of Z0, Z1, . . . so
that E[X0Zi] = 0. Since E[Zi] = 0 and E[ZiZj ] = 0 for i �= j, most of the cross terms will drop
out. For k ≥ 0, autocorrelation simplifies to

RX [n, k] = c2n+k Var[X0] +
n−1∑
i=0

c2(n−1)+k−2i)σ̄2 = c2n+k Var[X0] + σ̄2ck 1 − c2n

1 − c2
(9)

Since E[Xn] = 0, Var[X0] = RX [n, 0] = σ2 and we can write for k ≥ 0,

RX [n, k] = σ̄2 ck

1 − c2
+ c2n+k

(
σ2 − σ̄2

1 − c2

)
(10)

For k < 0, we have

RX [n, k] = E

⎡
⎣(cnX0 +

n−1∑
i=0

cn−1−iZi

)⎛
⎝cn+kX0 +

n+k−1∑
j=0

cn+k−1−jZj

⎞
⎠
⎤
⎦ (11)

= c2n+k Var[X0] + c−k
n+k−1∑

j=0

c2(n+k−1−j)σ̄2 (12)

= c2n+kσ2 + σ̄2c−k 1 − c2(n+k)

1 − c2
(13)

=
σ̄2

1 − c2
c−k + c2n+k

(
σ2 − σ̄2

1 − c2

)
(14)

We see that RX [n, k] = σ2c|k| by choosing

σ̄2 = (1 − c2)σ2 (15)

Problem 11.2.8 Solution
We can recusively solve for Yn as follows.

Yn = aXn + aYn−1 (1)
= aXn + a[aXn−1 + aYn−2] (2)

= aXn + a2Xn−1 + a2[aXn−2 + aYn−3] (3)
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By continuing the same procedure, we can conclude that

Yn =
n∑

j=0

aj+1Xn−j + anY0 (4)

Since Y0 = 0, the substitution i = n − j yields

Yn =
n∑

i=0

an−i+1Xi (5)

Now we can calculate the mean

E [Yn] = E

[
n∑

i=0

an−i+1Xi

]
=

n∑
i=0

an−i+1E [Xi] = 0 (6)

To calculate the autocorrelation RY [m, k], we consider first the case when k ≥ 0.

CY [m, k] = E

⎡
⎣ m∑

i=0

am−i+1Xi

m+k∑
j=0

am+k−j+1Xj

⎤
⎦ =

m∑
i=0

m+k∑
j=0

am−i+1am+k−j+1E [XiXj ] (7)

Since the Xi is a sequence of iid standard normal random variables,

E [XiXj ] =
{

1 i = j
0 otherwise

(8)

Thus, only the i = j terms make a nonzero contribution. This implies

CY [m, k] =
m∑

i=0

am−i+1am+k−i+1 (9)

= ak
m∑

i=0

a2(m−i+1) (10)

= ak
[
(a2)m+1 + (a2)m + · · · + a2

]
(11)

=
a2

1 − a2
ak

[
1 − (a2)m+1

]
(12)

For k ≤ 0, we start from

CY [m, k] =
m∑

i=0

m+k∑
j=0

am−i+1am+k−j+1E [XiXj ] (13)

As in the case of k ≥ 0, only the i = j terms make a contribution. Also, since m + k ≤ m,

CY [m, k] =
m+k∑
j=0

am−j+1am+k−j+1 = a−k
m+k∑
j=0

am+k−j+1am+k−j+1 (14)

By steps quite similar to those for k ≥ 0, we can show that

CY [m, k] =
a2

1 − a2
a−k

[
1 − (a2)m+k+1

]
(15)

A general expression that is valid for all m and k would be

CY [m, k] =
a2

1 − a2
a|k|

[
1 − (a2)min(m,m+k)+1

]
(16)

Since CY [m, k] depends on m, the Yn process is not wide sense stationary.
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Problem 11.3.1 Solution
Since the process Xn has expected value E[Xn] = 0, we know that CX(k) = RX(k) = 2−|k|. Thus
X =

[
X1 X2 X3

]′ has covariance matrix

CX =

⎡
⎣ 20 2−1 2−2

2−1 20 2−1

2−2 2−1 20

⎤
⎦ =

⎡
⎣ 1 1/2 1/4

1/2 1 1/2
1/4 1/2 1

⎤
⎦ . (1)

From Definition 5.17, the PDF of X is

fX (x) =
1

(2π)n/2[det (CX)]1/2
exp

(
−1

2
x′C−1

X x
)

. (2)

If we are using Matlab for calculations, it is best to decalre the problem solved at this point.
However, if you like algebra, we can write out the PDF in terms of the variables x1, x2 and x3. To
do so we find that the inverse covariance matrix is

C−1
X =

⎡
⎣ 4/3 −2/3 0
−2/3 5/3 −2/3

0 −2/3 4/3

⎤
⎦ (3)

A little bit of algebra will show that det(CX) = 9/16 and that

1
2
x′C−1

X x =
2x2

1

3
+

5x2
2

6
+

2x2
3

3
− 2x1x2

3
− 2x2x3

3
. (4)

It follows that

fX (x) =
4

3(2π)3/2
exp

(
−2x2

1

3
− 5x2

2

6
− 2x2

3

3
+

2x1x2

3
+

2x2x3

3

)
. (5)

Problem 11.3.2 Solution
The sequence Xn is passed through the filter

h =
[
h0 h1 h2

]′ =
[
1 −1 1

]′ (1)

The output sequence is Yn.

(a) Following the approach of Equation (11.58), we can write the output Y3 =
[
Y1 Y2 Y3

]′ as

Y3 =

⎡
⎣Y1

Y2

Y3

⎤
⎦ =

⎡
⎣h1 h0 0 0

h2 h1 h0 0
0 h2 h1 h0

⎤
⎦
⎡
⎢⎢⎣

X0

X1

X2

X3

⎤
⎥⎥⎦ =

⎡
⎣−1 1 0 0

1 −1 1 0
0 1 −1 1

⎤
⎦

︸ ︷︷ ︸
H

⎡
⎢⎢⎣

X0

X1

X2

X3

⎤
⎥⎥⎦

︸ ︷︷ ︸
X

. (2)

We note that the components of X are iid Gaussian (0, 1) random variables. Hence X has
covariance matrix CX = I, the identity matrix. Since Y3 = HX,

CY3 = HCXH′ = HH′ =

⎡
⎣ 2 −2 1
−2 3 −2
1 −2 3

⎤
⎦ . (3)
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Some calculation (by hand or by Matlab) will show that det(CY3) = 3 and that

C−1
Y3

=
1
3

⎡
⎣5 4 1

4 5 2
1 2 2

⎤
⎦ . (4)

Some algebra will show that

y′C−1
Y3

y =
5y2

1 + 5y2
2 + 2y2

3 + 8y1y2 + 2y1y3 + 4y2y3

3
. (5)

This implies Y3 has PDF

fY3 (y) =
1

(2π)3/2[det (CY3)]1/2
exp

(
−1

2
y′C−1

Y3
y
)

(6)

=
1

(2π)3/2
√

3
exp

(
−5y2

1 + 5y2
2 + 2y2

3 + 8y1y2 + 2y1y3 + 4y2y3

6

)
. (7)

(b) To find the PDF of Y2 =
[
Y1 Y2

]′, we start by observing that the covariance matrix of Y2

is just the upper left 2 × 2 submatrix of CY3 . That is,

CY2 =
[

2 −2
−2 3

]
and C−1

Y2
=

[
3/2 1
1 1

]
. (8)

Since det(CY2) = 2, it follows that

fY2 (y) =
1

(2π)3/2[det (CY2)]1/2
exp

(
−1

2
y′C−1

Y2
y
)

(9)

=
1

(2π)3/2
√

2
exp

(
−3

2
y2
1 − 2y1y2 − y2

2

)
. (10)

Problem 11.3.3 Solution
The sequence Xn is passed through the filter

h =
[
h0 h1 h2

]′ =
[
1 −1 1

]′ (1)

The output sequence is Yn. Following the approach of Equation (11.58), we can write the output
Y =

[
Y1 Y2 Y3

]′ as

Y =

⎡
⎣Y1

Y2

Y3

⎤
⎦ =

⎡
⎣h2 h1 h0 0 0

0 h2 h1 h0 0
0 0 h2 h1 h0

⎤
⎦
⎡
⎢⎢⎢⎢⎣

X−1

X0

X1

X2

X3

⎤
⎥⎥⎥⎥⎦ =

⎡
⎣1 −1 1 0 0

0 1 −1 1 0
0 0 1 −1 1

⎤
⎦

︸ ︷︷ ︸
H

⎡
⎢⎢⎢⎢⎣

X−1

X0

X1

X2

X3

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
X

. (2)

Since Xn has autocovariance function CX(k) = 2−|k|, X has covariance matrix

CX =

⎡
⎢⎢⎢⎢⎣

1 1/2 1/4 1/8 1/16
1/2 1 1/2 1/4 1/8
1/4 1/2 1 1/2 1/4
1/8 1/4 1/2 1 1/2
1/16 1/8 1/4 1/2 1

⎤
⎥⎥⎥⎥⎦ . (3)
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Since Y = HX,

CY = HCXH′ =

⎡
⎣ 3/2 −3/8 9/16
−3/8 3/2 −3/8
9/16 −3/8 3/2

⎤
⎦ . (4)

Some calculation (by hand or preferably by Matlab) will show that det(CY) = 675/256 and that

C−1
Y =

1
15

⎡
⎣12 2 −4

2 11 2
−4 2 12

⎤
⎦ . (5)

Some algebra will show that

y′C−1
Y y =

12y2
1 + 11y2

2 + 12y2
3 + 4y1y2 + −8y1y3 + 4y2y3

15
. (6)

This implies Y has PDF

fY (y) =
1

(2π)3/2[det (CY)]1/2
exp

(
−1

2
y′C−1

Y y
)

(7)

=
16

(2π)3/215
√

3
exp

(
−12y2

1 + 11y2
2 + 12y2

3 + 4y1y2 + −8y1y3 + 4y2y3

30

)
. (8)

This solution is another demonstration of why the PDF of a Gaussian random vector should be
left in vector form.

Comment: We know from Theorem 11.5 that Yn is a stationary Gaussian process. As a result,
the random variables Y1, Y2 and Y3 are identically distributed and CY is a symmetric Toeplitz
matrix. This might make on think that the PDF fY(y) should be symmetric in the variables y1,
y2 and y3. However, because Y2 is in the middle of Y1 and Y3, the information provided by Y1 and
Y3 about Y2 is different than the information Y1 and Y2 convey about Y3. This fact appears as
asymmetry in fY(y).

Problem 11.3.4 Solution
The sequence Xn is passed through the filter

h =
[
h0 h1 h2

]′ =
[
1 0 −1

]′ (1)

The output sequence is Yn. Following the approach of Equation (11.58), we can write the output
Y =

[
Y1 Y2 Y3

]′ as

Y =

⎡
⎣Y1

Y2

Y3

⎤
⎦ =

⎡
⎣h2 h1 h0 0 0

0 h2 h1 h0 0
0 0 h2 h1 h0

⎤
⎦
⎡
⎢⎢⎢⎢⎣

X−1

X0

X1

X2

X3

⎤
⎥⎥⎥⎥⎦ =

⎡
⎣1 0 −1 0 0

0 1 0 −1 0
0 0 1 0 −1

⎤
⎦

︸ ︷︷ ︸
H

⎡
⎢⎢⎢⎢⎣

X−1

X0

X1

X2

X3

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
X

. (2)

Since Xn has autocovariance function CX(k) = 2−|k|, X has the Toeplitz covariance matrix

CX =

⎡
⎢⎢⎢⎢⎣

1 1/2 1/4 1/8 1/16
1/2 1 1/2 1/4 1/8
1/4 1/2 1 1/2 1/4
1/8 1/4 1/2 1 1/2
1/16 1/8 1/4 1/2 1

⎤
⎥⎥⎥⎥⎦ . (3)
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Since Y = HX,

CY = HCXH′ =

⎡
⎣ 3/2 3/8 −9/16

3/8 3/2 3/8
−9/16 3/8 3/2

⎤
⎦ . (4)

Some calculation (preferably by Matlab) will show that det(CY) = 297/128 and that

C−1
Y =

⎡
⎣10/11 −1/3 14/33
−1/3 5/6 −1/3
14/33 −1/3 10/11

⎤
⎦ . (5)

Some algebra will show that

y′C−1
Y y =

10
11

y2
1 +

5
6
y2
2 +

10
11

y2
3 − 2

3
y1y2 +

28
33

y1y3 − 2
3
y2y3. (6)

This implies Y has PDF

fY (y) =
1

(2π)3/2[det (CY)]1/2
exp

(
−1

2
y′C−1

Y y
)

(7)

=
8
√

2
(2π)3/23

√
33

exp
(
− 5

11
y2
1 − 5

12
y2
2 − 5

11
y2
3 +

1
3
y1y2 − 14

33
y1y3 +

1
3
y2y3

)
. (8)

This solution is yet another demonstration of why the PDF of a Gaussian random vector should
be left in vector form.

Problem 11.4.1 Solution
This problem is solved using Theorem 11.9 with M = 2 and k = 1. The optimum linear predictor
filter h =

[
h0 h1

]′ of Xn+1 given Xn =
[
Xn−1 Xn

]′ is given by

←−
h =

[
h1

h0

]
= R−1

Xn
RXnXn+k

, (1)

where

RXn =
[
RX [0] RX [1]
RX [1] RX [0]

]
=

[
1 3/4

3/4 1

]
(2)

and

RXnXn+1 = E

[[
Xn−1

Xn

]
Xn+1

]
=

[
RX [2]
RX [1]

]
=

[
1/2
3/4

]
. (3)

Thus the filter vector h satisfies

←−
h =

[
h1

h0

]
=

[
1 3/4

3/4 1

]−1 [1/2
3/4

]
=

[−1/7
6/7

]
. (4)

Thus h =
[
6/7 −1/7

]′ and the optimum linear predictor of Xn+1 given Xn and Xn−1 is

X̂n+1 =
←−
h ′Xn =

[−1
7

6
7

] [Xn−1

Xn

]
= −1

7
Xn−1 +

6
7
Xn. (5)

To find the mean square error of this predictor, we can calculate it directly as

e∗L = E
[
(X̂n+1 − Xn+1)2

]
= E

[(
−1

7
Xn−1 +

6
7
Xn − Xn+1

)2
]

. (6)
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By expanding the square and taking the expectation, each cross-term is of the form E[XiXj ] =
RX [i − j], so that

e∗L = E

[(
−1

7
Xn−1 +

6
7
Xn − Xn+1

)(
−1

7
Xn−1 +

6
7
Xn − Xn+1

)2
]

(7)

=
1
49

RX [0] − 12
49

RX [1] +
2
7
RX [2] +

36
49

RX [0] − 12
7

RX [1] + RX [0] (8)

=
86
49

RX [0] − 96
49

RX [1] +
2
7
RX [2] =

3
7
. (9)

This direct method is already tedious, even for a simple filter of order M = 2. A better way to
calculate the mean square error is to recall that Theorem 11.9 is just of Theorem 9.7 expressed in
the terminology of filters. Expressing part (c) of Theorem 9.7 in terms of the linear prediction filter
h, the mean square error of the predictor is

e∗L = Var[Xn+1] −←−
h ′RXnXn+k

(10)

= RX [0] −←−
h ′

[
RX [2]
RX [1]

]
(11)

= 1 − [−1/7 6/7
] [1/2

3/4

]
=

3
7
. (12)

For an arbitrary filter order M , Equation (10) is a much simpler way to compute the mean square
error.

Problem 11.4.2 Solution
This problem is solved using Theorem 11.9 with k = 1. The optimum linear predictor filter
h =

[
h0 h1

]′ of Xn+1 given Xn =
[
Xn−1 Xn

]′ is given by

←−
h =

[
h1

h0

]
= R−1

Xn
RXnXn+k

, (1)

where

RXn =
[
RX [0] RX [1]
RX [1] RX [0]

]
=

[
1.1 0.75
0.75 1.1

]
(2)

and

RXnXn+1 = E

[[
Xn−1

Xn

]
Xn+1

]
=

[
RX [2]
RX [1]

]
=

[
0.5
0.75

]
. (3)

Thus the filter vector h satisfies

←−
h =

[
h1

h0

]
=

[
1.1 0.75
0.75 1.1

]−1 [ 0.5
0.75

]
=

[−0.0193
0.6950

]
. (4)

Thus h =
[
0.6950 −0.0193

]′ and the optimum linear predictor of Xn+1 given Xn and Xn−1 is

X̂n+1 =
←−
h ′Xn =

[−0.0193 0.6950
] [Xn−1

Xn

]
= −0.0193Xn−1 + 0.6950Xn. (5)

To find the mean square error of this predictor, we can calculate it directly as

e∗L = E
[
(X̂n+1 − Xn+1)2

]
= E

[
(−0.0193Xn−1 + 0.6950Xn − Xn+1)

2
]
. (6)
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We can expand the square and take the expectation term by term since each cross-term is of the
form E[XiXj ] = RX [i − j]. This approach is followed in the solution of Problem 11.4.1 and it is
quite tedious. A better way to calculate the mean square error is to recall that Theorem 11.9 is
just Theorem 9.7 expressed in the terminology of filters. Expressing part (c) of Theorem 9.7 in
terms of the linear prediction filter h, the mean square error of the predictor is

e∗L = Var[Xn+1] −←−
h ′RXnXn+k

(7)

= RX [0] −←−
h ′

[
RX [2]
RX [1]

]
(8)

= 1.1 − [−0.0193 0.6950
] [1/2

3/4

]
= 0.5884. (9)

Comment: It is instructive to compare this solution to the solution of Problem 11.4.1 where the
random process, denoted X̃n here to distinguish it from Xn in this problem, has autocorrelation
function

RX̃ [k] =
{

1 − 0.25 |k| |k| ≤ 4,
0 otherwise.

(10)

The difference is simply that RX̃ [0] = 1, rather than RX [0] = 1.1 as in this problem. This difference
corresponds to adding an iid noise sequence to X̃n to create Xn. That is,

Xn = X̃n + Zn (11)

where Zn is an iid additive noise sequence with autocorrelation function RZ [k] = 0.1δ[k] that is
independent of the Xn process. Thus Xn in this problem can be viewed as a noisy version of
X̃n in Problem 11.4.1. Because the X̃n process is less noisy, the optimal predictor filter of X̃n+1

given X̃n−1 and X̃n is h̃ =
[
6/7 −1/7

]′ =
[
0.8571 −0.1429

]′, which places more emphasis on the
current value X̃n in predicting the next value.

In addition, the mean squared error of the predictor of X̃n+1 is only 3/7 = 0.4285, which is less
than 0.5884. Not surprisingly, the noise in the Xn process reduces the performance of the predictor.

Problem 11.4.3 Solution
This problem generalizes Example 11.14 in that −0.9 is replaced by the parameter c and the noise
variance 0.2 is replaced by η2. Because we are only finding the first order filter h =

[
h0 h1

]′, it is
relatively simple to generalize the solution of Example 11.14 to the parameter values c and η2.

Based on the observation Y =
[
Yn−1 Yn

]′, Theorem 11.11 states that the linear MMSE esti-
mate of X = Xn is

←−
h ′Y where

←−
h = R−1

Y RYXn = (RXn + RWn)−1RXnXn . (1)

From Equation (11.82), RXnXn =
[
RX [1] RX [0]

]′ =
[
c 1

]′. From the problem statement,

RXn + RWn =
[
1 c
c 1

]
+

[
η2 0
0 η2

]
=

[
1 + η2 c

c 1 + η2

]
. (2)
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This implies

←−
h =

[
1 + η2 c

c 1 + η2

]−1 [
c
1

]
(3)

=
1

(1 + η2)2 − c2

[
1 + η2 −c
−c 1 + η2

] [
c
1

]
(4)

=
1

(1 + η2)2 − c2

[
cη2

1 + η2 − c2

]
. (5)

The optimal filter is

h =
1

(1 + η2)2 − c2

[
1 + η2 − c2

cη2

]
. (6)

To find the mean square error of this predictor, we recall that Theorem 11.11 is just Theorem 9.7
expressed in the terminology of filters. Expressing part (c) of Theorem 9.7 in terms of the linear
estimation filter h, the mean square error of the estimator is

e∗L = Var[Xn] −←−
h ′RYnXn (7)

= Var[Xn] −←−
h ′RXnXn (8)

= RX [0] −←−
h ′

[
c
1

]
(9)

= 1 − c2η2 + η2 + 1 − c2

(1 + η2)2 − c2
. (10)

Note that we always find that e∗L < Var[Xn] = 1 simply because the optimal estimator cannot be
worse than the blind estimator that ignores the observation Yn.

Problem 11.4.4 Solution
In this problem, we find the mean square estimation error of the optimal first order filter in Prob-
lem 11.4.3. This problem highlights a shortcoming of Theorem 11.11 in that the theorem doesn’t
explicitly provide the mean square error associated with the optimal filter h. We recall from the
discussion at the start of Section 11.4 that Theorem 11.11 is derived from Theorem 9.7 with

←−
h = a = R−1

Y RYX = (RXn + RWn)−1RXnXn (1)

From Theorem 9.7, the mean square error of the filter output is

e∗L = Var[X] − a′RYX (2)

= RX [0] −←−
h ′RXnXn (3)

= RX [0] − R′
XnXn

(RXn + RWn)−1RXnXn (4)

Equations (3) and (4) are general expressions for the means square error of the optimal linear filter
that can be applied to any situation described by Theorem 11.11.

To apply this result to the problem at hand, we observe that RX [0] = c0 = 1 and that

←−
h =

1
(1 + η2)2 − c2

[
cη2

1 + η2 − c2

]
, RXnXn =

[
RX [1]
RX [0]

]
=

[
c
1

]
(5)
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This implies

e∗L = RX [0] −←−
h ′RXnXn (6)

= 1 − 1
(1 + η2)2 − c2

[
cη2 1 + η2 − c2

] [c
1

]
(7)

= 1 − c2η2 + 1 + η2 − c2

(1 + η2)2 − c2
(8)

= η2

(
1 + η2 − c2

(1 + η2)2 − c2

)
(9)

The remaining question is what value of c minimizes the mean square error e∗L. The usual
approach is to set the derivative de∗L

dc to zero. This would yield the incorrect answer c = 0. In fact,

evaluating the second derivative at c = 0 shows that d2e∗L
dc2

∣∣∣
c=0

< 0. Thus the mean square error e∗L
is maximum at c = 0. For a more careful analysis, we observe that e∗L = η2f(x) where

f(x) =
a − x

a2 − x
, (10)

with x = c2, and a = 1 + η2. In this case, minimizing f(x) is equivalent to minimizing the mean
square error. Note that for RX [k] to be a respectable autocorrelation function, we must have
|c| ≤ 1. Thus we consider only values of x in the interval 0 ≤ x ≤ 1. We observe that

df(x)
dx

= − a2 − a

(a2 − x)2
(11)

Since a > 1, the derivative is negative for 0 ≤ x ≤ 1. This implies the mean square error is
minimized by making x as large as possible, i.e., x = 1. Thus c = 1 minimizes the mean square
error. In fact c = 1 corresponds to the autocorrelation function RX [k] = 1 for all k. Since each Xn

has zero expected value, every pair of sample Xn and Xm has correlation coefficient

ρXn,Xm =
Cov [Xn, Xm]√
Var[Xn] Var[Xm]

=
RX [n − m]

RX [0]
= 1. (12)

That is, c = 1 corresponds to a degenerate process in which every pair of samples Xn and Xm are
perfectly correlated. Physically, this corresponds to the case where where the random process Xn

is generated by generating a sample of a random variable X and setting Xn = X for all n. The
observations are then of the form Yn = X +Zn. That is, each observation is just a noisy observation
of the random variable X. For c = 1, the optimal filter

h =
1

2 + η2

[
1
1

]
. (13)

is just an equally weighted average of the past two samples.

Problem 11.4.5 Solution
This problem involves both linear estimation and prediction because we are using Yn−1, the noisy
observation of Xn1 to estimate the future value Xn. Thus we can’t follow the cookbook recipes of
Theorem 11.9 or Theorem 11.11. Instead we go back to Theorem 9.4 to find the minimum mean
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square error linear estimator. In that theorem, Xn and Yn−1 play the roles of X and Y . That is,
our estimate X̂n of Xn is

X̂n = X̂L(Yn−1) = ρXn,Yn−1

(
Var[Xn]

Var[Yn−1]

)1/2

(Yn−1 − E [Yn−1]) + E [Xn] (1)

By recursive application of Xn = cXn−1 + Zn−1, we obtain

Xn = anX0 +
n∑

j=1

aj−1Zn−j (2)

The expected value of Xn is E[Xn] = anE[X0] +
∑n

j=1 aj−1E[Zn−j ] = 0. The variance of Xn is

Var[Xn] = a2n Var[X0] +
n∑

j=1

[aj−1]2 Var[Zn−j ] = a2n Var[X0] + σ2
n∑

j=1

[a2]j−1 (3)

Since Var[X0] = σ2/(1 − c2), we obtain

Var[Xn] =
c2nσ2

1 − c2
+

σ2(1 − c2n)
1 − c2

=
σ2

1 − c2
(4)

Note that E[Yn−1] = dE[Xn−1] + E[Wn] = 0. The variance of Yn−1 is

Var[Yn−1] = d2 Var[Xn−1] + Var[Wn] =
d2σ2

1 − c2
+ η2 (5)

Since Xn and Yn−1 have zero mean, the covariance of Xn and Yn−1 is

Cov [Xn, Yn−1] = E [XnYn−1] = E [(cXn−1 + Zn−1) (dXn−1 + Wn−1)] (6)

From the problem statement, we learn that

E[Xn−1Wn−1] = 0 E[Xn−1]E[Wn−1] = 0
E[Zn−1Xn−1] = 0 E[Zn−1Wn−1] = 0

Hence, the covariance of Xn and Yn−1 is

Cov [Xn, Yn−1] = cd Var[Xn−1] (7)

The correlation coefficient of Xn and Yn−1 is

ρXn,Yn−1 =
Cov [Xn, Yn−1]√
Var[Xn] Var[Yn−1]

(8)

Since E[Yn−1] and E[Xn] are zero, the linear predictor for Xn becomes

X̂n = ρXn,Yn−1

(
Var[Xn]

Var[Yn−1]

)1/2

Yn−1 =
Cov [Xn, Yn−1]

Var[Yn−1]
Yn−1 =

cd Var[Xn−1]
Var[Yn−1]

Yn−1 (9)

Substituting the above result for Var[Xn], we obtain the optimal linear predictor of Xn given Yn−1.

X̂n =
c

d

1
1 + β2(1 − c2)

Yn−1 (10)

where β2 = η2/(d2σ2). From Theorem 9.4, the mean square estimation error at step n

e∗L(n) = E[(Xn − X̂n)2] = Var[Xn](1 − ρ2
Xn,Yn−1

) = σ2 1 + β2

1 + β2(1 − c2)
(11)

We see that mean square estimation error e∗L(n) = e∗L, a constant for all n. In addition, e∗L is an
increasing function β.
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Problem 11.5.1 Solution
To use Table 11.1, we write RX(τ) in terms of the autocorrelation

sinc(x) =
sin(πx)

πx
. (1)

In terms of the sinc(·) function, we obtain

RX(τ) = 10 sinc(2000τ) + 5 sinc(1000τ). (2)

From Table 11.1,

SX (f) =
10

2,000
rect

(
f

2000

)
+

5
1,000

rect
(

f

1,000

)
(3)

Here is a graph of the PSD.
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Problem 11.5.2 Solution
The process Y (t) has expected value E[Y (t)] = 0. The autocorrelation of Y (t) is

RY (t, τ) = E [Y (t)Y (t + τ)] = E [X(αt)X(α(t + τ))] = RX(ατ) (1)

Thus Y (t) is wide sense stationary. The power spectral density is

SY (f) =
∫ ∞

−∞
RX(ατ)e−j2πfτ dτ. (2)

At this point, we consider the cases α > 0 and α < 0 separately. For α > 0, the substitution
τ ′ = ατ yields

SY (f) =
1
α

∫ ∞

−∞
RX(τ ′)e−j2π(f/α)τ ′

dτ ′ =
SX (f/α)

α
(3)

When α < 0, we start with Equation (2) and make the substitution τ ′ = −ατ , yielding

SY (f) =
1
−α

∫ ∞

−∞
RX(−τ ′)e−j2π f

−α
τ ′

dτ ′. (4)

Since RX(−τ ′) = RX(τ ′),

SY (f) =
1
−α

∫ ∞

−∞
RX(τ ′)e−j2π f

−α
τ ′

dτ ′. =
1
−α

SX

(
f

−α

)
(5)

For −α = |α| for α < 0, we can combine the α > 0 and α < 0 cases in the expression

SY (f) =
1
|α|SX

(
f

|α|
)

. (6)
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Problem 11.6.1 Solution
Since the random sequence Xn has autocorrelation function

RX [k] = δk + (0.1)|k|, (1)

We can find the PSD directly from Table 11.2 with 0.1|k| corresponding to a|k|. The table yields

SX (φ) = 1 +
1 − (0.1)2

1 + (0.1)2 − 2(0.1) cos 2πφ
=

2 − 0.2 cos 2πφ

1.01 − 0.2 cos 2πφ
. (2)

Problem 11.7.1 Solution
First we show that SY X(f) = SXY (−f). From the definition of the cross spectral density,

SY X (f) =
∫ ∞

−∞
RY X(τ)e−j2πfτ dτ (1)

Making the subsitution τ ′ = −τ yields

SY X (f) =
∫ ∞

−∞
RY X(−τ ′)ej2πfτ ′

dτ ′ (2)

By Theorem 10.14, RY X(−τ ′) = RXY (τ ′). This implies

SY X (f) =
∫ ∞

−∞
RXY (τ ′)e−j2π(−f)τ ′

dτ ′ = SXY (−f) (3)

To complete the problem, we need to show that SXY (−f) = [SXY (f)]∗. First we note that since
RXY (τ) is real valued, [RXY (τ)]∗ = RXY (τ). This implies

[SXY (f)]∗ =
∫ ∞

−∞
[RXY (τ)]∗[e−j2πfτ ]∗ dτ (4)

=
∫ ∞

−∞
RXY (τ)e−j2π(−f)τ dτ (5)

= SXY (−f) (6)

Problem 11.8.1 Solution
Let a = 1/RC. The solution to this problem parallels Example 11.22.

(a) From Table 11.1, we observe that

SX (f) =
2 · 104

(2πf)2 + 104
H(f) =

1
a + j2πf

(1)

By Theorem 11.16,

SY (f) = |H(f)|2 SX (f) =
2 · 104

[(2πf)2 + a2][(2πf)2 + 104]
(2)

To find RY (τ), we use a form of partial fractions expansion to write

SY (f) =
A

(2πf)2 + a2
+

B

(2πf)2 + 104
(3)
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Note that this method will work only if a �= 100. This same method was also used in
Example 11.22. The values of A and B can be found by

A =
2 · 104

(2πf)2 + 104

∣∣∣∣
f= ja

2π

=
−2 · 104

a2 − 104
B =

2 · 104

a2 + 104

∣∣∣∣
f= j100

2π

=
2 · 104

a2 − 104
(4)

This implies the output power spectral density is

SY (f) =
−104/a

a2 − 104

2a

(2πf)2 + a2
+

1
a2 − 104

200
(2πf)2 + 104

(5)

Since e−c|τ | and 2c/((2πf)2 + c2) are Fourier transform pairs for any constant c > 0, we see
that

RY (τ) =
−104/a

a2 − 104
e−a|τ | +

100
a2 − 104

e−100|τ | (6)

(b) To find a = 1/(RC), we use the fact that

E
[
Y 2(t)

]
= 100 = RY (0) =

−104/a

a2 − 104
+

100
a2 − 104

(7)

Rearranging, we find that a must satisfy

a3 − (104 + 1)a + 100 = 0 (8)

This cubic polynomial has three roots:

a = 100 a = −50 +
√

2501 a = −50 −
√

2501 (9)

Recall that a = 100 is not a valid solution because our expansion of SY (f) was not valid
for a = 100. Also, we require a > 0 in order to take the inverse transform of SY (f). Thus
a = −50 +

√
2501 ≈ 0.01 and RC ≈ 100.

Problem 11.8.2 Solution

(a) RW (τ) = δ(τ) is the autocorrelation function whose Fourier transform is SW (f) = 1.

(b) The output Y (t) has power spectral density

SY (f) = |H(f)|2 SW (f) = |H(f)|2 (1)

(c) Since |H(f)| = 1 for f ∈ [−B, B], the average power of Y (t) is

E
[
Y 2(t)

]
=

∫ ∞

−∞
SY (f) df =

∫ B

−B
df = 2B (2)

(d) Since the white noise W (t) has zero mean, the mean value of the filter output is

E [Y (t)] = E [W (t)]H(0) = 0 (3)
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Problem 11.8.3 Solution
Since SY (f) = |H(f)|2SX(f), we first find

|H(f)|2 = H(f)H∗(f) (1)

=
(
a1e

−j2πft1 + a2e
−j2πft2

)(
a1e

j2πft1 + a2e
j2πft2

)
(2)

= a2
1 + a2

2 + a1a2

(
e−j2πf(t2−t1) + e−j2πf(t1−t2)

)
(3)

It follows that the output power spectral density is

SY (f) = (a2
1 + a2

2)SX (f) + a1a2SX (f) e−j2πf(t2−t1) + a1a2SX (f) e−j2πf(t1−t2) (4)

Using Table 11.1, the autocorrelation of the output is

RY (τ) = (a2
1 + a2

2)RX(τ) + a1a2 (RX(τ − (t1 − t2)) + RX(τ + (t1 − t2))) (5)

Problem 11.8.4 Solution

(a) The average power of the input is

E
[
X2(t)

]
= RX(0) = 1 (1)

(b) From Table 11.1, the input has power spectral density

SX (f) =
1
2
e−πf2/4 (2)

The output power spectral density is

SY (f) = |H(f)|2 SX (f) =

{ 1
2
e−πf2/4 |f | ≤ 2

0 otherwise
(3)

(c) The average output power is

E
[
Y 2(t)

]
=

∫ ∞

−∞
SY (f) df =

1
2

∫ 2

−2
e−πf2/4 df (4)

This integral cannot be expressed in closed form. However, we can express it in the form of
the integral of a standardized Gaussian PDF by making the substitution f = z

√
2/π. With

this subsitution,

E
[
Y 2(t)

]
=

1√
2π

∫ √
2π

−√
2π

e−z2/2 dz (5)

= Φ(
√

2π) − Φ(−
√

2π) (6)

= 2Φ(
√

2π) − 1 = 0.9876 (7)

The output power almost equals the input power because the filter bandwidth is sufficiently
wide to pass through nearly all of the power of the input.
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Problem 11.8.5 Solution

(a) From Theorem 11.13(b),

E
[
X2(t)

]
=

∫ ∞

−∞
SX (f) df

∫ 100

−100
10−4 df = 0.02 (1)

(b) From Theorem 11.17

SXY (f) = H(f)SX (f) =
{

10−4H(f) |f | ≤ 100
0 otherwise

(2)

(c) From Theorem 10.14,
RY X(τ) = RXY (−τ) (3)

From Table 11.1, if g(τ) and G(f) are a Fourier transform pair, then g(−τ) and G∗(f) are a
Fourier transform pair. This implies

SY X (f) = S∗
XY (f) =

{
10−4H∗(f) |f | ≤ 100
0 otherwise

(4)

(d) By Theorem 11.17,

SY (f) = H∗(f)SXY (f) = |H(f)|2 SX (f) (5)

=
{

10−4/[104π2 + (2πf)2] |f | ≤ 100
0 otherwise

(6)

(e) By Theorem 11.13,

E
[
Y 2(t)

]
=

∫ ∞

−∞
SY (f) df =

∫ 100

−100

10−4

104π2 + 4π2f2
df (7)

=
2

108π2

∫ 100

0

df

1 + (f/50)2
(8)

By making the substitution, f = 50 tan θ, we have df = 50 sec2 θ dθ. Using the identity
1 + tan2 θ = sec2 θ, we have

E
[
Y 2(t)

]
=

100
108π2

∫ tan−1(2)

0
dθ =

tan−1(2)
106π2

= 1.12 × 10−7 (9)

Problem 11.8.6 Solution
The easy way to do this problem is to use Theorem 11.17 which states

SXY (f) = H(f)SX (f) (1)
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(a) From Table 11.1, we observe that

SX (f) =
8

16 + (2πf)2
H(f) =

1
7 + j2πf

(2)

From Theorem 11.17,

SXY (f) = H(f)SX (f) =
8

[7 + j2πf ][16 + (2πf)2]
(3)

(b) To find the cross correlation, we need to find the inverse Fourier transform of SXY (f). A
straightforward way to do this is to use a partial fraction expansion of SXY (f). That is, by
defining s = j2πf , we observe that

8
(7 + s)(4 + s)(4 − s)

=
−8/33
7 + s

+
1/3

4 + s
+

1/11
4 − s

(4)

Hence, we can write the cross spectral density as

SXY (f) =
−8/33

7 + j2πf
+

1/3
4 + j2πf

+
1/11

4 − jπf
(5)

Unfortunately, terms like 1/(a− j2πf) do not have an inverse transforms. The solution is to
write SXY (f) in the following way:

SXY (f) =
−8/33

7 + j2πf
+

8/33
4 + j2πf

+
1/11

4 + j2πf
+

1/11
4 − j2πf

(6)

=
−8/33

7 + j2πf
+

8/33
4 + j2πf

+
8/11

16 + (2πf)2
(7)

(8)

Now, we see from Table 11.1 that the inverse transform is

RXY (τ) = − 8
33

e−7τu(τ) +
8
33

e−4τu(τ) +
1
11

e−4|τ | (9)

Problem 11.8.7 Solution

(a) Since E[N(t)] = μN = 0, the expected value of the output is μY = μNH(0) = 0.

(b) The output power spectral density is

SY (f) = |H(f)|2 SN (f) = 10−3e−2×106|f | (1)

(c) The average power is

E
[
Y 2(t)

]
=

∫ ∞

−∞
SY (f) df =

∫ ∞

−∞
10−3e−2×106|f | df (2)

= 2 × 10−3

∫ ∞

0
e−2×106f df (3)

= 10−3 (4)
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(d) Since N(t) is a Gaussian process, Theorem 11.3 says Y (t) is a Gaussian process. Thus the
random variable Y (t) is Gaussian with

E [Y (t)] = 0 Var[Y (t)] = E
[
Y 2(t)

]
= 10−3 (5)

Thus we can use Table 3.1 to calculate

P [Y (t) > 0.01] = P

[
Y (t)√

Var[Y (t)]
>

0.01√
Var[Y (t)]

]
(6)

1 − Φ
(

0.01√
0.001

)
(7)

= 1 − Φ(0.32) = 0.3745 (8)

Problem 11.8.8 Solution
Suppose we assume that N(t) and Y (t) are the input and output of a linear time invariant filter
h(u). In that case,

Y (t) =
∫ t

0
N(u) du =

∫ ∞

−∞
h(t − u)N(u) du (1)

For the above two integrals to be the same, we must have

h(t − u) =
{

1 0 ≤ t − u ≤ t
0 otherwise

(2)

Making the substitution v = t − u, we have

h(v) =
{

1 0 ≤ v ≤ t
0 otherwise

(3)

Thus the impulse response h(v) depends on t. That is, the filter response is linear but not time
invariant. Since Theorem 11.2 requires that h(t) be time invariant, this example does not violate
the theorem.

Problem 11.8.9 Solution

(a) Note that |H(f)| = 1. This implies SM̂ (f) = SM (f). Thus the average power of M̂(t) is

q̂ =
∫ ∞

−∞
SM̂ (f) df =

∫ ∞

−∞
SM (f) df = q (1)

(b) The average power of the upper sideband signal is

E
[
U2(t)

]
= E

[
M2(t) cos2(2πfct + Θ)

]
(2)

− E
[
2M(t)M̂(t) cos(2πfct + Θ) sin(2πfct + Θ)

]
(3)

+ E
[
M̂2(t) sin2(2πfct + Θ)

]
(4)
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To find the expected value of the random phase cosine, for an integer n �= 0, we evaluate

E [cos(2πfct + nΘ)] =
∫ 2π

0
cos(2πfct + nθ)

1
2π

dθ (5)

=
1

2nπ
sin(2πfct + nθ)|2π

0 (6)

=
1

2nπ
(sin(2πfct + 2nπ) − sin(2πfct)) = 0 (7)

Similar steps will show that for any integer n �= 0, the random phase sine also has expected
value

E [sin(2πfct + nΘ)] = 0 (8)

Using the trigonometric identity cos2 φ = (1 + cos 2φ)/2, we can show

E
[
cos2(2πfct + Θ)

]
= E

[
1
2

(1 + cos(2π(2fc)t + 2Θ))
]

= 1/2 (9)

Similarly,

E
[
sin2(2πfct + Θ)

]
= E

[
1
2

(1 − cos(2π(2fc)t + 2Θ))
]

= 1/2 (10)

In addition, the identity 2 sinφ cos φ = sin 2φ implies

E [2 sin(2πfct + Θ) cos(2πfct + Θ)] = E [cos(4πfct + 2Θ)] = 0 (11)

Since M(t) and M̂(t) are independent of Θ, the average power of the upper sideband signal
is

E
[
U2(t)

]
= E

[
M2(t)

]
E

[
cos2(2πfct + Θ)

]
+ E

[
M̂2(t)

]
E

[
sin2(2πfct + Θ)

]
(12)

− E
[
M(t)M̂(t)

]
E [2 cos(2πfct + Θ) sin(2πfct + Θ)] (13)

= q/2 + q/2 + 0 = q (14)

Problem 11.8.10 Solution

(a) Since SW (f) = 10−15 for all f , RW (τ) = 10−15δ(τ).

(b) Since Θ is independent of W (t),

E [V (t)] = E [W (t) cos(2πfct + Θ)] = E [W (t)] E [cos(2πfct + Θ)] = 0 (1)

(c) We cannot initially assume V (t) is WSS so we first find

RV (t, τ) = E[V (t)V (t + τ)] (2)
= E[W (t) cos(2πfct + Θ)W (t + τ) cos(2πfc(t + τ) + Θ)] (3)
= E[W (t)W (t + τ)]E[cos(2πfct + Θ) cos(2πfc(t + τ) + Θ)] (4)
= 10−15δ(τ)E[cos(2πfct + Θ) cos(2πfc(t + τ) + Θ)] (5)
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We see that for all τ �= 0, RV (t, t + τ) = 0. Thus we need to find the expected value of

E [cos(2πfct + Θ) cos(2πfc(t + τ) + Θ)] (6)

only at τ = 0. However, its good practice to solve for arbitrary τ :

E[cos(2πfct + Θ) cos(2πfc(t + τ) + Θ)] (7)

=
1
2
E[cos(2πfcτ) + cos(2πfc(2t + τ) + 2Θ)] (8)

=
1
2

cos(2πfcτ) +
1
2

∫ 2π

0
cos(2πfc(2t + τ) + 2θ)

1
2π

dθ (9)

=
1
2

cos(2πfcτ) +
1
2

sin(2πfc(2t + τ) + 2θ)
∣∣∣∣2π

0

(10)

=
1
2

cos(2πfcτ) +
1
2

sin(2πfc(2t + τ) + 4π) − 1
2

sin(2πfc(2t + τ)) (11)

=
1
2

cos(2πfcτ) (12)

Consequently,

RV (t, τ) =
1
2
10−15δ(τ) cos(2πfcτ) =

1
2
10−15δ(τ) (13)

(d) Since E[V (t)] = 0 and since RV (t, τ) = RV (τ), we see that V (t) is a wide sense stationary
process. Since L(f) is a linear time invariant filter, the filter output Y (t) is also a wide sense
stationary process.

(e) The filter input V (t) has power spectral density SV (f) = 1
210−15. The filter output has power

spectral density

SY (f) = |L(f)|2 SV (f) =
{

10−15/2 |f | ≤ B
0 otherwise

(14)

The average power of Y (t) is

E
[
Y 2(t)

]
=

∫ ∞

−∞
SY (f) df =

∫ B

−B

1
2
10−15 df = 10−15B (15)

Problem 11.9.1 Solution
The system described in this problem corresponds exactly to the system in the text that yielded
Equation (11.146).

(a) From Equation (11.146), the optimal linear filter is

Ĥ(f) =
SX (f)

SX (f) + SN (f)
(1)

In this problem, RX(τ) = sinc(2Wτ) so that

SX (f) =
1

2W
rect

(
f

2W

)
. (2)
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It follows that the optimal filter is

Ĥ(f) =
1

2W rect
(

f
2W

)
1

2W rect
(

f
2W

)
+ 10−5

=
105

105 + 2W
rect

(
f

2W

)
. (3)

(b) From Equation (11.147), the minimum mean square error is

e∗L =
∫ ∞

−∞
SX (f) SN (f)

SX (f) + SN (f)
df =

∫ ∞

−∞
Ĥ(f)SN (f) df (4)

=
105

105 + 2W

∫ W

−W
10−5 df (5)

=
2W

105 + 2W
. (6)

It follows that the mean square error satisfies e∗L ≤ 0.04 if and only if W ≤ 2,083.3 Hz. What
is occurring in this problem is the optimal filter is simply an ideal lowpass filter of bandwidth
W . Increasing W increases the bandwidth of the signal and the bandwidth of the filter Ĥ(f).
This allows more noise to pass through the filter and decreases the quality of our estimator.

Problem 11.9.2 Solution
The system described in this problem corresponds exactly to the system in the text that yielded
Equation (11.146).

(a) From Equation (11.146), the optimal linear filter is

Ĥ(f) =
SX (f)

SX (f) + SN (f)
(1)

In this problem, RX(τ) = e−5000|τ | so that

SX (f) =
104

(5,000)2 + (2πf)2
. (2)

It follows that the optimal filter is

Ĥ(f) =
104

(5,000)2+(2πf)2

104

(5,000)2+(2πf)2
+ 10−5

=
109

1.025 × 109 + (2πf)2
. (3)

From Table 11.2, we see that the filter Ĥ(f) has impulse response

ĥ(τ) =
109

2α
e−α|τ | (4)

where α =
√

1.025 × 109 = 3.20 × 104.

(b) From Equation (11.147), the minimum mean square error is

e∗L =
∫ ∞

−∞

SX (f) SN (f)
SX (f) + SN (f)

df =
∫ ∞

−∞
Ĥ(f)SN (f) df (5)

= 10−5

∫ ∞

−∞
Ĥ(f) df (6)

= 10−5ĥ(0) =
104

2α
= 0.1562. (7)
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Problem 11.10.1 Solution
Although it is straightforward to calculate sample paths of Yn using the filter response Yn =
1
2Yn−1 + 1

2Xn directly, the necessary loops makes for a slow program. A solution using vectors and
matrices tends to run faster. From the filter response, we can write

Y1 =
1
2
X1 (1)

Y2 =
1
4
X1 +

1
2
X2 (2)

Y3 =
1
8
X1 +

1
4
X2 +

1
2
X3 (3)

... (4)

Yn =
1
2n

X1 +
1

2n−1
X2 + · · · + 1

2
Xn (5)

In vector notation, these equations become⎡
⎢⎢⎢⎣

Y1

Y2
...

Yn

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
Y

=

⎡
⎢⎢⎢⎢⎣

1/2 0 · · · 0

1/4 1/2
. . .

...
...

. . . . . . 0
1/2n · · · 1/4 1/2

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
H

⎡
⎢⎢⎢⎣

X1

X2
...

Xn

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
X

. (6)

When X is a column of iid Gaussian (0, 1) random variables, the column vector Y = HX is a single
sample path of Y1, . . . , Yn. When X is an n × m matrix of iid Gaussian (0, 1) random variables,
each column of Y = HX is a sample path of Y1, . . . , Yn. In this case, let matrix entry Yi,j denote
a sample Yi of the jth sample path. The samples Yi,1, Yi,2, . . . , Yi,m are iid samples of Yi. We can
estimate the mean and variance of Yi using the sample mean Mn(Yi) and sample variance Vm(Yi)
of Section 7.3. These estimates are

Mn(Yi) =
1
m

m∑
j=1

Yi,j , V (Yi) =
1

m − 1

m∑
j=1

(Yi,j − Mn(Yi))
2 (7)

This is the approach of the following program.

function ymv=yfilter(m);
%ymv(i) is the mean and var (over m paths) of y(i),
%the filter output of 11.2.6 and 11.10.1
X=randn(500,m);
H=toeplitz([(0.5).^(1:500)],[0.5 zeros(1,499)]);
Y=H*X;
yav=sum(Y,2)/m;
yavmat=yav*ones(1,m);
yvar=sum((Y-yavmat).^2,2)/(m-1);
ymv=[yav yvar];

The commands ymv=yfilter(100);plot(ymv) will generate a plot similar to this:
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We see that each sample mean is small, on the other order of 0.1. Note that E[Yi] = 0. For m = 100
samples, the sample mean has variance 1/m = 0.01 and standard deviation 0.1. Thus it is to be
expected that we observe sample mean values around 0.1.

Also, it can be shown (in the solution to Problem 11.2.6 for example) that as i becomes large,
Var[Yi] converges to 1/3. Thus our sample variance results are also not surprising.

Comment: Although within each sample path, Yi and Yi+1 are quite correlated, the sample
means of Yi and Yi+1 are not very correlated when a large number of sample paths are averaged.
Exact calculation of the covariance of the sample means of Yi and Yi+1 might be an interesting
exercise. The same observations apply to the sample variance as well.

Problem 11.10.2 Solution
This is just a Matlab question that has nothing to do with probability. In the Matlab oper-
ation R=fft(r,N), the shape of the output R is the same as the shape of the input r. If r is
a column vector, then R is a column vector. If r is a row vector, then R is a row vector. For
fftc to work the same way, the shape of n must be the same as the shape of R. The instruction
n=reshape(0:(N-1),size(R)) does this.

Problem 11.10.3 Solution
The program cospaths.m generates Gaussian sample paths with the desired autocorrelation func-
tion RX(k) = cos(0.04 ∗ pi ∗ k). Here is the code:

function x=cospaths(n,m);
%Generate m sample paths of length n of a
%Gaussian process with ACF R[k]=cos(0.04*pi*k)
k=0:n-1;
rx=cos(0.04*pi*k)’;
x=gaussvector(0,rx,m);

The program is simple because if the second input parameter to gaussvector is a length m vector
rx, then rx is assumed to be the first row of a symmetric Toeplitz covariance matrix. The commands
x=cospaths(100,10);plot(x) will produce a graph like this one:

0 10 20 30 40 50 60 70 80 90 100
−2

−1

0

1

2

 n

 X
n
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We note that every sample path of the process is Gaussian random sequence. However, it would
also appear from the graph that every sample path is a perfect sinusoid. this may seem strange if
you are used to seeing Gaussian processes simply as noisy processes or fluctating Brownian motion
processes. However, in this case, the amplitude and phase of each sample path is random such
that over the ensemble of sinusoidal sample functions, each sample Xn is a Gaussian (0, 1) random
variable.

Finally, to confirm that that each sample path is a perfect sinusoid, rather than just resembling
a sinusoid, we calculate the DFT of each sample path. The commands

>> x=cospaths(100,10);
>> X=fft(x);
>> stem((0:99)/100,abs(X));

will produce a plot similar to this:

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

20

40

60

80

100

120

k/100

 X
k

The above plot consists of ten overlaid 100-point DFT magnitude stem plots, one for each Gaussian
sample function. Each plot has exactly two nonzero components at frequencies k/100 = 0.02 and
(100−k)/100 = 0.98 corresponding to each sample path sinusoid having frequency 0.02. Note that
the magnitude of each 0.02 frequency component depends on the magnitude of the corresponding
sinusoidal sample path.

Problem 11.10.4 Solution
Searching the Matlab full product help for inv yields this bit of advice:

In practice, it is seldom necessary to form the explicit inverse of a matrix. A frequent
misuse of inv arises when solving the system of linear equations . One way to solve
this is with x = inv(A) ∗ b. A better way, from both an execution time and numerical
accuracy standpoint, is to use the matrix division operator x = A\b. This produces
the solution using Gaussian elimination, without forming the inverse. See \ and / for
further information.

The same discussion goes on to give an example where x = A\b is both faster and more accurate.

Problem 11.10.5 Solution
The function lmsepredictor.m is designed so that if the sequence Xn has a finite duration autocor-
relation function such that RX [k] = 0 for |k| ≥ m, but the LMSE filter of order M − 1 for M ≥ m
is supposed to be returned, then the lmsepredictor automatically pads the autocorrelation vector
rx with a sufficient number of zeros so that the output is the order M − 1 filter. Conversely, if rx
specifies more values RX [k] than are needed, then the operation rx(1:M) extracts the M values
RX [0], . . . , RX [M − 1] that are needed.
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However, in this problem RX [k] = (−0.9)|k| has infinite duration. When we pass the truncated
representation rx of length m = 6 and request lmsepredictor(rx,M) for M ≥ 6, the result is that
rx is incorrectly padded with zeros. The resulting filter output will be the LMSE filter for the filter
response

RX [k] =
{

(−0.9)|k| |k| ≤ 5,
0 otherwise,

(1)

rather than the LMSE filter for the true autocorrelation function.

Problem 11.10.6 Solution
Applying Theorem 11.4 with sampling period Ts = 1/4000 s yields

RX [k] = RX(kTs) = 10 sinc(0.5k) + 5 sinc(0.25k). (1)

To find the power spectral density SX(φ), we need to find the DTFT of sinc(φ0k) Unfortunately,
this was omitted from Table 11.2 so we now take a detour and derive it here. As with any derivation
of the transform of a sinc function, we guess the answer and calculate the inverse transform. In
this case, suppose

SX (φ) =
1
φ0

rect(φ/φ0) =
{

1 |φ| ≤ φ0/2,
0 otherwise.

(2)

We find RX [k] from the inverse DTFT. For |φ0| ≤ 1,

RX [k] =
∫ 1/2

−1/2
SX (φ) ej2πφk dφ =

1
φ0

∫ φ0/2

−φ0/2
ej2πφk dφ =

1
φ0

ejπφ0k − e−jπφ0k

j2πk
= sinc(φ0k) (3)

Now we apply this result to take the transform of RX [k] in Equation (1). This yields

SX (φ) =
10
0.5

rect(φ/0.5) +
5

0.25
rect(φ/0.25). (4)

Ideally, an 2N + 1-point DFT would yield a sampled version of the DTFT SX(φ). However, the
truncation of the autocorrelation RX [k] to 201 points results in a difference. For N = 100, the DFT
will be a sampled version of the DTFT of RX [k] rect(k/(2N +1)). Here is a Matlab program that
shows the difference when the autocorrelation is truncated to 2N + 1 terms.

function DFT=twosincsdft(N);
%Usage: SX=twosincsdft(N);
%Returns and plots the 2N+1
%point DFT of R(-N) ... R(0) ... R(N)
%for ACF R[k] in Problem 11.2.2
k=-N:N;
rx=10*sinc(0.5*k) + 5*sinc(0.25*k);
DFT=fftc(rx);
M=ceil(0.6*N);
phi=(0:M)/(2*N+1);
stem(phi,abs(DFT(1:(M+1))));
xlabel(’\it \phi’);
ylabel(’\it S_X(\phi)’);

Here is the output of twosincsdft(100).
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From the stem plot of the DFT, it is easy to see the deviations from the two rectangles that make
up the DTFT SX(φ). We see that the effects of windowing are particularly pronounced at the
break points.

Comment: In twosincsdft, DFT must be real-valued since it is the DFT of an autocorrelation
function. Hence the command stem(DFT) should be sufficient. However, due to numerical precision
issues, the actual DFT tends to have a tiny imaginary hence we use the abs operator.

Problem 11.10.7 Solution
In this problem, we generalize the solution of Problem 11.4.1 using Theorem 11.9 with k = 1 for
filter order M > 2 The optimum linear predictor filter h =

[
h0 h1 · · · hM−1

]′ of Xn+1 given
Xn =

[
Xn−(M−1) · · · Xn−1 Xn

]′ is given by

←−
h =

⎡
⎢⎣hM−1

...
h0

⎤
⎥⎦ = R−1

Xn
RXnXn+1 , (1)

where RXn is given by Theorem 11.6 and RXnXn+1 is given by Equation (11.66). In this problem,

RXnXn+1 = E

⎡
⎢⎣
⎡
⎢⎣Xn−M+1

...
Xn

⎤
⎥⎦Xn+1

⎤
⎥⎦ =

⎡
⎢⎣RX [M ]

...
RX [1]

⎤
⎥⎦ . (2)

Going back to Theorem 9.7(a), the mean square error is

e∗L = E
[
(Xn+1 −←−

h ′Xn)2
]

= Var[Xn+1] −←−
h ′RXnXn+1 . (3)

For M > 2, we use the Matlab function onesteppredictor(r,M) to perform the calculations.

function [h,e]=onesteppredictor(r,M);
%usage: h=onesteppredictor(r,M);
%input: r=[R_X(0) R_X(1) .. R_X(m-1)]
%assumes R_X(n)==0 for n >=m
%output=vector h for lmse predictor
% xx=h’[X(n),X(n-1),..,X(n-M+1)] for X(n+1)
m=length(r);
r=[r(:);zeros(M-m+1,1)];%append zeros if needed
RY=toeplitz(r(1:M));
RYX=r(M+1:-1:2);
h=flipud(RY\RYX);
e=r(1)-(flipud(h))’*RYX;
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The code is pretty straightforward. Here are two examples just to show it works.

>> [h2,e2]=onesteppredictor(r,2)
h2 =

0.8571
-0.1429

e2 =
0.4286

>> [h4,e4]=onesteppredictor(r,4)
h4 =

0.8000
0.0000

-0.0000
-0.2000

e4 =
0.4000

The problem also requested that we calculate the mean square error as a function of the filter order
M . Here is a script and the resulting plot of the MSE.
%onestepmse.m
r=1-0.25*(0:3);
ee=[ ];
for M=2:10,
[h,e]=onesteppredictor(r,M);
ee=[ee,e];

end
plot(2:10,ee,’-d’);
xlabel(’\itM’);
ylabel(’\it MSE’);
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Problem 11.10.8 Solution
This problem generalizes the solution of Problem 11.10.7. to a k-step predictor. The optimum linear
predictor filter h =

[
h0 h1 · · · hM−1

]′ of Xn+1 given Xn =
[
Xn−(M−1) · · · Xn−1 Xn

]′ is
given by

←−
h =

⎡
⎢⎣hM−1

...
h0

⎤
⎥⎦ = R−1

Xn
RXnXn+k

, (1)

where RXn is given by Theorem 11.6 and RXnXn+k
is given by Equation (11.66). In this problem,

RXnXn+k
= E

⎡
⎢⎣
⎡
⎢⎣Xn−M+1

...
Xn

⎤
⎥⎦Xn+k

⎤
⎥⎦ =

⎡
⎢⎣RX [M + k − 1]

...
RX [k]

⎤
⎥⎦ . (2)

Going back to Theorem 9.7(a), the mean square error is

e∗L = E
[
(Xn+k −←−

h ′Xn)2
]

= Var[Xn+k] −←−
h ′RXnXn+k

. (3)

The Matlab function kpredictor(r,M) implements this solution.
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function h=kpredictor(r,M,k);
%usage: h=kpredictor(r,M,k);
%input: r=[R_X(0) R_X(1) .. R_X(m-1)]
%assumes R_X(n)==0 for n >=m
%output=vector a
% for lmse predictor xx=h’[X(n),X(n-1),..,X(n-N+1)] for X(n+k)
m=length(r);
r=[r(:);zeros(M-m+1,1)]; %appends zeros if needed
RY=toeplitz(r(1:M));
RYX=r(1+k:M+k);
h=flipud(RY\RYX);

The code is pretty straightforward.

Problem 11.10.9 Solution
To generate the sample paths Xn and Yn is relatively straightforward. For σ = η = 1, the solution
to Problem 11.4.5 showed that the optimal linear predictor X̂n(Yn−1) of Xn given Yn−1 is

X̂n =
cd

d2 + (1 − c2)
Yn−1. (1)

In the following, we plot sample paths of Xn and X̂n. To show how sample paths are similar
for different values of c and d, we construct all samples paths using the same sequence of noise
samples Wn and Zn. In addition, given c, we choose X0 = X00/

√
1 − c2 where X00 is a Gaussian

(0, 1) random variable that is the same for all sample paths. To do this, we write a function
xpathplot(c,d,x00,z,w) which constructs a sample path given the parameters c and d, and the
noise vectors z and w. A simple script predictpaths.m calls xpathplot to generate the requested
sample paths. Here are the two programs:

function [x,xhat]=xpaths(c,d,x00,z,w)
n=length(z);
n0=(0:(n-1))’; n1=(1:n)’;
vx=1/(1-c^2);
x0=sqrt(vx)*x00;
x=(c.^(n1)*x0)+...

toeplitz(c.^(n0),eye(1,n))*z;
y=d*[x0;x(1:n-1)]+w;
vy=((d^2)*vx) + 1;
xhat=((c*d*vx)/vy)*y;
plot(n1,x,’b-’,n1,xhat,’k:’);
axis([0 50 -3 3]);
xlabel(’\itn’); ylabel(’\itX_n’);

%predictpaths.m
w=randn(50,1);z=randn(50,1);
x00=randn(1);
xpaths(0.9,10,x00,z,w);
pause;
xpaths(0.9,1,x00,z,w);
pause;
xpaths(0.9,0.1,x00,z,w);
pause;
xpaths(0.6,10,x00,z,w);
pause;
xpaths(0.6,1,x00,z,w);
pause;
xpaths(0.6,0.1,x00,z,w);

Some sample paths for Xn and X̂n for the requested parameters are shown below. In each pair,
the one-step prediction X̂n is marked by dots.
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(a) c = 0.9, d = 10 (d) c = 0.6, d = 10
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(c) c = 0.9, d = 0.1 (f) c = 0.6, d = 0.1

The mean square estimation error at step n was found to be

e∗L(n) = e∗L = σ2 d2 + 1
d2 + (1 − c2)

(2)

We see that the mean square estimation error is e∗L(n) = e∗L, a constant for all n. In addition, e∗L
is a decreasing function of d. In graphs (a) through (c), we see that the predictor tracks Xn less
well as d decreases because decreasing d corresponds to decreasing the contribution of Xn−1 to the
measurement Yn−1. Effectively, the impact of the measurement noise is increased. As d decreases,
the predictor places less emphasis on the measurement Yn and instead makes predictions closer to
E[X] = 0. That is, when d is small in graphs (c) and (f), the predictor stays close to zero. With
respect to c, the performance of the predictor is less easy to understand. In Equation (11), the
mean square error e∗L is the product of

Var[Xn] =
σ2

1 − c2
1 − ρ2

Xn,Yn−1
=

(d2 + 1)(1 − c2)
d2 + (1 − c2)

(3)

As a function of increasing c2, Var[Xn] increases while 1 − ρ2
Xn,Yn−1

decreases. Overall, the mean
square error e∗L is an increasing function of c2. However, Var[X] is the mean square error obtained
using a blind estimator that always predicts E[X] while 1 − ρ2

Xn,Yn−1
characterizes the extent to

which the optimal linear predictor is better than the blind predictor. When we compare graphs
(a)-(c) with c = 0.9 to graphs (d)-(f) with c = 0.6, we see greater variation in Xn for larger a but
in both cases, the predictor worked well when d was large.
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