
1

A Survey on Homomorphic Encryption Schemes:
Theory and Implementation

ABBAS ACAR, HIDAYET AKSU, and A. SELCUK ULUAGAC, Florida International University
MAURO CONTI, University of Padua

Legacy encryption systems depend on sharing a key (public or private) among the peers involved in exchang-
ing an encrypted message. However, this approach poses privacy concerns. The users or service providers
with the key have exclusive rights on the data. Especially with popular cloud services, the control over
the privacy of the sensitive data is lost. Even when the keys are not shared, the encrypted material is
shared with a third party that does not necessarily need to access the content. Moreover, untrusted servers,
providers, and cloud operators can keep identifying elements of users long after users end the relationship
with the services. Indeed, Homomorphic Encryption (HE), a special kind of encryption scheme, can address
these concerns as it allows any third party to operate on the encrypted data without decrypting it in ad-
vance. Although this extremely useful feature of the HE scheme has been known for over 30 years, the
first plausible and achievable Fully Homomorphic Encryption (FHE) scheme, which allows any computable
function to perform on the encrypted data, was introduced by Craig Gentry in 2009. Even though this was a
major achievement, different implementations so far demonstrated that FHE still needs to be improved sig-
nificantly to be practical on every platform. Therefore, this survey focuses on HE and FHE schemes. First,
we present the basics of HE and the details of the well-known Partially Homomorphic Encryption (PHE)
and Somewhat Homomorphic Encryption (SWHE), which are important pillars of achieving FHE. Then, the
main FHE families, which have become the base for the other follow-up FHE schemes are presented. Fur-
thermore, the implementations and recent improvements in Gentry-type FHE schemes are also surveyed.
Finally, further research directions are discussed. This survey is intended to give a clear knowledge and
foundation to researchers and practitioners interested in knowing, applying, as well as extending the state
of the art HE, PHE, SWHE, and FHE systems.

Categories and Subject Descriptors: E.3 [Data]: Data Encryption; K.6.5 [Management of Computing and
Information Systems]: Security and Protection; K.4.1 [Computers and Society]: Public Policy Issues

General Terms: Encryption, Security, Privacy

Additional Key Words and Phrases: Fully homomorphic encryption, FHE, FHE implementation, FHE sur-
vey, Homomorphic Encryption, Partially Homomorphic Encryption, Somewhat Homomorphic Encryption,
PHE, SWHE

ACM Reference Format:
Abbas Acar, Hidayet Aksu, A. Selcuk Uluagac, and Mauro Conti, 2018. A survey on homomorphic encryption
schemes: theory and implementation. ACM Comput. Surv. 1, 1, Article 1 (January 2018), 35 pages.

DOI: http://dx.doi.org/10.1145/3214303

1. INTRODUCTION
In ancient Greeks, the term "ὁμός" (homos) was used in the meaning of "same" while
"μορφή" (morphe) was used for "shape" [Liddell and Scott 1896]. Then, the term homo-
morphism is coined and used in different areas. In abstract algebra, homomorphism
is defined as a map preserving all the algebraic structures between the domain and
range of an algebraic set [Malik et al. 2007]. The map is simply a function, i.e., an op-
eration, which takes the inputs from the set of domain and outputs an element in the
range, (e.g., addition, multiplication). In the cryptography field, the homomorphism is
used as an encryption type. The Homomorphic Encryption (HE) is a kind of encryption
scheme which allows a third party (e.g., cloud, service provider) to perform certain com-
putable functions on the encrypted data while preserving the features of the function
and format of the encrypted data. Indeed, this homomorphic encryption corresponds

Author’s addresses: A. Acar, H. Aksu, and A. S. Uluagac, Electrical and Computer Engineering, Florida In-
ternational University, Miami, FL-33199; emails: aacar001,haksu,suluagac@fiu.edu; M. Conti, Department
of Mathematics, University of Padua, Padua, Italy and email: conti@math.unipd.it.

1:2 A. Acar et al.

to a mapping in the abstract algebra. As an example for an additively HE scheme, for
sample messages m1 and m2, one can obtain E(m1 +m2) by using E(m1) and E(m2)
without knowing m1 and m2 explicitly, where E denotes the encryption function.

Normally, encryption is a crucial mechanism to preserve the privacy of any sensitive
information. However, the conventional encryption schemes can not work on the en-
crypted data without decrypting it first. In other words, the users have to sacrifice their
privacy to make use of cloud services such as file storing, sharing and collaboration.
Moreover, untrusted servers, providers, popular cloud operators can keep physically
identifying elements of users long after users end the relationship with the services
[McMillan 2013]. This is a major privacy concern for users. In fact, it would be perfect
if there existed a scheme which would not restrict the operations to be computed on
the encrypted data while it would be still encrypted. From a historical perspective in
cryptology, the term homomorphism is used for the first time by Rivest, Adleman, and
Dertouzous [Rivest et al. 1978a] in 1978 as a possible solution to the computing with-
out decrypting problem. This given basis in [Rivest et al. 1978a] has led to numerous
attempts by researchers around the world to design such a homomorphic scheme with
a large set of operations. In this work, the primary motivation is to survey the HE
schemes focusing on the most recent improvements in this field, including partially,
somewhat, and fully HE schemes.

A simple motivational HE example for a sample cloud application is illustrated in
Figure 1. In this scenario, the client, C, first encrypts her private data (Step 1), then
sends the encrypted data to the cloud servers, S, (Step 2). When the client wants to
perform a function (i.e., query), f(), over her own data, she sends the function to the
server (Step 3). The server performs a homomorphic operation over the encrypted data
using the Eval function, i.e., computes f() blindfolded (Step 4) and returns the en-
crypted result to the client (Step 5). Finally, the client recovers the data with her own
secret key and obtains f(m) (Step 6). As seen in this simple example, the homomorphic
operation, Eval(), at the server side does not require the private key of the client and
allows various operations such as addition and multiplication on the encrypted client
data.

An early attempt to compute functions/operations on encrypted data is Yao’s gar-
bled circuit1 study [Yao 1982]. Yao proposed two party communication protocol as a
solution to the Millionaires’ problem, which compares the wealth of two rich people
without revealing the exact amount to each other. However, in Yao’s garbled circuit so-
lution, ciphertext size grows at least linearly with the computation of every gate in the
circuit. This yields a very poor efficiency in terms of computational overhead and too
much complexity in its communication protocol. Until Gentry’s breakthrough in [Gen-
try 2009], all the attempts [Rivest et al. 1978b; Goldwasser and Micali 1982; ElGamal
1985; Benaloh 1994; Naccache and Stern 1998; Okamoto and Uchiyama 1998; Pail-
lier 1999; Damgård and Jurik 2001; Kawachi et al. 2007; Yao 1982; Boneh et al. 2005;
Sander et al. 1999; Ishai and Paskin 2007] have allowed either one type of operation or
limited number of operations on the encrypted data. Moreover, some of the attempts
are even limited over a specific type of set (e.g., branching programs). In fact, all these
different HE attempts can neatly be categorized under three types of schemes with re-
spect to the number of allowed operations on the encrypted data as follows: (1) Partially
Homomorphic Encryption (PHE) allows only one type of operation with an unlimited
number of times (i.e., no bound on the number of usages). (2) Somewhat Homomorphic
Encryption (SWHE) allows some types of operations with a limited number of times.
(3) Fully Homomorphic Encryption (FHE) allows an unlimited number of operations
with unlimited number of times.

1A circuit is the set of connected gates (e.g., AND and XOR gates in boolean circuits), where the evaluation
is completed by calculating the output of each gate in turn.

A Survey on Homomorphic Encryption Schemes:Theory and Implementation 1:3

C: m, Enc, Dec, f() S: Eval

4 S
evalutes
f() homo-

morphically

1 C encrypts his
message m, Enc(m)

6 C computes
Dec(Enc(f(m))) = f(m),

and recovers f(m)

2 C sends Enc(m) to store

3 C queries, f()

5 S returns Enc(f(m))

Fig. 1: A simple client-server HE scenario, where C is Client and S is Server

PHE schemes are deployed in some applications like e-voting [Benaloh 1987] or Pri-
vate Information Retrieval (PIR) [Kushilevitz and Ostrovsky 1997]. However, these
applications were restricted in terms of the types of homomorphic evaluation oper-
ations. In other words, PHE schemes can only be used for particular applications,
whose algorithms include only addition or multiplication operation. On the other hand,
the SWHE schemes support both addition and multiplication. Nonetheless, in SWHE
schemes that are proposed before the first FHE scheme, the size of the ciphertexts
grows with each homomorphic operation and hence the maximum number of allowed
homomorphic operations is limited. These issues put a limit on the use of PHE and
SWHE schemes in real-life applications. Eventually, the increasing popularity of cloud-
based services accelerated the design of HE schemes which can support an arbitrary
number of homomorphic operations with random functions, i.e. FHE. Gentry’s FHE
scheme is the first plausible and achievable FHE scheme [Gentry 2009]. It is based on
ideal-lattices in math and it is not only a description of the scheme, but also a powerful
framework for achieving FHE. However, it is conceptually and practically not a real-
istic scheme. Especially, the bootstrapping part, which is the intermediate refreshing
procedure of a processed ciphertext, is too costly in terms of computation. Therefore, a
lot of follow-up improvements and new schemes were proposed in the following years.

Contribution: In this work, we provide a comprehensive survey of all the main FHE
schemes as of this writing. We also cover a survey of important PHE and SWHE
schemes as they are the first works in accomplishing the FHE dream and are still
popular as FHE schemes are very costly. Furthermore, we include the FHE implemen-
tations focusing on the improvements with each scheme. FHE attracts the interest
of people from very different research areas in terms of theoretical, implementation,
and application perspectives. This survey is structured to provide an easy digest of the
relatively complex homomorphic encryption topic. For instance, while a mathemati-
cian focuses on the improvement in theoretical perspective, a hardware designer tries
to improve the efficiency of FHE by implementing on GPU instead of CPU. All such
different attempts make it harder to follow recent works. Therefore, it is important
to collect and categorize the existing FHE works focusing on recent improvements. In
addition, we mention the challenges and future perspectives of HE to motivate the
researchers and practitioners to explore and improve the performance of HE schemes
and their applications. This survey is intended to give a clear knowledge foundation
to researchers and practitioners interested in knowing, applying, as well as extending
state of the art HE systems.

Organization: The reminder of the paper is organized as follows: In Section 3, de-
scriptions of different HE schemes, PHE, SWHE, and FHE schemes are presented.
Then, in Section 4, different implementations of SWHE and FHE schemes, which were
introduced after Gentry’s work, are given and their performances are discussed. Fi-
nally, in Section 5, further research directions and lessons learned are given and the
paper is concluded.

1:4 A. Acar et al.

2. RELATED WORK
Like our work in this paper, there are similar useful surveys in the literature. In
fact, unfortunately, some of the surveys only cover the theoretical information of the
schemes as in [Parmar et al. 2014; Ahila and Shunmuganathan 2014] and some of
them are directly for expert readers and mathematicians as in [Vaikuntanathan 2011;
Silverberg 2013; Gentry 2014]. Compared to these surveys, our survey has a broad
reader perspective including researchers and practitioners interested in the advances
and implementations in the field of HE, especially FHE. Furthermore, while the survey
in [Aguilar-Melchor et al. 2013] only covers the signal processing applications, other
in [Hrestak and Picek 2014] covers a few FHEs on only cloud applications. Since our
survey is not limited to specific application areas, we do not articulate these specific
application areas in detail but we list the theory and implementation of all existing
HE schemes, which can be used in possible futuristic application areas with recent
advancements. After [Fontaine and Galand 2007] and [Akinwande 2009], many HE
schemes were introduced. Compared to these useful surveys, our survey focuses on
the most recent HE schemes, since most of the significant improvements are intro-
duced recently (after 2009). Although [Moore et al. 2014b] is one of the most recent
surveys, it focuses on the hardware implementation solutions of FHE schemes. This
survey is not limited to hardware solutions, as, in addition to hardware solutions, it
covers software solutions of implementations as well in the implementation section.
After [Sen 2013; Wu 2015], several new FHE schemes, which improves FHE in a suffi-
ciently great way as to be worthy of attention, were proposed in the literature. Finally,
it is worth mentioning that [Armknecht et al. 2015] provides a systematic explanation
of the new terminology related to FHE and [Armknecht et al. 2013] provides security
and a characterization of all existing group homomorphic encryption schemes, where
they do not present all the HE schemes and their implementations in detail. Compared
to these useful prior works, nonetheless, our survey is intrinsically different from the
aforementioned surveys.

3. HOMOMORPHIC ENCRYPTION SCHEMES
In this section, we explain the basics of HE theory. Then, we present notable PHE,
SWHE and FHE schemes. For each scheme, we also give a brief description of the
scheme.

DEFINITION 1. An encryption scheme is called homomorphic over an operation ’?’ if
it supports the following equation:

E(m1) ? E(m2) = E(m1 ? m2), ∀m1,m2 ∈M, (1)

where E is the encryption algorithm and M is the set of all possible messages.

In order to create an encryption scheme allowing the homomorphic evaluation of
arbitrary function, it is sufficient to allow only addition and multiplication operations
because addition and multiplication are functionally complete sets over finite sets. Par-
ticularly, any boolean circuit can be represented using only XOR (addition) and AND
(multiplication) gates. While an HE scheme can use the same key for both encryption
and decryption (symmetric), it can also be designed to use the different keys to encrypt
and decrypt (asymmetric). A generic method to transform symmetric and asymmetric
HE schemes to each other is demonstrated in [Rothblum 2011].

An HE scheme is primarily characterized by four operations: KeyGen, Enc, Dec, and
Eval. KeyGen is the operation, which generates a secret and public key pair for the
asymmetric version of HE or a single key for the symmetric version. Actually, KeyGen,
Enc and Dec are not different from their classical tasks in conventional encryption
schemes. However, Eval is an HE-specific operation, which takes ciphertexts as input
and outputs a ciphertext corresponding to a functioned plaintext. Eval performs the

A Survey on Homomorphic Encryption Schemes:Theory and Implementation 1:5

function f() over the ciphertexts (c1, c2) without seeing the messages (m1,m2). Eval
takes ciphertexts as input and outputs evaluated ciphertexts. The most crucial point
in this homomorphic encryption is that the format of the ciphertexts after an evalua-
tion process must be preserved in order to be decrypted correctly. In addition, the size
of the ciphertext should also be constant to support unlimited number of operations.
Otherwise, the increase in the ciphertext size will require more resources and this will
limit the number of operations.

Of all HE schemes in the literature, PHE schemes support Eval function for only
either addition or multiplication, SWHE schemes support for only limited number of
operations or some limited circuits (e.g., branching programs) while FHE schemes sup-
ports the evaluation of arbitrary functions (e.g., searching, sorting, max, min, etc.) with
unlimited number of times over ciphertexts. The well-known PHE, SWHE, and FHE
schemes are summarized in the timeline in Figure 2 and are explained in the following
sections with a greater detail. The interest in the area of HE significantly increased af-
ter the work of Gentry [Gentry 2009] in 2009. Therefore, we articulate the HE schemes,
FHE anymore, after Gentry’s work in a greater detail and we also discuss their imple-
mentations and recent techniques to make it faster in Section 4. Here, we start with
the PHE schemes, which are the first stepping stones for FHE schemes.

3.1. Partially Homomorphic Encryption Schemes
There are several useful PHE examples [Rivest et al. 1978b; Goldwasser and Mi-
cali 1982; ElGamal 1985; Benaloh 1994; Naccache and Stern 1998; Okamoto and
Uchiyama 1998; Paillier 1999; Damgård and Jurik 2001; Kawachi et al. 2007] in the
literature. Each has improved the PHE in some way. However, in this section, we pri-
marily focus on major PHE schemes that are the basis for many other PHE schemes.

3.1.1. RSA. RSA is an early example of PHE and introduced by Rivest, Shamir, and
Adleman [Rivest et al. 1978b] shortly after the invention of public key cryptography by
Diffie Helman [Diffie and Hellman 1976]. RSA is the first feasible achievement of the
public key cryptosystem. Moreover, the homomorphic property of RSA was shown by
Rivest, Adleman, and Dertouzous [Rivest et al. 1978a] just after the seminal work of
RSA. Indeed, the first attested use of the term "privacy homomorphism" is introduced
in [Rivest et al. 1978a]. The security of the RSA cryptosystem is based on the hardness
of factoring problem of the product of two large prime numbers [Montgomery 1994]2

RSA is defined as follows:

— KeyGen Algorithm: First, for large primes p and q, n = pq and φ = (p − 1)(q − 1) are
computed. Then, e is chosen such that gcd(e, φ) and d is calculated by computing the
multiplicative inverse of e (i.e, ed ≡ 1 mod φ). Finally, (e, n) is released as the public
key pair while (d, n) is kept as the secret key pair.

— Encryption Algorithm: First, the message is converted into a plaintext m such that
0 ≤ m < n, then the RSA encryption algorithm is as follows:

c = E(m) = me (mod n), ∀m ∈M, (2)

where c is the ciphertext.
— Decryption Algorithm: The message m can be recovered from the ciphertext c using

the secret key pair (d, n) as follows:

m = D(c) = cd (mod n) (3)

2Here, we do not mean that RSA is secure. We mean the most basic attack on RSA (e.g., key recovering
attack) has to solve the problem of factoring of two large primes. For example, plain RSA is not secure
against Chosen Plaintext Attacks (CPA) as its encryption algorithm is deterministic. We use the same idea
for the rest of the paper as well. Because of the limited space, we do not discuss the details of the security of
each encryption scheme.

1:6 A. Acar et al.

El-Gamal '85

Benaloh '94

Paillier '99
SYY '00

BGN '05

PHE

IP '07

SWHE

«Fully Homomorphic Encryption»

Gen '09

FHE

The Invention of Public Key Encryption

DH '76
GM '82

20161976

RSA 78

«Privacy Homomorphism» is introduced

RAD 78

Fig. 2: Timeline of HE schemes until Gentry’s first FHE scheme

— Homomorphic Property: For m1,m2 ∈M ,

E(m1)∗E(m2) = (me
1 (mod n))∗(me

2 (mod n)) = (m1∗m2)
e (mod n) = E(m1∗m2).

(4)

The homomorphic property of RSA shows that E(m1 ∗m2) can be directly evaluated
by using E(m1) and E(m2) without decrypting them. In other words, RSA is only ho-
momorphic over multiplication. Hence, it does not allow the homomorphic addition of
ciphertexts.

3.1.2. Goldwasser-Micali. GM proposed the first probabilistic public key encryption
scheme proposed in [Goldwasser and Micali 1982]. The GM cryptosystem is based
on the hardness of quadratic residuosity problem [Kaliski 2005]. Number a is called
quadratic residue modulo n if there exists an integer x such that x2 ≡ a (mod n).
Quadratic residuosity problem decides whether a given number q is quadratic modulo
n or not. GM cryptosystem is described as follows:

— KeyGen Algorithm: Similar to RSA, n = pq is computed where p and q are distinct
large primes and then, x is chosen as one of the quadratic nonresidue modulo n values
with (xn) = 1. Finally, (x, n) is published as the public key while (p, q) is kept as the
secret key.

— Encryption Algorithm: Firstly, the message (m) is converted into a string of bits.
Then, for every bit of the message mi, a quadratic nonresidue value yi is produced
such that gcd(yi, n) = 1. Then, each bit is encrypted to ci as follows:

ci = E(mi) = y2i x
mi (mod n), ∀mi = {0, 1}, (5)

where m = m0m1...mr, c = c0c1...cr and r is the block size used for the message
space and x is picked from Zn

∗ at random for every encryption, where Zn∗ is the
multiplicative subgroup of integers modulo n which includes all the numbers smaller
than r and relatively prime to r.

— Decryption Algorithm: Since x is picked from the set Zn∗ (1 < x ≤ n−1), x is quadratic
residue modulo n for only mi = 0. Hence, to decrypt the ciphertext ci, one decides
whether ci is a quadratic residue modulo n or not; if so, mi returns 0, else mi returns
1.

— Homomorphic Property: For each bit mi ∈ {0, 1},

E(m1) ∗ E(m2) = (y21x
m1 (mod n)) ∗ (y22xm2 (mod n))

= (y1 ∗ y2)2xm1+m2 (mod n) = E(m1 +m2).
(6)

The homomorphic property of the GM cryptosystem shows that encryption of the
sum E(m1 ⊕m2) can be directly calculated from the separately encrypted bits, E(m1)

A Survey on Homomorphic Encryption Schemes:Theory and Implementation 1:7

and E(m2). Since the message and ciphertext are the elements of the set {0, 1}, the
operation is the same with exclusive-OR (XOR)3 Hence, GM is homomorphic over only
addition for binary numbers.

3.1.3. El-Gamal. In 1985, Taher Elgamal proposed a new public key encryption
scheme [ElGamal 1985] which is the improved version of the original Diffie-Hellman
Key Exchange [Diffie and Hellman 1976] algorithm, which is based on the hardness
of certain problems in discrete logarithm [Kevin 1990]. It is mostly used in hybrid
encryption systems to encrypt the secret key of a symmetric encryption system. The
El-Gamal cryptosystem is defined as follows:

— KeyGen Algorithm: A cyclic group G with order n using generator g is produced. In a
cyclic group, it is possible to generate all the elements of the group using the powers
of one of its own element. Then, h = gy computed for randomly chosen y ∈ Zn∗.
Finally, the public key is (G,n, g, h) and x is the secret key of the scheme.

— Encryption Algorithm: The message m is encrypted using g and x, where x is ran-
domly chosen from the set {1, 2, ..., n− 1} and the output of the encryption algorithm
is a ciphertext pair (c = (c1, c2)):

c = E(m) = (gx,mhx) = (gx,mgxy) = (c1, c2), (7)

— Decryption Algorithm: To decrypt the ciphertext c, first, s = c1
y is computed where y

is the secret key. Then, decryption algorithm works as follows:

c2 · s−1 = mgxy · g−xy = m. (8)

— Homomorphic Property:

E(m1) ∗ E(m2) = (gx1 ,m1h
x1) ∗ (gx2 ,m2h

x2) = (gx1+x2 ,m1 ∗m2h
x1+x2) = E(m1 ∗m2).

(9)

As seen from this derivation, the El-Gamal cryptosystem is multiplicatively homo-
morphic. It does not support addition operation over ciphertexts.

3.1.4. Benaloh. Benaloh proposed an extension of the GM Cryptosystem by improving
it to encrypt the message as a block instead of bit by bit [Benaloh 1994]. Benaloh’s
proposal was based on the higher residuosity problem. Higher residuosity problem
(xn)[Zheng et al. 1988] is the generalization of quadratic residuosity problems (x2)
that is used for the GM cryptosystem.

— KeyGen Algorithm: Block size r and large primes p and q are chosen such that r
divides p− 1 and r is relatively prime to (p− 1)/r and q − 1 (i.e., gcd(r, (p− 1)/r) = 1
and gcd(r, (q − 1)) = 1). Then, n = pq and φ = (p − 1)(q − 1) are computed. Lastly,
y ∈ Zn∗ is chosen such that yφ 6≡ 1 mod n, where Zn∗ is the multiplicative subgroup
of integers modulo n which includes all the numbers smaller than r and relatively
prime to r. Finally, (y, n) is published as the public key, and (p, q) is kept as the secret
key.

— Encryption Algorithm: For the message m ∈ Zr, where Zr = {0, 1, ..., r − 1}, choose a
random u such that u ∈ Zn∗. Then, to encrypt the message m:

c = E(m) = ymur (mod n), (10)

where the public key is the modulus n and base y with the block size of r.
— Decryption Algorithm: The message m is recovered by an exhaustive search for i ∈ Zr

such that

(y−ic)φ/r ≡ 1, (11)

3XOR can be thought as binary addition.

1:8 A. Acar et al.

where the message m is returned as the value of i, i.e., m = i.
— Homomorphic Property:

E(m1) ∗ E(m2) = (ym1u1
r (mod n)) ∗ (ym2u2

r (mod n))

= ym1+m2(u1 ∗ u2)r (mod n) = E(m1 +m2 (mod n)).
(12)

Homomorphic property of Benaloh shows that any multiplication operation on en-
crypted data corresponds to the addition on plaintext. As the encryption of the addition
of the messages can directly be calculated from encrypted messages E(m1) and E(m2),
the Benaloh cryptosystem is additively homomorphic.

3.1.5. Paillier. In 1999, Paillier [Paillier 1999] introduced another novel probabilistic
encryption scheme based on composite residuosity problem [Jager 2012]. Composite
residuosity problem is very similar to quadratic and higher residuosity problems that
are used in GM and Benaloh cryptosystems. It questions whether there exists an inte-
ger x such that xn ≡ a (mod n2) for a given integer a.

— KeyGen Algorithm: For large primes p and q such that gcd(pq, (p − 1)(q − 1)) = 1,
compute n = pq and λ = lcm(p − 1, q − 1). Then, select a random integer g ∈ Z∗n2

by checking whether gcd(n,L(gλ mod n2

)) = 1, where the function L is defined as
L(u) = (u−1)/n for every u from the subgroup Z∗n2 which is a multiplicative subgroup
of integers modulo n2 instead of n like in the Benaloh cryptosystem. Finally, the
public key is (n, g) and the secret key is (p, q) pair.

— Encryption Algorithm:
For each message m, the number r is randomly chosen and the encryption works as
follows:

c = E(m) = gmrn (mod n2), (13)

— Decryption Algorithm: For a proper ciphertext c < n2, the decryption is done by:

D(c) =
L(cλ (mod n2))

L(gλ (mod n2))
mod n = m, (14)

where private key pair is (p, q).
— Homomorphic Property:

E(m1) ∗ E(m2) = (gm1r1
n (mod n2)) ∗ (gm2r2

n (mod n2))

= gm1+m2(r1 ∗ r2)n (mod n2) = E(m1 +m2).
(15)

This derivation shows that Pailliler’s encryption scheme is homomorphic over addi-
tion. In addition to homomorphism over the addition operation, Pailliler’s encryption
scheme has some additional homomorphic properties, which allow extra basic opera-
tions on plaintexts m1,m2 ∈ Z∗n2 by using the encrypted plaintexts E(m1), E(m2) and
public key pair (n, g):

E(m1) ∗ E(m2) (mod n2) = E(m1 +m2 (mod n)), (16)

E(m1) ∗ gm2 (mod n2) = E(m1 +m2 (mod n)), (17)

E(m1)
m2 (mod n2) = E(m1m2 (mod n)). (18)

These additional homomorphic properties describe different cross-relation between
various operations on the encrypted data and the plaintexts. In other words, Equa-
tions (16), (17), and (18) show how the operations computed on encrypted data affects
the plaintexts.

A Survey on Homomorphic Encryption Schemes:Theory and Implementation 1:9

Table I: Homomorphic properties of well-known PHE schemes
Homomorphic Operation

Scheme Add Mult
RSA [Rivest et al. 1978b] 3

GM [Goldwasser and Micali 1982] 3

El-Gamal [ElGamal 1985]4 3

Benaloh [Benaloh 1994] 3

NS [Naccache and Stern 1998] 3

OU [Okamoto and Uchiyama 1998] 3

Paillier [Paillier 1999] 3

DJ [Damgård and Jurik 2001] 3

KTX [Kawachi et al. 2007] 3

Galbraith [Galbraith 2002] 3

3.1.6. Others. Moreover, Okamoto-Uchiyama (OU) [Okamoto and Uchiyama 1998]
proposed a new PHE scheme to improve the computational performance by chang-
ing the set, where the encryptions of previous HE schemes work. The domain of
the scheme is the same as the previous public key encryption schemes, Z∗n, however,
Okamoto-Uchiyama sets n = p2q for large primes p and q. Furthermore, Naccache-
Stern (NS) [Naccache and Stern 1998] presented another PHE scheme as a general-
ization of Benaloh cryptosystem to increase its computational efficiency. The proposed
work changed only the decryption algorithm of the scheme. Likewise, Damgard-Jurik
(DJ) [Damgård and Jurik 2001] introduced another PHE scheme as a generalization of
Paillier. These three cryptosystems preserve the homomorphic property while improv-
ing the original homomorphic schemes.

Similarly, Kawachi (KTX) et al. [Kawachi et al. 2007] suggested an additively ho-
momorphic encryption scheme over a large cyclic group, which is based on the hard-
ness of underlying lattice problems. They named the homomorphic property of their
proposed scheme as pseudohomomorphic. Pseudohomomorphism is an algebraic prop-
erty and still allows homomorphic operations on ciphertext, however, the decryption of
the homomorphically operated ciphertext works with a small decryption error. Finally,
Galbraith [Galbraith 2002] introduced a more natural generalization of Paillier’s cryp-
tosystem applying it on elliptic curves while still preserving the homomorphic property
of the Paillier’s cryptosystem. Homomorphic properties of well-known PHE schemes
are briefly summarized in Table I.

3.2. Somewhat Homomorphic Encryption Schemes
There are useful SWHE examples [Yao 1982; Sander et al. 1999; Boneh et al. 2005;
Ishai and Paskin 2007] in the literature before 2009. After the first plausible FHE
published in 2009 [Gentry 2009], some SWHE versions of FHE schemes were also
proposed because of the performance issues associated with FHE schemes. We cover
these SWHE schemes under the FHE section. In this section, we primarily focus on
major SWHE schemes, which were used as a stepping stone to the first plausible FHE
scheme.

3.2.1. BGN. Before 2005, all proposed cryptosystems’ homomorphism properties were
restricted to only either addition or multiplication operation i.e., SWHE schemes. One
of the most significant steps toward an FHE scheme was introduced by Boneh-Goh-

4The method to convert El-Gamal into an additively homomorphic encryption scheme is shown in [Cramer
et al. 1997]. However, it is still PHE as it still supports only addition operation, not both at the same time.

1:10 A. Acar et al.

Nissim (BGN) in [Boneh et al. 2005]. BGN evaluates 2-DNF5 formulas on ciphertext
and it supports an arbitrary number of additions and one multiplication by keeping
the ciphertext size constant. The hardness of the scheme is based on the subgroup
decision problem [Gjøsteen 2004]. Subgroup decision problem simply decides whether
an element is a member of a subgroup Gp of group G of composite order n = pq, where
p and q are distinct primes.

— KeyGen Algorithm: The public key is released as (n,G,G1, e, g, h). In the public key, e
is a bilinear map such that e : G×G→ G1, where G,G1 are groups of order n = q1q2.
g and u are the generators of G and set h = uq2 and h is the generator of G with order
q1, which is kept hidden as the secret key.

— Encryption Algorithm: To encrypt a message m, a random number r from the set
{0, 1, ..., n− 1} is picked and encrypted using the precomputed g and h as follows:

c = E(m) = gmhr mod n (19)
— Decryption Algorithm: To decrypt the ciphertext c, one firstly computes c′ = cq1 =

(gmhr)q1 = (gq1)m (Note that hq1 ≡ 1 mod n) and g′ = gq1 using the secret key q1 and
decryption is completed as follows:

m = D(c) = logg′ c
′ (20)

In order to decrypt efficiently, the message space should be kept small because of the
fact that discrete logarithm can not be computed quickly.

— Homomorphism over Addition: Homomorphic addition of plaintexts m1 and m2 using
ciphertexts E(m1) = c1 and E(m2) = c2 are performed as follows:

c = c1c2h
r = (gm1hr1)(gm2hr2)hr = gm1+m2hr

′
, (21)

where r = r1 + r2 + r and it can be seen that m1 +m2 can be easily recovered from
the resulting ciphertext c.

— Homomorphism over Multiplication: To perform homomorphic multiplication, use g1
with order n and h1 with order q1 and set g1 = e(g, g), h1 = e(g, h), and h = gαq2 .
Then, the homomorphic multiplication of messages m1 and m2 using the ciphertexts
c1 = E(m1) and c2 = E(m2) are computed as follows:

c = e(c1, c2)h1
r = e(gm1hr1 , gm2hr2)h1

r

= g1
m1m2h1

m1r2+r2m1+αq2r1r2+r = g1
m1m2h1

r′
(22)

It is seen that r′ is uniformly distributed like r and so m1m2 can be correctly re-
covered from resulting ciphertext c. However, c is now in the group G1 instead of G.
Therefore, another homomorphic multiplication operation is not allowed in G1 because
there is no pairing from the set G1. However, resulting ciphertext in G1 still allows an
unlimited number of homomorphic additions. Moreover, Boneh et al. also showed the
evaluation of 2-DNF formulas using the basic 2-DNF protocol. Their protocol gives
a quadratic improvement in terms of the protocol complexity over Yao’s well-known
garbled circuit protocol in [Yao 1982].

3.2.2. Others. In the literature of HE schemes, one of the first SWHE schemes is Polly
Cracker scheme [Fellows and Koblitz 1994]. It allows both multiplication and addition
operation over the ciphertexts. However, the size of the ciphertext grows exponentially
with the homomorphic operation, especially multiplication operation is extremely ex-
pensive. Later more efficient variants [Levy-dit Vehel and Perret 2004; Van Ly 2006]
are proposed, but almost all of them are later shown vulnerable to attacks [Steinwandt
2010; Levy-dit Vehel et al. 2009]. Therefore, they are either insecure or impractical [Le

5Disjunctive Normal Form with at most 2 literals in each clause.

A Survey on Homomorphic Encryption Schemes:Theory and Implementation 1:11

Table II: Comparison of some well-known SWHE schemes before Gentry’s work
Evaluation

Size Evaluation Circuit Ciphertext
Size

Yao [Yao 1982] arbitrary garbled circuit grows at least
linearly

SYY [Sander et al. 1999]
polly-many
AND & one

OR/NOT
NC1 circuit grows

exponentially

BGN [Boneh et al. 2005]
unlimited add

& 1 mult 2-DNF formulas constant

IP [Ishai and Paskin 2007] arbitrary branching programs
doesn’t depend
on the size of

function

2003]. Recently, [Albrecht et al. 2011] introduced a Polly Cracker with Noise cryptosys-
tem, where the homomorphic addition operations do not increase the ciphertext size
while the multiplications square it.

Another idea of evaluating operations on encrypted data is realized over different
sets. Sander, Young, and Yung (SYY) described first SWHE scheme over a semi-group,
NC1,6 [Sander et al. 1999], which requires less properties than a group. NC1 is a com-
plexity class which includes the circuits with poly-logarithmic depth and polynomial
size. The proposed scheme supported polynomially many ANDing of ciphertexts with
one OR/NOT gate. However, the ciphertext size increased by a constant multiplica-
tion with each OR/NOT gate evaluation. This increase limits the evaluation of circuit
depth. Yuval Ishai and Anat Paskin (IP) expanded the set to branching programs (aka
Binary Decision Diagrams), which are the directed acyclic graphs where every node
have two outgoing edges with labeled binary 0 and 1 [Ishai and Paskin 2007]. In other
words, they proposed a public key encryption scheme by evaluating the branching pro-
grams on the encrypted data. Moreover, Melchor et al. [Melchor et al. 2010] proposed
a generic construction method to obtain a chained encryption scheme allowing the ho-
momorphic evaluation of constant depth circuit over ciphertext. The chained encryp-
tion scheme is obtained from well-known encryption schemes with some homomorphic
properties. For example, they showed how to obtain a combination of BGN [Boneh et al.
2005] and Kawachi et al. [Kawachi et al. 2007]. As mentioned before, BGN allows an
arbitrary number of additions and one multiplication while Kawachi’s scheme is only
additively homomorphic. Hence, the resulting combined scheme allows arbitrary addi-
tions and two multiplications. They also showed how this procedure is applied to the
scheme in [Melchor et al. 2008] allowing a predefined number of homomorphic addi-
tions, to obtain a scheme which allows an arbitrary number of multiplications as well.
However, in multiplication, ciphertext size grows exponentially while it is constant in
a homomorphic addition. The summary of some well-known SWHE schemes is given
in Table II. As shown in Table II, while in Yao, SYY, and IP cryptosystems, the size of
the ciphertext grows with each homomorphic operation, in BGN it stays constant. This
property of BGN is a significant improvement to obtain an FHE scheme. Accordingly,
Gentry, Halevi, and Vaikuntanathan later simplified the BGN cryptosystem [Gentry
et al. 2010]. In their version, the underlying security assumption is changed to hard-
ness of the LWE problem. The BGN cryptosystem chooses input from a small set to
decrypt correctly. In contrast, a recent scheme introduced in [Gentry et al. 2010]
have much larger message space. Moreover, some of the attempts to obtain an FHE
scheme based on SWHE schemes are reported as broken. For instance, vulnerabil-
ities for [Mullen and Shiue 1994; i Ferrer 1996; Grigoriev and Ponomarenko 2006;

6NC stands for "Nick’s Class" for the honor of Nick Pippenger

1:12 A. Acar et al.

FHE

Ideal Lattice-based
[Gentry 2009]

Over Integers
[Van Dijk et al. 2010]

(R)LWE-based
[Brakerski and Vaikuntanathan 2011]

NTRU-like
[López-Alt et al. 2012]

Fig. 3: Main FHE families after Gentry’s breakthrough

Domingo-Ferrer 2002] were reported in [Steinwandt and Geiselmann 2002; Choi et al.
2007; Wagner 2003; Cheon et al. 2006], respectively.

3.3. Fully Homomorphic Encryption Schemes
An encryption scheme is called Fully Homomorphic Encryption (FHE) scheme if it
allows an unlimited number of evaluation operations on the encrypted data and re-
sulting output is within the ciphertext space. After almost 30 years from the intro-
duction of privacy homomorphism concept [Rivest et al. 1978a], Gentry presented the
first feasible proposal in his seminal PhD thesis to a long term open problem, which
is obtaining an FHE scheme [Gentry 2009]. Gentry’s proposed scheme gives not only
an FHE scheme, but also a general framework to obtain an FHE scheme. Hence, a
lot of researchers have attempted to design a secure and practical FHE scheme after
Gentry’s work.

Although Gentry’s proposed ideal lattice-based FHE scheme [Gentry 2009] is very
promising, it also had a lot of bottlenecks such as its computational cost in terms
of applicability in real life and some of its advanced mathematical concepts make it
complex and hard to implement. Therefore, many new schemes and optimization have
followed his work in order to address aforementioned bottlenecks. The security of new
approaches to obtain a new FHE scheme is mostly based on the hard problems on
lattices.

A lattice is the linear combinations of independent vectors (basis vectors),
b1, b2, ..., bn. A lattice L is formulated as follows:

L =

n∑
i=1

~bi ∗ vi , vi ∈ Z, (23)

where each vectors b1, b2, ..., bi is called a basis of the lattice L. The basis of a lattice
is not unique. There are infinitely many bases for a given lattice. A basis is called
"good" if the basis vectors are almost orthogonal and, otherwise it is called "bad" ba-
sis of the lattice [Micciancio and Regev 2009]. Roughly, while good bases are typically
long, bad bases are relatively shorter. Indeed, the lattice theory is firstly presented
by Minkowski [Minkowski 1968]. Then as a seminal work, Ajtai mentioned a class of
random worst-case lattice problem in [Ajtai 1996]. Two well-known modern problems
suggested in [Ajtai 1996] for lattice-based cryptosystems are Closest Vector Problem
(CVP) and Shortest Vector Problem (SVP) [Peikert 2015]. A year after, Goldreich, Gold-
wasser, and Halevi (GGH) [Goldreich et al. 1997] proposed an important type of PKE
scheme, whose hardness is based on the lattice reduction problems [Peikert 2015]. Lat-
tice reduction tries to find a good basis, which is relatively short and orthogonal, for a
given lattice. In GGH cryptosystem, the public key and the secret key is chosen from
"bad" and "good" basis of the lattice, respectively. The idea behind this choice is that
CVP and SVP problems can easily be solved in polynomial time for the lattices with
the known good bases. However, best known algorithms (for example LLL in [Lenstra
et al. 1982]) solve these problems in exponential time without knowing the good bases
of the lattice. Hence, recovering the message from a given ciphertext is equal to solv-

A Survey on Homomorphic Encryption Schemes:Theory and Implementation 1:13

ing the CVP and SVP problems. In GGH cryptosystem, the message is embedded to
the noise to obtain the ciphertext. In order to recover the message from ciphertext, the
secret key (good basis) is used to find the closest lattice point.

Before Gentry’s work, in [Regev 2006], cryptographers’ attention is drawn to lattice-
based cryptology and especially its great promising properties for post-quantum cryp-
tology. Its promising properties are listed as its security proofs, efficient implementa-
tions, and simplicity. Moreover, another lattice-related problem, which gains popular-
ity in last few years, especially after being used as a base to built an FHE scheme is
LWE [Zhang 2014]. One of the most significant works for lattice-based cryptosystems
was studied in [Hoffstein et al. 1998], which presented a new PKE scheme and whose
security is based on SVP on the lattice. In the SVP problem, given a basis of a lattice,
the goal is to find the shortest nonzero vector in the lattice.

After Gentry’s work, the lattices have become more popular among cryptography
researchers. First, some works like [Smart and Vercauteren 2010] focused on just
improving Gentry’s ideal lattice-based FHE scheme in [Gentry 2009]. Then, an FHE
scheme over integers based on the Approximate-GCD problems is introduced [Van Dijk
et al. 2010]. The main motivation behind the scheme is the conceptual simplicity. Af-
terwards, another FHE scheme whose hardness based on Ring Learning with Error
(RLWE) problems is suggested [Brakerski and Vaikuntanathan 2011]. The proposed
scheme promises some efficiency features. Lastly, an NTRU-like FHE is presented for
its promising efficiency and standardization properties [López-Alt et al. 2012]. NTRU-
Encrypt is an old and strongly standardized lattice-based encryption scheme whose
homomorphic properties are realized recently. So, these and similar attempts can be
categorized into under four main FHE families as shown in Figure 3: (1) Ideal lattice-
based [Gentry 2009], (2) Over integers [Van Dijk et al. 2010], (3) (R)LWE-based [Brak-
erski and Vaikuntanathan 2011], and (4) NTRU-like [López-Alt et al. 2012]. In the
following sections, we will articulate these four main FHE families in greater detail.
And, we will also explore other follow-up works after these.

3.3.1. Ideal Lattice-based FHE schemes. Gentry’s first FHE scheme in his PhD the-
sis [Gentry 2009] is a GGH-type of encryption scheme, where GGH is proposed origi-
nally by Goldreich et al. [Goldreich et al. 1997]. However, Gentry encrypted the mes-
sage by embedding noise using double layer instead of one layer idea in GGH cryp-
tosystem. Indeed, Gentry started his breakthrough work from SWHE scheme based
on ideal lattices.

As mentioned earlier, an SWHE scheme can evaluate the ciphertext homomorphi-
cally for only a limited number of operations. After a certain threshold, the decryption
function fails to recover the message from the ciphertext correctly. The amount of noise
in the ciphertext must be decreased to transform the noisy ciphertext into a proper ci-
phertext. Gentry used genius blueprint methods called squashing and bootstrapping to
obtain a ciphertext which allows a number of homomorphic operations to be performed
on it. This processes can be repeated again and again. In other words, one can evaluate
unlimited operations on the ciphertexts which make the scheme fully homomorphic.

As an initial construction, Gentry used ideals and rings without lattices to design
the homomorphic encryption scheme, where an ideal is a property preserving subset of
the rings such as even numbers. Then, each ideal used in his scheme was represented
by the lattices. For example, an ideal I in Z[x]/(f(x)) with f(x) of degree n in an ideal
lattice can easily be represented by a column of lattice with basis BI of length n. Since
the bases BI will produce an n × n matrix. Gentry’s SWHE scheme using ideals and
rings is described below:

— KeyGen Algorithm: For the given ring R and the basis BI of ideal I, IdealGen(R,BI)
algorithm generates the pair of (BskJ , B

pk
J), where IdealGen() is an algorithm out-

putting the relatively prime public and the secret key bases of the ideal lattice with

1:14 A. Acar et al.

basis BI such that I + J = R. A Samp() algorithm is also used in key generation
to sample from the given coset of the ideal, where a coset is obtained by shifting an
ideal by a certain amount. Finally, the public key consists of (R,BI , BpkJ , Samp()) and
the secret key only includes BskJ .

— Encryption Algorithm:
For randomly chosen vectors ~r and ~g, using the public key (basis) Bpk chosen from
one of the "bad" bases of the ideal lattice L, the message ~m ∈ {0, 1}n is encrypted by:

~c = E(~m) = ~m+ ~r ·BI + ~g ·BpkJ , (24)

where BI is basis of the ideal lattice L. Here, ~m+ ~r ·BI is called "noise" parameter.
— Decryption Algorithm:

By using the secret key (basis) BskJ , the ciphertext is decrypted as follows:

~m = ~c−BskJ · b(BskJ)−1 · ~ce mod BI , (25)

where b·e is the nearest integer function which returns the nearest integers for the
coefficients of the vector.

— Homomorphism over Addition: For the plaintext vectors ~m1, ~m2 ∈ {0, 1}n, additive
and multiplicative homomorphisms can be verified easily as follows:

~c1 + ~c2 = E(~m1) + E(~m2) = ~m1 + ~m2 + (~r1 + ~r2) ·BI + (~g1 + ~g2) ·BpkJ (26)

It is clear that ~c1 + ~c2 still preserves the format and is within the ciphertext space.
And, to decrypt the sum of the ciphertext, one computes (~c1 + ~c2) mod BpkJ which is
equal to ~m1 + ~m2 + (~r1 + ~r2) · BI for the ciphertexts whose noise amount is smaller
than BpkJ /2. Then the decryption algorithm works properly and recovers the sum of
the message m1 +m2 correctly by taking the modulo BI of the noise.

— Homomorphism over Multiplication: Similarly for the multiplication, after setting
~e = ~m+ ~r ·BI , the homomorphic property can be expressed as follows:

~c1 × ~c2 = E(~m1)× E(~m2) = ~e1 × ~e2 + (~e1 × ~g2 + ~e2 × ~g1 + ~g1 × ~g2) ·BpkJ (27)

where ~e1× ~e2 = ~m1× ~m2+(~m1×~r2+ ~m2×~r1+~r1×~r2)·BI . It can be easily verified that the
multiplication operation on ciphertexts yields the output still within the ciphertext
space. It is said that if the noise |~e1× ~e1| is enough small enough the multiplication of
plaintexts ~m1 × ~m2 can be correctly recovered from the multiplication of ciphertexts
~c1 × ~c2.

To have a better understanding of the "noise" concept, let us consider the encryption
scheme over integers7. The encryption of the bit b is the ciphertext c = b+2r+kp, where
the key p > 2N is an odd integer and r is a random number from the range (−n/2, n/2)
and k is an integer. The decryption works as follows: b ← (c mod p) mod 2, where (c
mod p) is called as noise parameter. If the noise parameter exceeds |p/2|, the decryption
fails since (c mod p) is not equal to b + 2r anymore. And, the noise parameter grows
linearly with each addition and exponentially with each multiplication operation. If
the noise parameter is very close to a lattice point (i.e., (c mod p) << |p/2|), further
addition and multiplication operations are still allowed. This is why Gentry’s ideal
lattice based scheme is called Somewhat Homomorphic "for now" allowing only limited
number of operations. Since the noise grows much faster with the multiplication oper-
ations, the number of multiplication operations before exceeding the threshold is more
limited. In order to make the scheme fully homomorphic, the bootstrapping technique

7Further details about FHE over integers will be explained in Section 3.3.2.

A Survey on Homomorphic Encryption Schemes:Theory and Implementation 1:15

was introduced by Gentry. However, the bootstrapping process can be applied to the
bootstrappable ciphertexts, which are noisy and have small circuit depth. The depth
of the circuit is related to the maximum number of operations. Hence, first the circuit
depth is reduced with squashing to the degree that the decryption can handle properly.

Squashing: Gentry’s bootstrapping technique is allowed only for the decryption al-
gorithms with small depth. Therefore, he used some "tweaks" to reduce the decryption
algorithm’s complexity. This method is called squashing and works as follows:

First, choose a set of vectors, whose sum equals to the multiplicative inverse of the
secret key ((BskJ)−1). If the ciphertext is multiplied by the elements of this set, the
polynomial degree of the circuit is reduced to the level that the scheme can handle.
The ciphertext is now "bootstrappable". Nonetheless, the hardness of the recovering
the secret key is now based on the assumption of Sparse Subset Sum Problem
(SSSP) [Hoffstein et al. 2008]. This basically adds another assumption to the provable
security of the scheme.

Bootstrapping: Bootstrapping is basically "recrypting" procedure to get a "fresh"
ciphertext from the noisy ciphertext corresponding to the same plaintext. A scheme
is called bootstrappable if it can evaluate its own decryption algorithm circuit [Gen-
try 2009]. First, the ciphertext is transformed into a bootstrappable ciphertext using
squashing. Then, by applying bootstrapping procedure, one gets a "fresh" ciphertext.
The bootstrapping works as follows: First, it is assumed that two different public and
secret key pairs are generated, (pk1, sk1) and (pk2, sk2) and while the secret keys are
kept by the client, the public keys are shared with the server. Then, the encryption
of the secret key, Encpk1(sk1), is also transmitted to the server, which already has
c = Encpk1(m). Since the above obtained SWHE scheme can evaluate its own decryp-
tion algorithm homomorphically, the noisy ciphertext is decrypted homomorphically
using Encpk1(sk1). Then, the result is encrypted using a different public key pk2, i.e.,
Encpk2(Decsk1(c)) = Encpk2(m). Since the scheme is assumed semantically secure, an
adversary can not distinguish the encryption of the secret key from the encryption of
0. The last ciphertext can be decrypted using sk2, which is kept secret by the client,
i.e., Decsk2(Encpk2(m)) = m. In brief, first the homomorphic decryption of the noisy ci-
phertext removes the noise, and then the new homomorphic encryption introduces new
small noise to the ciphertext. Now, the ciphertext is like just encrypted. Further ho-
momorphic operations can be computed on this "fresh" ciphertext until reaching again
to a threshold point. Note that Gentry’s bootstrapping method increases the computa-
tional cost noticeably and becomes a major drawback for the practicality of FHE. In a
nutshell, starting from constructing a SWHE scheme and then squashing method to
reduce the circuit depth of decryption algorithm and the bootstrapping to obtain fresh
ciphertext completes the creation of an FHE scheme. Hence, one can apply bootstrap-
ping repetitively to compute an unlimited number of operations on the ciphertexts to
successfully have an FHE scheme.

After Gentry’s original scheme, some of the follow-up works tried to generally
improve Gentry’s original work. In [Gentry 2009], Gentry’s key generation algorithm
is used for a particular purpose only and the generation of an ideal lattice with a
"good" basis is left without a solution. Gentry introduced a new KeyGen algorithm
in [Gentry 2010] and improved the security of the hardness assumption of SSSP by
presenting a quantum worst case/average case reduction. However, a more aggressive
analysis of the security of SSSP was completed by Stehle and Steinfeld [Stehlé and
Steinfeld 2010]. They also suggested a new probabilistic decryption algorithm with
lower multiplicative degree, which is square root of previous decryption circuit degree.
Moreover, a new FHE scheme, which was a variant of Gentry’s scheme was introduced
in [Smart and Vercauteren 2010]. The scheme uses smaller ciphertext and key sizes

1:16 A. Acar et al.

than Gentry’s scheme without sacrificing the security. Some later works [Gentry and
Halevi 2011; Scholl and Smart 2011; Ogura et al. 2010] focused on the optimizations
in the key generation algorithm in order to implement the FHE efficiently. Moreover,
Mikuš proposed a new SWHE scheme with bigger plaintext space to improve the
number of homomorphic operations with a slight increase in complexity of the key
generation algorithm [Mikuš 2012].

3.3.2. FHE schemes Over Integers. In 2010, one year after Gentry’s original scheme,
another SWHE scheme is presented in [Van Dijk et al. 2010] which suggests Gen-
try’s ingenious bootstrapping method in order to obtain an FHE scheme. The proposed
scheme is over integers and the hardness of the scheme is based on the Approximate-
Greatest Common Divisor (AGCD) problems [Galbraith et al. 2016]. AGCD problems
try to recover p from the given set of xi = pqi + ri. The primary motivation behind
the scheme is its conceptual simplicity. A symmetric version of the scheme is probably
one of the simplest schemes. The proposed symmetric SWHE scheme is described as
follows:

— KeyGen Algorithm: For the given security parameter λ, a random odd integer p of bit
length η is generated.

— Encryption Algorithm: For a random large prime numbers p and q, choose a small
number r << p. Then, the message m ∈ {0, 1} is encrypted by:

c = E(m) = m+ 2r + pq, (28)

where p is kept hidden as private key and c is the ciphertext.
— Decryption Algorithm: The ciphertext can be decrypted as follows:

m = D(c) = (c mod p) mod 2. (29)

Decryption works properly only ifm+2r < p/2. This actually restricts the depth of the
homomorphic operations performed on the ciphertext. Then, Dijk et al. used Gentry’s
squashing and bootstrapping techniques to make the scheme fully homomorphic. The
homomorphic properties of the scheme can be shown easily as follows:

— Homomorphism over addition:

E(m1)+E(m2) = m1+2r1+pq1+m2+2r2+pq2 = (m1+m2)+2(r1+r2)+(q1+q2)q. (30)

The output clearly falls within the ciphertext space and can be decrypted if the noise
|m1 + 2r1 + m2 + 2r2| < p/2, where p is the private key. Since r1, r2 << p, various
number of additions can still be performed on ciphertext before noise exceeds p/2.

— Homomorphism over Multiplication:

E(m1)E(m2) = (m1 +2r1 + pq1)(m2 +2r2 + pq2 = m1m2 +2(m1r2 +m2r1 +2r1r2)+ kp.
(31)

The output preserves the format of original ciphertexts and holds the homomorphic
property. The encrypted data can be decrypted if the noise is smaller than half of the
private key, i.e., |m1m2+2(m1r2+m2r1+2r1r2)| < p/2. The noise grows exponentially
with the multiplication operation. This puts more restriction over homomorphic mul-
tiplication operation than addition.

In fact, the scheme presented so far [Van Dijk et al. 2010] was the symmetric version
of the homomorphic encryption. Transforming the underlying symmetric HE scheme
into an asymmetric HE scheme is also presented in [Van Dijk et al. 2010]. It is enough
to compute many "encryptions of zero" xi = pqi + 2ri, where p is private key. Then,
many xis are shared as the public key. To encrypt the message with the public key, it is
enough to add the message to a subset sum of xis. Same decryption is used to decrypt
the ciphertext. As there is no efficient algorithm to recover p from the given xis in

A Survey on Homomorphic Encryption Schemes:Theory and Implementation 1:17

polynomial time, the scheme is considered as secure. The scheme is now basically a
public key encryption scheme, since it uses different keys to encrypt and decrypt.

The FHE scheme proposed in [Van Dijk et al. 2010] is conceptually very simple.
However, this simplicity comes at a cost in computations. So, the scheme is not very
efficient. Hence, some early attempts directly tried to improve the efficiency. For ex-
ample, some follow-up optimizations focused on reducing the size of public keys [Coron
et al. 2011] (O(λ10) → O(λ7)), [Coron et al. 2012] (O(λ7) → O(λ5), [Yang et al. 2012]
(O(λ5) → O(λ3). A more efficient public key generation [Ramaiah and Kumari 2012b]
and re-encryption [Chen et al. 2014] are other suggested works without reducing the
security of the scheme. Later, an important variant, which is batch FHE over integers,
was proposed [Cheon et al. 2013] (merged version of [Coron et al. 2013] and [Kim et al.
2013]). Batch FHE has the ability to pack multiple ciphertexts into a single ciphertext.
Moreover, the proposed scheme provides two options for the hardness of the base prob-
lem: Decisional AGCD and Error-free AGCD. In [Cheon et al. 2013], it is also shown
how to achieve recryption operation in parallel l-slots.

Some further approaches for FHE schemes over integers are also proposed: a new
scale invariant FHE over integers [Coron et al. 2014], a new scheme with integer plain-
texts [Ramaiah and Kumari 2012a], a new SWHE scheme for computing arithmetic
operations on large integer numbers without converting them into bits [Pisa et al.
2012], a new symmetric FHE without bootstrapping [Aggarwal et al. 2014], and a new
FHE for non-binary message spaces [Nuida and Kurosawa 2015]. All these schemes
improved FHEs over integers in the way that their names imply.

3.3.3. LWE-based FHE schemes. Learning with Error (LWE) is considered as one of the
hardest problems to solve in practical time for even post-quantum algorithms. First,
it was introduced by Oded Regev as an extension of "learning from parity with er-
ror" problem [Regev 2009]. Regev reduced the hardness of worst-case lattice problems
like SVP to LWE problems, which means that if one can find an algorithm that can
solve LWE problem in an efficient time, the same algorithm will also solve the SVP
problem in an efficient time. Since then, it is one of the most attractive and promising
topics for post-quantum cryptology with its relatively small ciphertext size. Lyuba-
shevsky et al. suggested another significant improvement on the LWE problem which
may lead to a new applications by introducing ring-LWE (RLWE) problem [Lyuba-
shevsky et al. 2013]. The RLWE problem is an algebraic variant of LWE, which is
more efficient for practical applications with strong security proofs. They proved that
the RLWE problems are reducible to worst-case problems on ideal lattices, which is
hard for polynomial-time quantum algorithms.

In the LWE-based FHE schemes, an important step towards to a practical FHE
scheme is made in [Brakerski and Vaikuntanathan 2011]. Brakerski and Vaikun-
tanathan established a new SWHE scheme based on Ring-Learning with Error
(RLWE) to take advantage of the efficiency feature of RLWE [Brakerski and Vaikun-
tanathan 2011]. In other words, although both LWE and RLWE problems can be used
as the hardness assumption of an FHE scheme, RLWE shows better performance.
Then, the scheme uses Gentry’s blueprint squashing and bootstrapping techniques to
obtain an FHE scheme. They used polynomial-LWE (PLWE), which is simplified ver-
sion of RLWE. PLWE is also reducible to worst-case problems such as SVP on ideal lat-
tices. The schemes proposed after [Brakerski and Vaikuntanathan 2011] is also called
second generation FHE schemes.

Below, for the sake of simplicity, as we did in the previous part, we first show sym-
metric version.

Notation: A very common notation is that 〈a, b〉 is used to denote the inner product
of vectors a and b. Moreover, d $←− D denotes that d is randomly assigned by an element
from the distribution D and Z[x]/(f(x)) denotes the ring of all polynomials modulo

1:18 A. Acar et al.

f(x). The ring of polynomials modulo f(x) with coefficients in Zq is denoted with Rq ≡
Zq[x]/(f(x)). Finally, χ denotes an error distribution over the ring Rq.

The symmetric version of the underlying scheme is given as follows:

— KeyGen Algorithm: An element of the ring is chosen as a secret key from the error
distribution, i.e., s $←− χ. Then, the secret key vector is described as ~s = (1, s, s2, ..., sD)
for an integer D.

— Encryption Algorithm: After choosing a random vector a $←− Rqn and the noise e $←− χ,
the message m is encrypted by:

~c = (c0, c1) = (as+ te+m,−a) (32)
where ~c ∈ R2

q .
— Decryption Algorithm: In order to decrypt the ciphertext to recover the message, it

can be easily computed that:
m = 〈~c,~s〉 (mod t). (33)

Decryption works properly if 〈~c,~s〉 is smaller than q/2. Furthermore, in order to make
the scheme asymmetric, it is sufficient to generate a random set of pairs (a, as + te).
Also, the homomorphic property of the scheme is very similar to those in [Gentry
2009] and [Van Dijk et al. 2010].

— Homomorphism over Addition:
E(m) + E(m′) = (c0 + c′0, c1 + c′1) = ((a+ a′)s+ t(e+ e′) + (m+m′),−(a+ a′)), (34)

Similar to previous schemes, decryption works if the noise is small. And, it is clear
that homomorpically added ciphertexts keep the format of the original ciphertexts
and stay within the ciphertext space.

— Homomorphism over Multiplication:

E(m)+E(m′) = (c0c
′
0, c1c

′
1) = (−a′s2+(c′0a+ c0a

′)s+ t(2ee′+ em′+ e′m)+mm′). (35)
The output seems almost like a ciphertext, but it still can be decrypted correctly with
the expense of a new cost by adding a new term to ciphertext.

Brakerski and Vaikuntanathan made their scheme fully homomorphic using Gen-
try’s blueprint squashing and bootstrapping. They also showed their SWHE scheme
is circular secure (aka Key-Dependent message (KDM) security) with respect to lin-
ear functions of the secret key, i.e., the encryption can successfully keep secure linear
functions of its own secret key.

After the proposed BGN-type cryptosystem based on LWE, which is additively ho-
momorphic and allowing only one multiplication operation in [Gentry et al. 2010],
Brakerski and Vaikuntanathan proposed another SWHE scheme based on stan-
dard LWE problems using re-linearization technique [Brakerski and Vaikuntanathan
2014a]. Re-linearization makes the long ciphertexts, which are the output of the ho-
momorphic evaluation, regular size. Another important contribution in this work is
the dimension-modulus reduction, which does not require an SSSP assumption and
squashing method used in Gentry’s original framework.

As discussed earlier, Gentry’s bootstrapping method is a creative method to obtain
an FHE scheme, however, it comes with a huge cost. A leveled-FHE scheme without
using the bootstrapping technique was introduced by [Brakerski et al. 2014]. Levelled
FHE can evaluate homomorphic operations for only a predetermined circuit depth
level. Brakerski et al. [Brakerski et al. 2014] also showed that their scheme with boot-
strapping still provides better performance than the one without bootstrapping and
also suggested the batching as an optimization. To achieve batching, "modulus switch-
ing" technique is used iteratively to keep the noise size constant. Then, Brakerski

A Survey on Homomorphic Encryption Schemes:Theory and Implementation 1:19

removed the necessity of modulus switching in [Brakerski 2012]. In Brakerski’s new
scale invariant FHE scheme [Brakerski 2012], contrary to the existing FHE schemes,
the noise grows linearly with the evaluation of homomorphic operations instead of
exponentially and the scheme is based on the hardness of GapSVP problem [Peikert
2015]. GapSVP problem is roughly deciding the existence of a shorter vector than the
vector with length d for a given lattice basis B. The result returns simply yes or no.
Then, Fan and Vercauteren optimized the Brakerski’s scheme by changing the based
assumption to RLWE problem [Fan and Vercauteren 2012a]. Some other modifications
to [Brakerski 2012] focused on reducing the overhead of key switching and faster eval-
uation of homomorphic operations [Wu et al. 2012] and using re-linearization to im-
prove efficiency [Zhang et al. 2014].

Recently, by [Gentry et al. 2013] a significant FHE scheme was introduced claim-
ing three important properties: simpler, faster, and attribute-based FHE. The scheme
is simpler and faster due to the "approximate eigenvector" method replacing the re-
linearization technique. In this method, by keeping only some parameters small, the
format of the ciphertext can be preserved under the evaluation of homomorphic oper-
ations. In the previous schemes which use the bootstrapping technique, the secret key
(evaluation key) of the user is sent to the cloud to evaluate the ciphertext homomor-
phically for the bootstrapping. In contrast, [Gentry et al. 2013] eliminates that need
and leads to propose the first identity-based FHE scheme, which allows homomorphic
evaluation by only a target identity having the public parameters. Then, Brakerski and
Vaikuntanathan followed [Gentry et al. 2013] to construct an FHE scheme secure un-
der a polynomial LWE assumption [Brakerski and Vaikuntanathan 2014b]. It is shown
that the proposed scheme is as secure as any other lattice-based PKE scheme. Recently,
Paindavoine and Vialla showed a way of minimizing the number of required bootstrap-
ping based on the linear programming techniques that can be applied to [Gentry et al.
2013] as well.

In addition to more recently proposed LWE-based FHE schemes in [Zhang et al.
2014; Chen et al. 2014; Tanping et al. 2015; Wang et al. 2015b], some optimizations
focused on better (faster) bootstrapping algorithms [Alperin-Sheriff and Peikert 2013;
2014], speeding homomorphic operations [Gentry et al. 2012], and a new extension
to FHE for multi-identity and multi-key usage [Clear and McGoldrick 2015]. More
recently, a new efficient SWHE scheme based on the polynomial approximate common
divisor problem is presented in [Cheon et al. 2016]. The presented scheme in [Cheon
et al. 2016] can handle efficiently large message spaces.

3.3.4. NTRU-like FHE schemes. To obtain a practical and applicable FHE scheme, one of
the crucial steps is taken by showing the construction of an FHE scheme from NTRU-
Encrypt, which is an old encryption scheme proposed by Hoffstein, Pipher, and Silver-
manin in [Hoffstein et al. 1998]. Specifically, how to obtain a multi-key FHE from the
NTRUEncrypt (called NTRU) was shown by [López-Alt et al. 2012]. NTRU encryption
scheme is one of earliest attempts based on lattice problems. Compared with RSA and
GGH cryptosystems, NTRU improves the efficiency significantly in both hardware and
software implementations. However, there were security concerns for 15 years until
the study done by [Stehlé and Steinfeld 2011]. They reduced the security of the scheme
to standard worst-case problems over ideal lattices by modifying the key generation
algorithm. Since the security of the scheme is improved, efficiency, easy implementa-
tion, and standardization issues attract researchers’ interest again. At the same time,
[López-Alt et al. 2012] and [Gentry 2012] independently noticed the fully homomorphic
properties of the NTRU encryption. López-Alt et al. used the NTRU encryption scheme
to obtain a practical FHE [López-Alt et al. 2012] with three differences. First, the set
from which the noise is sampled is changed from a deterministic set to a distribution.
Second, the modification introduced in [Stehlé and Steinfeld 2011], which makes the

1:20 A. Acar et al.

scheme more secure, is used and third, the parameters are chosen to allow fully homo-
morphism. Their proposed NTRU-like encryption scheme in [López-Alt et al. 2012] is
as follows:

— KeyGen Algorithm: For chosen sampled polynomials f ′ and g from a distribution χ
(specifically, a discrete Gaussian distribution), it is set f = 2f ′+1 to get f ≡ 1 (mod 2)
and f is invertible. Then, the secret key sk = f ∈ R and public key pk := h = 2gf−1 ∈
Rq.

— Encryption Algorithm: For chosen samples s and e from the same distribution χ, the
message m is encrypted by:

c = E(m) = hs+ 2e+m, (36)

where the ciphertext c ∈ Rq.
— Decryption Algorithm: The ciphertext can easily be decrypted as follows:

m = D(c) = fc (mod 2), (37)

where fc ∈ Rq. The correctness of the scheme can be verified using h = 2gf−1 and f ≡
1 (mod 2). Moreover, the scheme proposed by López-Alt et al. is a new type of FHE
scheme, which is called multi-key FHE. Multi-key FHE has the ability to evaluate on
ciphertexts which are encrypted with independent keys, i.e., each user can encrypt
data with her own public key and a third party can still perform a homomorphic
evaluation on these ciphertexts. The only interaction required between the users is
to obtain a "joint secret key". The homomorphically evaluated ciphertext is decrypted
by using the joint secret key, which is obtained by using all involved secret keys.
The message mi is encrypted by using public key hi = 2gifi

−1 with the formula,
ci = hisi+2ei+mi. The multikey homomorphism properties for two party computation
is shown using joint secret key f1f2.

— Multi-key Homomorphism over Addition:

f1f2(c1 + c2) =2(f1f2e1 + f1f2e2 + f2g1s1 + f1g2s2) + f1f2(m1 +m2)

= 2eadd + f1f2(m1 +m2)
(38)

— Multi-key Homomorphism over Multiplication:

f1f2(c1c2) =2(2g1g2s1s2 + g1s1f2(2e2 +m2) + g2s2f1(2e1 +m1)

+ f1f2(e1m2 + e2m1 + 2e1e2)) + f1f2(m1m2)

=2emult + f1f2(m1m2)

(39)

Here, it is seen that multi-key homomorphic operation increases noise more than a
single key homomorphic evaluation. However, m1 +m2 and m1m2 can still be recov-
ered correctly using the jointly obtained secret key since f, g, s, e all are sampled from
the bounded distribution χ. In other words, the decryption still works if the each of
the noise parameters eadd and emult are smaller than |p/2|.

As observed in all of the FHE schemes presented in detail in our work, since
in [López-Alt et al. 2012] noise grows with homomorphic operations on encrypted
data, the proposed scheme is actually an SWHE scheme. To make it fully homomor-
phic, López-Alt et al. also (like all others above) used Gentry’s bootstrapping tech-
nique. However, to apply bootstrapping, one first needs to make the underlying SWHE
scheme bootstrappable. For this reason, first modulus reduction technique described
in [Brakerski 2012; Brakerski and Vaikuntanathan 2014a] was used. Then, the final
scheme was named a leveled-FHE because it had the ability to deal only a limited
number of public keys. Although the number of parties that can be used in homomor-
phic operations is limited, the complexity of circuit that can be used in homomorphic

A Survey on Homomorphic Encryption Schemes:Theory and Implementation 1:21

operations is still independent of the number of parties that can join the communica-
tion.

Another issue to be taken account in [López-Alt et al. 2012] is the assumptions.
Specifically, two assumptions are used in the scheme proposed by Lopez-Alt et al. First
is RLWE problems and second is Decisional Small Polynomial Ratio (DSPR). Though
RLWE is well-studied and about being a standard problem, DSPR assumption is a non-
standard one. Hence, in [Bos et al. 2013], Bos et al. showed how to modify [López-Alt
et al. 2012] to remove DSRP assumption. While removing DSRP assumption, the ten-
soring technique introduced in [Brakerski 2012] is used to restrict the noise increase
during homomorphic operations. However, the tensoring technique used to avoid DSRP
assumption results in a large evaluation key and a complicated key switching proce-
dure, which makes the scheme impractical. A practical variant of their scheme, which
reintroduces the DSRP assumption is also presented in the same work. However, it
is later shown that the optimizations and parameter selection that yield a significant
increase in the performance makes it vulnerable to sub-field lattice attacks [Albrecht
et al. 2016]. The attack shown by Albrecht et al. affected not only [Bos et al. 2013], but
every other NTRU-like scheme, which relies on DSRP problem and whose parameters
(e.g., secret key, modulus) are chosen poorly. Finally, in [Doröz and Sunar 2016], a mod-
ified NTRU-like FHE scheme, which does not require the DSRP assumption, thereby
secure against subfield lattice attacks, is proposed. Another attractive feature of the
new FHE scheme is that it also does not require the use of evaluation key during the
homomorphic operations. The new scheme is based on [Stehlé and Steinfeld 2011] and
it uses a Flattening noise management technique adopted from the flattening tech-
nique of [Gentry et al. 2013].

Two follow-up interesting works also improved the NTRU-like FHE using different
techniques. While one of them focuses on a customized and a generic bit-sliced imple-
mentation of NTRU-like FHE schemes [Doröz et al. 2014] and the other suggests the
use of GPU [Dai et al. 2014]. Furthermore, in [Doröz et al. 2014], the AES circuit is cho-
sen to evaluate the homomorphic operations, which is faster than the proposed one in
[Gentry et al. 2012]. Other improvements on hardware implementations of NTRU-like
FHE schemes are more recently published in [Liu and Wu 2015; Doröz et al. 2015b].
Another NTRU-like FHE scheme was suggested in [Rohloff and Cousins 2014]. They
used the bootstrapping proposed in [Alperin-Sheriff and Peikert 2013] and "double-
CRT" proposed in [Gentry et al. 2012] to modify the representation of the ciphertexts
in more efficient way.

4. IMPLEMENTATIONS OF SWHE AND FHE SCHEMES
The ultimate goal with different HE schemes is to obtain an unbounded and practi-
cal FHE scheme. PHE schemes and SWHE schemes proposed before Gentry’s break-
through work in 2009 were stepping stone towards that goal. Nonetheless, they are
restricted in terms of the areas that can be applied. However, the SWHE schemes pro-
posed after Gentry’s work are mostly the part of the FHE schemes rather than a dif-
ferent scheme. Moreover, a bounded (level) FHE can also be called as SWHE scheme.
Hence, it is not possible to separate SWHE and FHE schemes for the works proposed
after Gentry’s work. In this section, we summarize the implementations of the SWHE
and FHE schemes, which can lead to the new works and speed up the follow-up works,
proposed after Gentry’s work.

Implementation of a cryptographic scheme is the middle step between designing the
scheme and applying it to a real life service and it provides a realistic performance as-
sessment of the designed scheme. Although some new proposed FHE schemes have in-
creased the efficiency and performance of the implementations significantly, the over-
head and cost of the FHE implementations are still too high to be applied transpar-
ently in a real life service without disturbing the user.

1:22 A. Acar et al.

Table III: "Fully" implemented FHE schemes
Scheme Information Platform Parameters Running Times

Implemented Scheme Base Scheme Software
Security
parame-

ter,
λ

dimension, n PK size KeyGen Enc Dec Recrypt

GH11 [Gentry and Halevi 2011] Gen09 [Gentry
2009] C/C++ 72 33768 2.25 GB 2.2 h 3 min

(SWHE)
0.66 s

(SWHE) 31 min

CMNT11 [Coron et al. 2011] DGHV10 [Van Dijk
et al. 2010]

Sage 4.5.3 72 7897 802 MB 43 min 2 min 57
s 0.05 s 14 min

33 s

CNT12 (with compressed PK) [Coron et al. 2012] DGHV10 [Van Dijk
et al. 2010]

Sage 4.7.2 72 7897 10.3 MB 10 min 7 min 15
s 0.05 s 11 min

34 s

CNT12 (leveled) [Coron et al. 2012] DGHV10 [Van Dijk
et al. 2010]

Sage 4.7.2 72 5700 18 MB 6 min 18 s 3.4 s 0.00 s 2 h 27
min

4.0.1. "Fully" implemented FHE schemes. After solving the long term open problem of
designing a fully homomorphic scheme [Gentry 2009], many new fully homomorphic
scheme proposals were tested with implementation. In a very first attempt, Smart and
Vercauteren implemented their scheme in [Smart and Vercauteren 2010], which is a
variant of Gentry’s original scheme. However, their key generation takes hours up to
N = 211, where N is the lattice dimension and does not generate the key pairs after
N = 211. More importantly, their implementation did not include the bootstrapping
procedure. Hence, it is actually a SWHE scheme as it was implemented. Then, Craig
Gentry and Shai Halevi [Gentry and Halevi 2011] succeeded to implement the FHE
scheme first time by continuing the way that Smart and Vercauteren had started. The
running times for the implementation in [23] and other proposed FHE implementa-
tions which are evaluated over random depth circuits are given in Table III. Moreover,
Gentry and Halevi in [Gentry and Halevi 2011] introduced some optimizations and
simplifications on the squashing process to obtain a bootstrappable scheme. In their
implementation, they showed four security levels: toy, small, medium, and large. They
suggested that the large parameter settings are practically secure, which have a lat-
tice dimension of 215. However, the performance of the implementation is very inef-
ficient in practical terms. For the large parameter setting, a key pair was generated
at 2.2 hours and public key size was 2.25 GB. Recrypting the ciphertexts (bootstrap-
ping) took 31 minutes. After that, in [Coron et al. 2011], an integer variant of the FHE
scheme introduced originally in [Van Dijk et al. 2010] was implemented. In this im-
plementation, the key generation takes 43 min, and the public key size is 802 MB.
The implementation showed that the same security level can be achieved with a much
simpler scheme. (The difference comes from the different definitions of security lev-
els). Later, Coron et al. in a different work [Coron et al. 2012] improved public key
size to 10 MB, key generation to 10 minutes, and recryption procedure to 11 min 34
seconds using the similar parameter settings in [Coron et al. 2011]. This performance
is obtained using a compression technique on the public key. In [Coron et al. 2012], a
leveled DGHV scheme is also implemented with slightly worse performance. Yuanmi
Chen and Phong Q. Nguyen [Chen and Nguyen 2012] proposed an algorithm to break
the scheme in [Coron et al. 2012], which is faster than exhaustive search. This work
showed that the security level of the scheme proposed in [Coron et al. 2012] is much
lower than the scheme proposed in [Gentry and Halevi 2011].

4.0.2. FHE implementation for "Low-depth" circuits. The second type of FHE implementa-
tions tried to implement leveled-FHE schemes for small depth circuits with given run
time for isolated and composed addition and multiplication [Naehrig et al. 2011; Bos
et al. 2013; Lepoint and Naehrig 2014; Rohloff and Cousins 2014]. The comparisons for
these small-depth FHE implementations are given at Table IV. Since the performance
of the state of the art was unsatisfactory, as an early attempt, a relatively simpler FHE,
which allows only a few homomorphic multiplication operations was implemented in
[Naehrig et al. 2011]. Later, this performance was improved by Bos et al. [Bos et al.

A Survey on Homomorphic Encryption Schemes:Theory and Implementation 1:23

Table IV: FHE implementations for "Low-depth" circuits
Scheme Information Platform Parameters Running times

Implemented Scheme Base Scheme Software Enc Dec Mult Add

NLV11 [Naehrig et al. 2011]
BV11 [Brakerski

and
Vaikuntanathan

2011]

Magma w = 232 q=127 756 ms 57 ms 1590 ms 4 ms

YASHE (by BLLN13 [Bos et al. 2013]) LTV12 [López-Alt
et al. 2012] C/C++ t = 210 q=130 27 ms 5 ms 31 ms 0.024 ms

YASHE (by LN14a [Lepoint and Naehrig 2014]) LTV12 [López-Alt
et al. 2012] C/C++ w = 232 q=130 16 ms 15 ms 18 ms 0.7 ms

FV (by LN14a [Lepoint and Naehrig 2014])
BV11 [Brakerski

and
Vaikuntanathan

2011]

C/C++ w = 232 q=130 34 ms 16 ms 59 ms 1.4 ms

RC14 [Rohloff and Cousins 2014] LTV12 [López-Alt
et al. 2012] Matlab n = 210 t=1 12 ms 3.36 ms 100 ms 0.56 ms

2013] due to the new method to evaluate the homomorphic multiplication operation.
Moreover, unlike [Naehrig et al. 2011], in [Bos et al. 2013] the underlying scheme
was implemented in C programming language to avoid the unwelcome overhead due
to the computer algebra system. Then, a similar performances with [Bos et al. 2013]
is obtained. Recently, a significant improvement is made by using double-CRT in the
representation of ciphertexts and used parallelism to accelerate the implementation
in Matlab [Rohloff and Cousins 2014].

4.0.3. "Real world" complex FHE implementations. In contrast to above schemes, which are
either proof of concept or small-depth implementations, the authors in [Gentry et al.
2012] implemented FHE for the first time to evaluate the circuit complex enough for
a real life application. In [Gentry et al. 2012] Gentry et al. implemented a variant
of BGV scheme proposed in [Brakerski et al. 2011]8, which is a leveled FHE without
bootstrapping, in order to evaluate AES circuit homomorphically. Actually, the idea of
homomorphic evaluation of AES is first discussed in [Naehrig et al. 2011] with the fol-
lowing scenario. A client first sends the key of AES by encrypting with FHE, FHE(K).
Then, the client uploads the data by encrypting with AES only, AESK(m). When the
cloud wants to evaluate the data homomorphically, it computes FHE(AESK(m)) and
decrypts AES homomorphically (blindfold) to obtain FHE(m). After that, the cloud can
compute every homomorphic operation on the data encrypted with FHE. The compari-
son of such more complex "real world" FHE implementations are presented in Table V.
A realization of how to achieve SIMD (single-instruction multiple-data) operations us-
ing homomorphic evaluation of AES is proposed by Smart and Vercauteren [Smart
and Vercauteren 2011]. Later, some works [Coron et al. 2013; Mella and Susella 2013;
Coron et al. 2014; Doröz et al. 2014] also improved the performances of the homomor-
phic evaluation of AES circuit by applying the recent improvements and optimizations
in theoretical side. In addition to the use of AES circuit to evaluate homomorphically,
lightweight block ciphers such as Prince [Doröz et al. 2014], SIMON [Lepoint and
Naehrig 2014], and LowMC [Albrecht et al. 2015] are also proposed. In [Mella and
Susella 2013], Mella and Susella estimated the cost of some of the symmetric crypto-
graphic primitives such as AES-128, SHA-256 hash function, Salsa20 stream cipher,
and KECCAK sponge function. They concluded that AES is best suited for the homo-
morphic evaluation because of its low number of rounds and absence of integer oper-
ations and logical ANDs in its internals. However, in [Mella and Susella 2013], only
AES-128 is implemented.

4.0.4. Publicly available FHE implementations. Although all aforementioned implementa-
tions are published in the literature, unfortunately, only a few of them are publicly

8Later updated in [Brakerski et al. 2014].

1:24 A. Acar et al.

Table V: "Real world" complex FHE implementations
Scheme Platform Parameters Running Times

Implemented Scheme Base scheme Circuit Reported
Specs λ AND

depth

total
evalua-

tion
time

number
of

parallel
enc

rela-
tive
time

GHS12 (original)(packed) [Gentry et al. 2012] BGV11 [Brakerski et al. 2011] AES
Intel Xeon
CPU @ 2.0
GHz with

256GB RAM

80 40 48 hours 54 37
min

GHS12 (original)(byte-sliced) [Gentry et al. 2012] 65 hours 720 5 min

CLT13 (byte-wise) [Cheon et al. 2013] DGHV10 [Van Dijk et al. 2010] AES
Intel Core i7 @

3.4Ghz with
32GB RAM

72 40 18.3
hours 33 33

min

CLT13 (state-wise) [Cheon et al. 2013] 113
hours 531

12
min
46 s

CLT14 (state-wise) [Coron et al. 2014] DGHV10 [Van Dijk et al. 2010] AES
Intel Xeon

E5-2690 @ 2.9
GHz

80 40 102
hours 1875 3 min

15 s

CLT14 (state-wise) [Coron et al. 2014] 72 3 h 35
min 569 23 s

LN14a (YASHE) [Lepoint and Naehrig 2014] LTV12 [López-Alt et al. 2012] SIMON
Intel Core

i7-2600 @ 3.4
GHz9

128 34 1 h 10
min 2048 2.04 s

LN14a (FV) [Lepoint and Naehrig 2014] Bra12 [Brakerski 2012] 3 h 27
min 2048 6.06 s

DHS14 [Doröz et al. 2014] LTV12 [López-Alt et al. 2012] AES Intel Xeon @
2.9 GHz ∼80 40 31 hours 2048 55 s

DSES14 [Doröz et al. 2014] LTV12 [López-Alt et al. 2012] Prince
Intel Core i7
3770K @ 3.5
Ghz with 32
GB RAM10

130 30 57 min 1024 3.3 s

ARSTZ15 [Albrecht et al. 2015] BGV11 [Brakerski et al. 2011] LowMC
Intel Haswell

i7-4770K CPU @
3.5 GHz with
16GB RAM

80 12 8 min 600 0.8 s

GHS12 (updated)(no bootstrapping) [Gentry et al. 2012] BGV11 [Brakerski et al. 2011] AES
Intel Core

i5-3320M at
2.6GHz with
4GB RAM11

80 40 4 min 12
s 120 2 s

GHS12 (updated)(with bootstrapping) [Gentry et al. 2012] 17 min
30 s 180 5.8 s

available to researchers. Some of the publicly available implementations are listed in
Table VI. From publicly available implementations, HElib [Halevi and Shoup 2013b]
is the most important and widely utilized one. HElib implements the BGV scheme
[Brakerski et al. 2011] with Smart-Vercauteren ciphertext packing techniques and
some new optimizations. The design and implementation of HElib are documented
in [Halevi and Shoup 2013a] and algorithms used in HElib are documented in [Halevi
and Shoup 2014]. HElib is designed using low-level programming, which deals with
the hardware constraints and components of the computer without using the functions
and commands of a programming language and hence, defined as "assembly language
for HE". It was implemented using GPL-licensed C++ library. Since December 2014,
it supports bootstrapping [Halevi and Shoup 2015] and since March 2015, it supports
multi-threading. In an important extension, homomorphic evaluation of AES was im-
plemented on top of HElib [Gentry et al. 2012] and included in the HElib source code
in [Halevi and Shoup 2013b].

Unfortunately, the usage of HElib is not easy because of the sophistication needed
for its low-level implementation and parameter selection which effects both perfor-
mance and security level. Another notable open source FHE implementation is lib-
Scarab [Perl et al. 2011a]. To the best of our knowledge, libScarab [Perl et al. 2011a]
is the first open-source implementation of FHE. Its parameter selection is relatively
easier than that of HElib, but it suffers from a lot of limitations. For instance, it does
not implement modern techniques (e.g., modulus reduction and re-linearization tech-
niques [Brakerski and Vaikuntanathan 2014a]) to handle the noise level or it also

9With hyper-threading turned off and over-clocking (‘turbo boost’) disabled.
10Only single thread is used.
11An Ubuntu 14.04 installed VM

A Survey on Homomorphic Encryption Schemes:Theory and Implementation 1:25

Table VI: Some publicly available FHE implementations
Name Scheme Lang Documentation Libraries
HElib

[Halevi and Shoup 2013b]
BGV

[Brakerski et al. 2011]
C++

Yes
[Halevi and Shoup 2013a]

NTL, GMP

libScarab
[Perl et al. 2011a]

SV
[Smart and Vercauteren 2010]

C
Yes

[Perl et al. 2011b]
GMP, FLINT,
MPFR, MPIR

FHEW
[Ducas and Micciancio 2014]

DM14
[Ducas and Micciancio 2015]

C++
Yes

[Ducas and Micciancio 2015]
FFTW

TFHE
[Chillotti et al. 2017]

CGGI16
[Chillotti et al. 2016]

C++
Yes

[Chillotti et al. 2016]
FFTW

SEAL
[Laine et al. 2017]

FV12
[Fan and Vercauteren 2012b]

C++
Yes

[Chen et al. 2017]
No external
dependency

does not support the SIMD techniques introduced in [Smart and Vercauteren 2014]. It
implements Smart-Vercauteren’s FHE scheme in [Smart and Vercauteren 2010] and
documentation is provided in [Perl et al. 2011b].

Another major implementation is introduced by Ducas and Micciancio and called
"Fastest Homomorphic Encryption in the West" (FHEW) [Ducas and Micciancio 2014].
It is documented in [Ducas and Micciancio 2015]. It significantly improves the time
required to bootstrap the ciphertext claiming homomorphic evaluation of a NAND
gate "in less than a second". A NAND gate is functionally complete. Hence, any pos-
sible boolean circuits can be built using only NAND gates. In [Ducas and Micciancio
2015], the usage of ciphertext packing and SIMD techniques provides an amortized
cost. However, in FHEW such performance is achieved using only a few hundred lines
of code with the use of one additional library, FFTW [Frigo and Johnson 2005]. Later,
the homomorphic computation cost of any binary gate [Ducas and Micciancio 2015]
is increased by a factor of 50 by making some optimizations on the bootstrapping al-
gorithm. The main improvement is based on the torus representation of LWE cipher-
texts. This improved the cost of bootstrapping 10 times according to the best known
bootstrapping in [Ducas and Micciancio 2014]. They also further improved the noise
propagation overhead algorithms using some approximations. Finally, they also re-
duced the size of bootstrapping key from 1GB to 24MB by achieving the same security
level.

More recently, another HE library called Simple Encrypted Arithmetic Library
(SEAL) [Laine et al. 2017] is released by Microsoft. The goal of releasing this library
is explained as providing a well-documented HE library that can be easily used by
both crypto experts and non-experts with no crypto background like practitioners in
bioinformatics. The library does not have external dependencies like others and it in-
cludes automatic parameter selection and noise estimator tools, which makes it easier
to use. Finally, the security estimates of two well-known LWE-based HE libraries, HE-
lib and SEAL, against dual lattice attacks are revised in [Albrecht 2017]. It is shown
that the parameters promising 80 bits of security actually gives an estimated cost of
68 bits for SEAL v2.0 and 62 bits for HElib. As a final note, we give the list of general-
purpose HE libraries as follows: HEAAN implementing that supports fixed point arith-
metics [Cheon et al. 2016], a GPU-accelerated library cuHE [Dai et al. 2017], a general
lattice crypto library PALISADE [Rohloff 2017].

4.0.5. FHE hardware implementations and productions. The first known usage of FHE in a
production environment is announced by Fujitsu Laboratories Ltd. [Ltd. 2013]. Their
reported implementation provides statistical calculations and biometric authentica-
tion by using FHE-based security. They improved an FHE by batching the string bits
of data. The practical testing of this FHE implementation by Fujitsu is still pend-

1:26 A. Acar et al.

ing as of this writing. Although the software only implementations are considered
promising to obtain a practical FHE implementation, there is still a substantial gap
between the achieved and the targeted performance. This gap led to new alternative
research area in hardware implementations. The hardware solutions to accelerate both
FHE and SWHE schemes mainly focused on three implementation platforms: Graph-
ics Processing Unit (GPU), Application-Specific Integrated Circuit (ASIC), and Field-
Programmable Gate Array (FPGA) (A useful survey of hardware implementations of
homomorphic schemes can be found in [Moore et al. 2014b]). Although GPU is for
graphical purposes, its highly parallel structure offers great promise over CPU for
efficiency. Hence, it is suggested in some studies to use GPU order to improve the ef-
ficiency of homomorphic evaluation [Dai et al. 2014; Wang et al. 2014; Wang et al.
2015; Dai et al. 2015; Lee et al. 2015]. One of the major barriers to a practical FHE
is the noise growth in the homomorphic multiplication operation. This prompted re-
searchers to find a solution that can deal with a large number of modular multiplica-
tions. Therefore, there are some works focusing particularly on this problem using the
customized ASICs [Doröz et al. 2013; Wang et al. 2014; Doröz et al. 2015a]. In spite of
the potential of GPU and ASIC solutions, most of the proposed studies are based on
the reconfigurable hardware, specifically FPGA. FPGA platforms offer not only Fast
Fourier Transform (FFT), but also some optimization techniques such as number the-
oretic transformation (NTT) and fast modular polynomial reduction at hardware level.
Such large and reconfigurable environment provided by FPGAs motivates many re-
searchers to speed up the practicality of FHE schemes [Cousins et al. 2012; Wang and
Huang 2013; Cao et al. 2013; Moore et al. 2013; Chen et al. 2015; Cao et al. 2014; Moore
et al. 2014a; Cousins et al. 2014; Roy et al. 2015; Pöppelmann et al. 2015; Öztürk et al.
2015].

In conclusion, some of the SWHE implementations (leveled-FHE) [Gentry et al.
2012] get closer to a tolerable performance. However, the bootstrapping techniques
in FHE schemes need to be improved and the cost of homomorphic multiplications
should be reduced to increase the performance.

5. FURTHER RESEARCH DIRECTIONS AND LESSONS LEARNED
Performance of any encryption scheme is evaluated with three different criteria: se-
curity, speed, and simplicity. First, an encryption scheme must be secure so that an
attacker can not obtain any type of information by using a reasonable amount of
resources. Second, its efficiency must not disturb the user’s comfort, i.e., it must be
transparent to the users because users prefer usability against security. Lastly, if and
only if an encryption scheme is understandable by the other area practitioners, they
will implement the scheme for their applications and productions. If the existing FHE
schemes are evaluated in terms of the three criteria, there is, though getting closer,
still a substantial room for improvement in terms of all these criteria, especially for
the speed performance.

Even though some of the nonstandard security assumptions (e.g., SSSP12 [Lee 2011;
Halevi and Ratha 2011]) in the Gentry’s original scheme are later removed, there are
still some open security issues about the FHE schemes. First one is the circular secu-
rity of FHE. Circular security (aka KDM security), as mentioned earlier, keeps its own
secret key secure by encrypting it with the public key. All known FHE schemes use
Gentry’s blueprint bootstrapping technique to obtain an unlimited FHE scheme. So,
the encryption of the secret key is also sent to the cloud to bootstrap the noisy cipher-
texts and an eavesdropper can capture the encryption of secret key. Even though some
SWHE and leveled-FHE schemes are proven as semantically secure, an unbounded

12Indeed, Moon Sung Lee showed that it is quite probable that SSSP challenges can be solved within two
days [Lee 2011; Halevi and Ratha 2011].

A Survey on Homomorphic Encryption Schemes:Theory and Implementation 1:27

FHE still has not been proven as semantically secure with respect to any function, so it
does not guarantee that an adversary can not reveal the secret key from its encryption
under the public key. This unfortunate situation is still open to be proven. Moreover,
although some SWHE schemes [Loftus et al. 2011] are proven as indistinguishable un-
der non-adaptive chosen ciphertext attack (IND-CCA1), none of the unbounded FHE
schemes is IND-CCA1 secure for now. (IND-CCA2 (adaptive) is not applicable to FHE
because FHE itself requires to be malleable.) In brief, FHE still needs to be studied
extensively to prove that it is secure enough.

FHE allows an unlimited number of functions on encrypted data. However, limi-
tations on the efficiency of the FHE schemes prompts researchers to find the SWHE
schemes that can be good enough to use in real-life applications. Recently, homomor-
phic evaluation of one AES, which is a highly complex and nontrivial function, is re-
duced to 2 seconds [Gentry et al. 2012] and researchers are now focusing to improve
this instead of trying to implement an FHE scheme, which is extremely slow for now.

The main process that increases the computational cost in FHE is the bootstrapping
process. An unbounded FHE scheme that allows unlimited operations without boot-
strapping is still an open problem. Indeed, the bootstrapping is necessary to decrease
the noise in the evaluated ciphertexts. Hence, though a framework was suggested in
[Nuida 2014], the design of noise-free FHE scheme is also one of the open problems.
A noise-free FHE [Liu 2015] and an FHE without bootstrapping [Yagisawa 2015] are
reported as insecure in [Wang].

Showing the existence of FHE instilled hope to solve other long waiting prob-
lems (applications) such as Functional Encryption (FE) (i.e., Identity-based encryption
(IBE) and Attribute-based encryption (ABE)). Functional encryption basically controls
the access over data while allowing computation on it according to the features of iden-
tity or attribute. The purpose of designing ABE or IBE based on FHE is to take the
advantage of the functionality of two worlds. However, for now, there exists a few [Gen-
try et al. 2013; Clear and McGoldrick 2014; 2016; Wang et al. 2015a]. Another fruitful
application of FHE is multi-party computation (MPC) which allows the computation of
the function with multiple inputs from different users while keeping the inputs hidden.
Even though there exist a few FHE-based MPC protocols [Damgård et al. 2012; López-
Alt et al. 2012; Choudhury et al. 2013; Damgård et al. 2016] proposing these powerful
and useful tools, unfortunately, their performances are not yet comparable with the
conventional MPC approaches [Mood et al. 2014; Carter et al. 2013; Premnath and
Haas 2014; Carter et al. 2015] because of the computational cost of the existing FHE
schemes. However, FHE does not require any interaction, which reduces the complex-
ity of the communication protocol significantly. However, there are still some gaps on
how to realize those protocols. Furthermore, FHE itself can not perform a homomor-
phic evaluation on independently encrypted data, i.e., multi-key FHE. some primitive
result to deal with this issue was presented in [López-Alt et al. 2012]. However, the
proposed scheme can only handle a bounded number of users. When the cloud and
number of connected devices are considered, the restriction may not be feasible. Hence,
a multi-key FHE with an unlimited number of users is another promising direction for
future applications.

6. CONCLUSION
In today’s always-on, Internet-centric world, the privacy of data plays a more signif-
icant role than ever before. For highly sensitive systems such as online retail and e-
banking, it is crucial to protect users’ accounts and assets from malicious third parties.
Nonetheless, today’s norm is to encrypt the data and share the keys with the service
provider, cloud operator, etc. In this model, the control over the privacy of the sensi-
tive data is lost. The users or service providers with the key have exclusive rights on
the data. Untrusted providers, cloud operators can keep sensitive data and its identi-

1:28 A. Acar et al.

fying credentials of users long after the user ends the relationship with the services.
One promising direction to preserve the privacy of the data is to utilize homomorphic
encryption (HE) schemes. HE is a special kind of encryption scheme, which allows
any third party to operate on the encrypted data without decrypting it in advance.
Indeed, the idea of HE has been around for over 30 years; however, the first plau-
sible and achievable Fully Homomorphic Encryption (FHE) scheme was introduced
by Craig Gentry in 2009. Since then, different FHE schemes demonstrated that FHE
still needs to be improved significantly to be practical on every platform as they are
very expensive for real-life applications. Hence, in this paper, we surveyed the HE
and FHE schemes. Specifically, starting from the basics of HE, the details of the well-
known Partially HE (PHE) and Somewhat HE (SWHE), which are important pillars of
achieving FHE, were presented. Then, after classifying FHE schemes in the literature
under four different categories, we presented the major FHE schemes with this classi-
fication. Moreover, we articulated the implementations and the new improvements in
Gentry-type FHE schemes. Finally, we discussed promising research directions as well
as lessons learned for interested researchers.

ACKNOWLEDGMENTS

This work is partially supported by US National Science Foundation (NSF) under the grant numbers NSF-
CNS-1718116 and NSF-CAREER-CNS-1453647. Mauro Conti is supported by a Marie Curie Fellowship
funded by the European Commission (agreement PCIG11-GA-2012-321980). This work is also partially
supported by the EU TagItSmart! Project (agreement H2020-ICT30-2015-688061), the EU-India REACH
Project (agreement ICI+/2014/342-896), by the project CNR-MOST/Taiwan 2016-17 “Verifiable Data Struc-
ture Streaming", the grant n. 2017-166478 (3696) from Cisco University Research Program Fund and Silicon
Valley Community Foundation, and by the grant "Scalable IoT Management and Key security aspects in 5G
systems" from Intel. The statements made herein are solely the responsibility of the authors.

References
Nitesh Aggarwal, Cp Gupta, and Iti Sharma. 2014. Fully Homomorphic symmetric scheme without boot-

strapping. In Cloud Computing and Internet of Things (CCIOT), 2014 International Conference on.
IEEE, 14–17.

Carlos Aguilar-Melchor, Simon Fau, Caroline Fontaine, Guy Gogniat, and Renaud Sirdey. 2013. Recent
advances in homomorphic encryption: A possible future for signal processing in the encrypted domain.
Signal Processing Magazine, IEEE 30, 2 (2013), 108–117.

S Sobitha Ahila and KL Shunmuganathan. 2014. State Of Art in Homomorphic Encryption Schemes. Inter-
national Journal of Engineering Research and Applications 4, 2 (2014), 37–43.

Miklós Ajtai. 1996. Generating hard instances of lattice problems. In Proceedings of the twenty-eighth annual
ACM symposium on Theory of computing. ACM, 99–108.

Mufutau Akinwande. 2009. Advances in Homomorphic Cryptosystems. J. UCS 15, 3 (2009), 506–522.
Martin Albrecht, Shi Bai, and Léo Ducas. 2016. A subfield lattice attack on overstretched NTRU assump-

tions. In Annual Cryptology Conference. Springer, 153–178.
Martin Albrecht, Pooya Farshim, Jean-Charles Faugere, and Ludovic Perret. 2011. Polly cracker, revisited.

Advances in Cryptology–ASIACRYPT 2011 (2011), 179–196.
Martin R Albrecht. 2017. On dual lattice attacks against small-secret LWE and parameter choices in HE-

lib and SEAL. In Annual International Conference on the Theory and Applications of Cryptographic
Techniques. Springer, 103–129.

Martin R Albrecht, Christian Rechberger, Thomas Schneider, Tyge Tiessen, and Michael Zohner. 2015. Ci-
phers for MPC and FHE. In Annual International Conference on the Theory and Applications of Crypto-
graphic Techniques. Springer, 430–454.

Jacob Alperin-Sheriff and Chris Peikert. 2013. Practical bootstrapping in quasilinear time. In Advances in
Cryptology–CRYPTO 2013. Springer, 1–20.

Jacob Alperin-Sheriff and Chris Peikert. 2014. Faster bootstrapping with polynomial error. In Advances in
Cryptology–CRYPTO 2014. Springer, 297–314.

Frederik Armknecht, Colin Boyd, Christopher Carr, Kristian Gjøsteen, Angela Jäschke, Christian A Reuter,
and Martin Strand. 2015. A Guide to Fully Homomorphic Encryption. IACR Cryptology ePrint Archive
2015 (2015), 1192.

A Survey on Homomorphic Encryption Schemes:Theory and Implementation 1:29

Frederik Armknecht, Stefan Katzenbeisser, and Andreas Peter. 2013. Group homomorphic encryption: char-
acterizations, impossibility results, and applications. Designs, codes and cryptography 67, 2 (2013), 209–
232.

Josh Benaloh. 1994. Dense probabilistic encryption. In Proceedings of the workshop on selected areas of
cryptography. 120–128.

Josh Daniel Cohen Benaloh. 1987. Verifiable secret-ballot elections. Yale University. Department of Com-
puter Science.

Dan Boneh, Eu-Jin Goh, and Kobbi Nissim. 2005. Evaluating 2-DNF formulas on ciphertexts. In Theory of
cryptography. Springer, 325–341.

Joppe W Bos, Kristin Lauter, Jake Loftus, and Michael Naehrig. 2013. Improved security for a ring-based
fully homomorphic encryption scheme. In Cryptography and Coding. Springer, 45–64.

Zvika Brakerski. 2012. Fully homomorphic encryption without modulus switching from classical GapSVP.
In Advances in Cryptology–CRYPTO 2012. Springer, 868–886.

Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. 2011. Fully Homomorphic Encryption without
Bootstrapping. Cryptology ePrint Archive, Report 2011/277. (2011). http://eprint.iacr.org/.

Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. 2014. (Leveled) Fully Homomorphic Encryp-
tion Without Bootstrapping. ACM Trans. Comput. Theory 6, 3, Article 13 (July 2014), 36 pages.
DOI:http://dx.doi.org/10.1145/2633600

Zvika Brakerski and Vinod Vaikuntanathan. 2011. Fully homomorphic encryption from ring-LWE and se-
curity for key dependent messages. In Advances in Cryptology–CRYPTO 2011. Springer, 505–524.

Zvika Brakerski and Vinod Vaikuntanathan. 2014a. Efficient fully homomorphic encryption from (standard)
LWE. SIAM J. Comput. 43, 2 (2014), 831–871.

Zvika Brakerski and Vinod Vaikuntanathan. 2014b. Lattice-based FHE as secure as PKE. In Proceedings of
the 5th conference on Innovations in theoretical computer science. ACM, 1–12.

Xiaolin Cao, Ciara Moore, Máire O’Neill, Elizabeth O’Sullivan, and Neil Hanley. 2013. Accelerating Fully
Homomorphic Encryption over the Integers with Super-size Hardware Multiplier and Modular Reduc-
tion. IACR Cryptology ePrint Archive 2013 (2013), 616.

Xiaolin Cao, Ciara Moore, Máire O’Neill, Neil Hanley, and Elizabeth O’Sullivan. 2014. High-speed fully
homomorphic encryption over the integers. In Financial Cryptography and Data Security. Springer,
169–180.

Henry Carter, Benjamin Mood, Patrick Traynor, and Kevin Butler. 2013. Secure outsourced garbled circuit
evaluation for mobile devices. Journal of Computer Security Preprint (2013), 1–44.

Henry Carter, Benjamin Mood, Patrick Traynor, and Kevin Butler. 2015. Outsourcing secure two-party
computation as a black box. In Cryptology and Network Security. Springer, 214–222.

Donald Donglong Chen, Nele Mentens, Frederik Vercauteren, Sujoy Sinha Roy, Ray CC Cheung, Derek
Pao, and Ingrid Verbauwhede. 2015. High-speed polynomial multiplication architecture for ring-LWE
and SHE cryptosystems. Circuits and Systems I: Regular Papers, IEEE Transactions on 62, 1 (2015),
157–166.

Hao Chen, Kim Laine, and Rachel Player. 2017. Simple Encrypted Arithmetic Library. https://
www.microsoft.com/en-us/research/wp-content/uploads/2017/06/sealmanual_v2.2.pdf. (2017). Accessed
at September, 2017.

Liquan Chen, Hongmei Ben, and Jie Huang. 2014. An Encryption Depth Optimization Scheme for Fully
Homomorphic Encryption. In Identification, Information and Knowledge in the Internet of Things (IIKI),
2014 International Conference on. IEEE, 137–141.

Yuanmi Chen and Phong Q Nguyen. 2012. Faster algorithms for approximate common divisors: Breaking
fully-homomorphic-encryption challenges over the integers. In Advances in Cryptology–EUROCRYPT
2012. Springer, 502–519.

Zhigang Chen, Jian Wang, ZengNian Zhang, and Song Xinxia. 2014. A fully homomorphic encryption scheme
with better key size. Communications, China 11, 9 (2014), 82–92.

Jung Hee Cheon, Jean-Sébastien Coron, Jinsu Kim, Moon Sung Lee, Tancrède Lepoint, Mehdi Tibouchi, and
Aaram Yun. 2013. Batch fully homomorphic encryption over the integers. In Advances in Cryptology–
EUROCRYPT 2013. Springer, 315–335.

Jung Hee Cheon, Hyunsook Hong, Moon Sung Lee, and Hansol Ryu. 2016. The polynomial approximate
common divisor problem and its application to the fully homomorphic encryption. Information Sciences
326 (2016), 41–58.

Jung Hee Cheon, Andrey Kim, Miran Kim, and Yongsoo Song. 2016. Homomorphic Encryption for Arith-
metic of Approximate Numbers (HEANN). https://github.com/kimandrik/HEAAN. (2016). Accessed at
September, 2017.

1:30 A. Acar et al.

Jung Hee Cheon, Woo-Hwan Kim, and Hyun Soo Nam. 2006. Known-plaintext cryptanalysis of the Domingo-
Ferrer algebraic privacy homomorphism scheme. Inform. Process. Lett. 97, 3 (2006), 118–123.

Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène. 2016. Faster fully homomorphic
encryption: Bootstrapping in less than 0.1 seconds. In Advances in Cryptology–ASIACRYPT 2016: 22nd
International Conference on the Theory and Application of Cryptology and Information Security, Hanoi,
Vietnam, December 4-8, 2016, Proceedings, Part I 22. Springer, 3–33.

Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène. 2017. TFHE: Fast Fully Homo-
morphic Encryption Library over the Torus. https://github.com/tfhe/tfhe. (2017). Accessed at September,
2017.

Su-Jeong Choi, Simon R Blackburn, and Peter R Wild. 2007. Cryptanalysis of a homomorphic public-key
cryptosystem over a finite group. Journal of Mathematical Cryptology 1, 4 (2007), 351.

Ashish Choudhury, Jake Loftus, Emmanuela Orsini, Arpita Patra, and Nigel P Smart. 2013. Between a
Rock and a Hard Place: Interpolating between MPC and FHE. In Advances in Cryptology-ASIACRYPT
2013. Springer, 221–240.

Michael Clear and Ciarán McGoldrick. 2014. Bootstrappable identity-based fully homomorphic encryption.
In Cryptology and Network Security. Springer, 1–19.

Michael Clear and Ciarán McGoldrick. 2015. Multi-identity and multi-key leveled FHE from learning with
errors. In Annual Cryptology Conference. Springer, 630–656.

Michael Clear and Ciarán McGoldrick. 2016. Attribute-based fully homomorphic encryption with a bounded
number of inputs. In International Conference on Cryptology in Africa. Springer, 307–324.

Jean-Sébastien Coron, Tancrède Lepoint, and Mehdi Tibouchi. 2013. Batch Fully Homomorphic Encryption
over the Integers. Cryptology ePrint Archive, Report 2013/036. (2013). http://eprint.iacr.org/.

Jean-Sébastien Coron, Tancrède Lepoint, and Mehdi Tibouchi. 2014. Scale-invariant fully homomorphic
encryption over the integers. In Public-Key Cryptography–PKC 2014. Springer, 311–328.

Jean-Sébastien Coron, Avradip Mandal, David Naccache, and Mehdi Tibouchi. 2011. Fully homomorphic en-
cryption over the integers with shorter public keys. In Advances in Cryptology–CRYPTO 2011. Springer,
487–504.

Jean-Sébastien Coron, David Naccache, and Mehdi Tibouchi. 2012. Public key compression and modulus
switching for fully homomorphic encryption over the integers. In Advances in Cryptology–EUROCRYPT
2012. Springer, 446–464.

David Bruce Cousins, John Golusky, Kurt Rohloff, and Daniel Sumorok. 2014. An FPGA co-processor imple-
mentation of Homomorphic Encryption. In High Performance Extreme Computing Conference (HPEC),
2014 IEEE. IEEE, 1–6.

David Bruce Cousins, Kathrin Rohloff, Chris Peikert, and Richard Schantz. 2012. An update on SIPHER
(scalable implementation of primitives for homomorphic encryption)—FPGA implementation using
Simulink. In High Performance Extreme Computing (HPEC), 2012 IEEE Conference on. IEEE, 1–5.

Ronald Cramer, Rosario Gennaro, and Berry Schoenmakers. 1997. A secure and optimally efficient multi-
authority election scheme. Transactions on Emerging Telecommunications Technologies 8, 5 (1997), 481–
490.

Wei Dai, Yarkın Doröz, and Berk Sunar. 2014. Accelerating NTRU based homomorphic encryption using
GPUs. In High Performance Extreme Computing Conference (HPEC), 2014 IEEE. IEEE, 1–6.

Wei Dai, Yarkın Doröz, and Berk Sunar. 2015. Accelerating swhe based pirs using gpus. In International
Conference on Financial Cryptography and Data Security. Springer, 160–171.

Wei Dai, Yarkın Doröz, and Berk Sunar. 2017. cuHE: Homomorphic and fast. https://github.com/vernamlab/
cuHE. (2017). Accessed at September, 2017.

Ivan Damgård and Mads Jurik. 2001. A generalisation, a simpli. cation and some applications of paillier’s
probabilistic public-key system. In Public Key Cryptography. Springer, 119–136.

Ivan Damgård, Valerio Pastro, Nigel Smart, and Sarah Zakarias. 2012. Multiparty computation from some-
what homomorphic encryption. In Advances in Cryptology–CRYPTO 2012. Springer, 643–662.

Ivan Damgård, Antigoni Polychroniadou, and Vanishree Rao. 2016. Adaptively secure multi-party computa-
tion from lwe (via equivocal fhe). In Public-Key Cryptography–PKC 2016. Springer, 208–233.

Whitfield Diffie and Martin E Hellman. 1976. New directions in cryptography. Information Theory, IEEE
Transactions on 22, 6 (1976), 644–654.

Josep Domingo-Ferrer. 2002. A provably secure additive and multiplicative privacy homomorphism*. In
Information security. Springer, 471–483.

Yarkın Doröz, Yin Hu, and Berk Sunar. 2014. Homomorphic AES Evaluation using NTRU. IACR Cryptology
ePrint Archive 2014 (2014), 39.

A Survey on Homomorphic Encryption Schemes:Theory and Implementation 1:31

Yarkın Doröz, Erdinç Öztürk, Erkay Savaş, and Berk Sunar. 2015b. Accelerating LTV Based Homomorphic
Encryption in Reconfigurable Hardware. In Cryptographic Hardware and Embedded Systems–CHES
2015. Springer, 185–204.

Yarkın Doröz, Erdinç Öztürk, and Berk Sunar. 2013. Evaluating the hardware performance of a million-bit
multiplier. In Digital System Design (DSD), 2013 Euromicro Conference on. IEEE, 955–962.

Yarkın Doröz, Erdinç Öztürk, and Berk Sunar. 2015a. Accelerating fully homomorphic encryption in hard-
ware. IEEE Trans. Comput. 64, 6 (2015), 1509–1521.

Yarkın Doröz, Aria Shahverdi, Thomas Eisenbarth, and Berk Sunar. 2014. Toward practical homomorphic
evaluation of block ciphers using prince. In Financial Cryptography and Data Security. Springer, 208–
220.

Yarkin Doröz and Berk Sunar. 2016. Flattening NTRU for Evaluation Key Free Homomorphic Encryption.
IACR Cryptology ePrint Archive 2016 (2016), 315.

Léo Ducas and Daniele Micciancio. 2014. A Fully Homomorphic Encryption library. https://github.com/
lducas/FHEW. (2014). Accessed at December, 2015.

Léo Ducas and Daniele Micciancio. 2015. FHEW: Bootstrapping Homomorphic Encryption in less than a
second. In Advances in Cryptology–EUROCRYPT 2015. Springer, 617–640.

Taher ElGamal. 1985. A public key cryptosystem and a signature scheme based on discrete logarithms. In
Advances in cryptology. Springer, 10–18.

Junfeng Fan and Frederik Vercauteren. 2012a. Somewhat Practical Fully Homomorphic Encryption. IACR
Cryptology ePrint Archive 2012 (2012), 144.

Junfeng Fan and Frederik Vercauteren. 2012b. Somewhat Practical Fully Homomorphic Encryption. Cryp-
tology ePrint Archive, Report 2012/144. (2012). http://eprint.iacr.org/2012/144.

Michael Fellows and Neal Koblitz. 1994. Combinatorial cryptosystems galore! Contemp. Math. 168 (1994),
51–51.

Caroline Fontaine and Fabien Galand. 2007. A survey of homomorphic encryption for nonspecialists.
EURASIP Journal on Information Security 2007 (2007), 15.

Matteo Frigo and Steven G. Johnson. 2005. The Design and Implementation of FFTW3. Proc. IEEE 93, 2
(2005), 216–231. Special issue on “Program Generation, Optimization, and Platform Adaptation”.

Steven D Galbraith. 2002. Elliptic curve Paillier schemes. Journal of Cryptology 15, 2 (2002), 129–138.
Steven D Galbraith, Shishay W Gebregiyorgis, and Sean Murphy. 2016. Algorithms for the approximate

common divisor problem. LMS Journal of Computation and Mathematics 19, A (2016), 58–72.
Craig Gentry. 2009. A fully homomorphic encryption scheme. Ph.D. Dissertation. Stanford University.
Craig Gentry. 2010. Toward basing fully homomorphic encryption on worst-case hardness. In Advances in

Cryptology–CRYPTO 2010. Springer, 116–137.
Craig Gentry. 2012. personal communication. (2012).
Craig Gentry. 2014. Computing on the edge of chaos: Structure and randomness in encrypted computation.

In Electronic Colloquium on Computational Complexity (ECCC), Vol. 21. 106.
Craig Gentry and Shai Halevi. 2011. Implementing Gentry’s fully-homomorphic encryption scheme. In Ad-

vances in Cryptology–EUROCRYPT 2011. Springer, 129–148.
Craig Gentry, Shai Halevi, Chris Peikert, and Nigel P Smart. 2012. Ring switching in BGV-style homomor-

phic encryption. In Security and Cryptography for Networks. Springer, 19–37.
Craig Gentry, Shai Halevi, and Nigel P Smart. 2012. Homomorphic evaluation of the AES circuit. In Ad-

vances in Cryptology–CRYPTO 2012. Springer, 850–867.
Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan. 2010. A simple BGN-type cryptosystem from LWE.

In Advances in Cryptology–EUROCRYPT 2010. Springer, 506–522.
Craig Gentry, Amit Sahai, and Brent Waters. 2013. Homomorphic encryption from learning with er-

rors: Conceptually-simpler, asymptotically-faster, attribute-based. In Advances in Cryptology–CRYPTO
2013. Springer, 75–92.

Kristian Gjøsteen. 2004. Subgroup membership problems and public key cryptosystems. (2004).
Oded Goldreich, Shafi Goldwasser, and Shai Halevi. 1997. Public-key cryptosystems from lattice reduction

problems. In Advances in Cryptology—CRYPTO’97. Springer, 112–131.
Shafi Goldwasser and Silvio Micali. 1982. Probabilistic encryption & how to play mental poker keeping

secret all partial information. In Proceedings of the fourteenth annual ACM symposium on Theory of
computing. ACM, 365–377.

Dima Grigoriev and Ilia Ponomarenko. 2006. Homomorphic public-key cryptosystems and encrypting
boolean circuits. Applicable Algebra in Engineering, Communication and Computing 17, 3-4 (2006),
239–255.

1:32 A. Acar et al.

Shai Halevi and Nalini K. Ratha. 2011. Public Challenges for Fully-Homomorphic Encryption. http:
//researcher.watson.ibm.com/researcher/view_group.php?id=1548. (2011). Accessed at March, 2016.

Shai Halevi and Victor Shoup. 2013a. Design and implementation of a homomorphic-encryption library. IBM
Research (Manuscript) (2013).

Shai Halevi and Victor Shoup. 2013b. An Implementation of homomorphic encryption. https://github.com/
shaih/HElib. (2013). Accessed at December, 2015.

Shai Halevi and Victor Shoup. 2014. Algorithms in helib. In Advances in Cryptology–CRYPTO 2014.
Springer, 554–571.

Shai Halevi and Victor Shoup. 2015. Bootstrapping for helib. In Advances in Cryptology–EUROCRYPT 2015.
Springer, 641–670.

Jeffrey Hoffstein, Jill Pipher, and Joseph H Silverman. 1998. NTRU: A ring-based public key cryptosystem.
In Algorithmic number theory. Springer, 267–288.

Jeffrey Hoffstein, Jill Pipher, Joseph H Silverman, and Joseph H Silverman. 2008. An introduction to math-
ematical cryptography. Vol. 1. Springer.

Darko Hrestak and Stjepan Picek. 2014. Homomorphic encryption in the cloud. In Information and Com-
munication Technology, Electronics and Microelectronics (MIPRO), 2014 37th International Convention
on. IEEE, 1400–1404.

Josep Domingo i Ferrer. 1996. A new privacy homomorphism and applications. Inform. Process. Lett. 60, 5
(1996), 277–282.

Yuval Ishai and Anat Paskin. 2007. Evaluating branching programs on encrypted data. In Theory of Cryp-
tography. Springer, 575–594.

Tibor Jager. 2012. The Generic Composite Residuosity Problem. Vieweg+Teubner Verlag, Wiesbaden, 49–56.
DOI:http://dx.doi.org/10.1007/978-3-8348-1990-1_5

Burt Kaliski. 2005. Quadratic Residuosity Problem. Springer US, Boston, MA, 493–493.
DOI:http://dx.doi.org/10.1007/0-387-23483-7_336

Akinori Kawachi, Keisuke Tanaka, and Keita Xagawa. 2007. Multi-bit cryptosystems based on lattice prob-
lems. In Public Key Cryptography–PKC 2007. Springer, 315–329.

S McCURLEY Kevin. 1990. The discrete logarithm problem. Cryptology and computational number theory
42 (1990), 49.

Jinsu Kim, Moon Sung Lee, Aaram Yun, and Jung Hee Cheon. 2013. CRT-based Fully Homomorphic En-
cryption over the Integers. IACR Cryptology ePrint Archive 2013 (2013), 57.

Eyal Kushilevitz and Rafail Ostrovsky. 1997. Replication is not needed: Single database, computationally-
private information retrieval. In focs. IEEE, 364.

Kim Laine, Hao Chen, and Rachel Player. 2017. Simple Encrypted Arithmetic Library. https://sealcrypto.
codeplex.com/. (2017). Accessed at September, 2017.

Van-Ly Le. 2003. Polly two-a public key cryptosystem based on Polly cracker. Ph.D. Dissertation. Ruhr Uni-
versity Bochum, Germany.

Moon Sung Lee. 2011. On the sparse subset sum problem from Gentry-Halevi’s implementation of fully
homomorphic encryption. IACR Cryptology ePrint Archive 2011 (2011), 567.

Moon Sung Lee, Yongje Lee, Jung Hee Cheon, and Yunheung Paek. 2015. Accelerating bootstrapping in
FHEW using GPUs. In Application-specific Systems, Architectures and Processors (ASAP), 2015 IEEE
26th International Conference on. IEEE, 128–135.

Arjen Klaas Lenstra, Hendrik Willem Lenstra, and László Lovász. 1982. Factoring polynomials with rational
coefficients. Math. Ann. 261, 4 (1982), 515–534.

Tancrède Lepoint and Michael Naehrig. 2014. A comparison of the homomorphic encryption schemes FV
and YASHE. In Progress in Cryptology–AFRICACRYPT 2014. Springer, 318–335.

Françoise Levy-dit Vehel, Maria Grazia Marinari, Ludovic Perret, and Carlo Traverso. 2009. A survey on
Polly Cracker systems. Gröbner Bases, Coding, and Cryptography (2009), 285–305.

Françoise Levy-dit Vehel and Ludovic Perret. 2004. A Polly Cracker system based on satisfiability. Coding,
Cryptography and Combinatorics (2004), 177–192.

Henry George Liddell and Robert Scott. 1896. An intermediate Greek-English lexicon: founded upon the
seventh edition of Liddell and Scott’s Greek-English lexicon. Harper & Brothers.

Bingxin Liu and Huapeng Wu. 2015. Efficient architecture and implementation for NTRUEncrypt system.
In Circuits and Systems (MWSCAS), 2015 IEEE 58th International Midwest Symposium on. IEEE, 1–4.

Dongxi Liu. 2015. Practical Fully Homomorphic Encryption without Noise Reduction. IACR Cryptology
ePrint Archive 2015 (2015), 468.

Jake Loftus, Alexander May, Nigel P Smart, and Frederik Vercauteren. 2011. On CCA-secure somewhat
homomorphic encryption. In Selected Areas in Cryptography. Springer, 55–72.

A Survey on Homomorphic Encryption Schemes:Theory and Implementation 1:33

Adriana López-Alt, Eran Tromer, and Vinod Vaikuntanathan. 2012. On-the-fly multiparty computation on
the cloud via multikey fully homomorphic encryption. In Proceedings of the forty-fourth annual ACM
symposium on Theory of computing. ACM, 1219–1234.

Fujitsu Laboratories Ltd. 2013. Fujitsu Develops World’s First Homomorphic Encryption Technology that
Enables Statistical Calculations and Biometric Authentication. http://www.fujitsu.com/global/about/
resources/news/press-releases/2013/0828-01.html. (2013). press release dated August 5, 2013.

Vadim Lyubashevsky, Chris Peikert, and Oded Regev. 2013. On ideal lattices and learning with errors over
rings. Journal of the ACM (JACM) 60, 6 (2013), 43.

DS Malik, John N Mordeson, and MK Sen. 2007. MTH 581-582 Introduction to Abstract Algebra.
Robert McMillan. 2013. Apple Finally Reveals How Long Siri Keeps Your Data. (April 2013). http://www.

wired.com/2013/04/siri-two-years/
Carlos Aguilar Melchor, Guilhem Castagnos, and Philippe Gaborit. 2008. Lattice-based homomorphic en-

cryption of vector spaces. In Information Theory, 2008. ISIT 2008. IEEE International Symposium on.
IEEE, 1858–1862.

Carlos Aguilar Melchor, Philippe Gaborit, and Javier Herranz. 2010. Additively homomorphic encryption
with d-operand multiplications. In Advances in Cryptology–CRYPTO 2010. Springer, 138–154.

Silvia Mella and Ruggero Susella. 2013. On the homomorphic computation of symmetric cryptographic prim-
itives. In Cryptography and Coding. Springer, 28–44.

Daniele Micciancio and Oded Regev. 2009. Lattice-based cryptography. In Post-quantum cryptography.
Springer, 147–191.

Michal Mikuš. 2012. Experiments with the Plaintext Space in Gentry’S Somewhat Homomorphic Scheme.
Tatra Mountains Mathematical Publications 53, 1 (2012), 147–154.

Hermann Minkowski. 1968. Geometrie der zahlen. Vol. 40.
Peter L Montgomery. 1994. A survey of modern integer factorization algorithms. CWI quarterly 7, 4 (1994),

337–366.
Benjamin Mood, Debayan Gupta, Kevin Butler, and Joan Feigenbaum. 2014. Reuse it or lose it: More effi-

cient secure computation through reuse of encrypted values. In Proceedings of the 2014 ACM SIGSAC
Conference on Computer and Communications Security. ACM, 582–596.

Ciara Moore, Neil Hanley, John McAllister, Máire O’Neill, Elizabeth O’Sullivan, and Xiaolin Cao. 2013. Tar-
geting FPGA DSP slices for a large integer multiplier for integer based FHE. In Financial Cryptography
and Data Security. Springer, 226–237.

Ciara Moore, Maire O’Neill, Neil Hanley, and Elizabeth O’Sullivan. 2014a. Accelerating integer-based fully
homomorphic encryption using Comba multiplication. In Signal Processing Systems (SiPS), 2014 IEEE
Workshop on. IEEE, 1–6.

Ciara Moore, Maire O’Neill, Elizabeth O’Sullivan, Yarkın Doröz, and Berk Sunar. 2014b. Practical homo-
morphic encryption: A survey. In Circuits and Systems (ISCAS), 2014 IEEE International Symposium
on. IEEE, 2792–2795.

Gary L Mullen and Peter Jau-Shyong Shiue. 1994. Finite fields: theory, applications, and algorithms. Vol.
168. American Mathematical Soc.

David Naccache and Jacques Stern. 1998. A new public key cryptosystem based on higher residues. In
Proceedings of the 5th ACM conference on Computer and communications security. ACM, 59–66.

Michael Naehrig, Kristin Lauter, and Vinod Vaikuntanathan. 2011. Can homomorphic encryption be prac-
tical?. In Proceedings of the 3rd ACM workshop on Cloud computing security workshop. ACM, 113–124.

Koji Nuida. 2014. A Simple Framework for Noise-Free Construction of Fully Homomorphic Encryption from
a Special Class of Non-Commutative Groups. IACR Cryptology ePrint Archive 2014 (2014), 97.

Koji Nuida and Kaoru Kurosawa. 2015. (Batch) Fully Homomorphic Encryption over Integers for Non-
Binary Message Spaces. In Advances in Cryptology–EUROCRYPT 2015. Springer, 537–555.

Naoki Ogura, Go Yamamoto, Tetsutaro Kobayashi, and Shigenori Uchiyama. 2010. An improvement of key
generation algorithm for Gentry’s homomorphic encryption scheme. In Advances in Information and
Computer Security. Springer, 70–83.

Tatsuaki Okamoto and Shigenori Uchiyama. 1998. A new public-key cryptosystem as secure as factoring. In
Advances in Cryptology—EUROCRYPT’98. Springer, 308–318.

E Öztürk, Yarkın Doröz, Berk Sunar, and E Savaş. 2015. Accelerating somewhat homomorphic evaluation
using FPGAs. Technical Report. Cryptology ePrint Archive, Report 2015/294.

Pascal Paillier. 1999. Public-key cryptosystems based on composite degree residuosity classes. In Advances
in cryptology—EUROCRYPT’99. Springer, 223–238.

Payal V Parmar, Shraddha B Padhar, Shafika N Patel, Niyatee I Bhatt, and Rutvij H Jhaveri. 2014. Sur-
vey of Various Homomorphic Encryption algorithms and Schemes. International Journal of Computer
Applications 91, 8 (2014).

1:34 A. Acar et al.

Chris Peikert. 2015. A decade of lattice cryptography. Technical Report. Cryptology ePrint Archive, Report
2015/939.

Henning Perl, Michael Brenner, and Matthew Smith. 2011a. An Implementation of the Fully Homomor-
phic Smart-Vercauteren Cryptosystem. https://github.com/hcrypt-project/libScarab. (2011). Accessed at
December, 2015.

Henning Perl, Michael Brenner, and Matthew Smith. 2011b. Poster: an implementation of the fully homo-
morphic Smart-Vercauteren crypto-system. In Proceedings of the 18th ACM conference on Computer and
communications security. ACM, 837–840.

Pedro Silveira Pisa, Michel Abdalla, and Otto Carlos Duarte. 2012. Somewhat homomorphic encryption
scheme for arithmetic operations on large integers. In Global Information Infrastructure and Network-
ing Symposium (GIIS), 2012. IEEE, 1–8.

Thomas Pöppelmann, Michael Naehrig, Andrew Putnam, and Adrian Macias. 2015. Accelerating Homomor-
phic Evaluation on Reconfigurable Hardware. In Cryptographic Hardware and Embedded Systems–
CHES 2015. Springer, 143–163.

Sriram N Premnath and Zygmunt J Haas. 2014. A practical, secure, and verifiable cloud computing for
mobile systems. Procedia Computer Science 34 (2014), 474–483.

Y Govinda Ramaiah and G Vijaya Kumari. 2012a. Efficient public key homomorphic encryption over integer
plaintexts. In Information Security and Intelligence Control (ISIC), 2012 International Conference on.
IEEE, 123–128.

Y Govinda Ramaiah and G Vijaya Kumari. 2012b. Towards Practical Homomorphic Encryption with Effi-
cient Public key Generation. International Journal on Network Security 3, 4 (2012), 10.

Oded Regev. 2006. Lattice-based cryptography. In Advances in Cryptology-CRYPTO 2006. Springer, 131–
141.

Oded Regev. 2009. On lattices, learning with errors, random linear codes, and cryptography. Journal of the
ACM (JACM) 56, 6 (2009), 34.

Ronald L Rivest, Len Adleman, and Michael L Dertouzos. 1978a. On data banks and privacy homomor-
phisms. Foundations of secure computation 4, 11 (1978), 169–180.

Ronald L Rivest, Adi Shamir, and Len Adleman. 1978b. A method for obtaining digital signatures and
public-key cryptosystems. Commun. ACM 21, 2 (1978), 120–126.

Kurt Rohloff. 2017. The PALISADE Lattice Cryptography Library. https://git.njit.edu/palisade/PALISADE.
(2017). Accessed at September, 2017.

Kurt Rohloff and David Bruce Cousins. 2014. A scalable implementation of fully homomorphic encryption
built on NTRU. In Financial Cryptography and Data Security. Springer, 221–234.

Ron Rothblum. 2011. Homomorphic encryption: From private-key to public-key. In Theory of cryptography.
Springer, 219–234.

Sujoy Sinha Roy, Kimmo Järvinen, Frederik Vercauteren, Vassil Dimitrov, and Ingrid Verbauwhede. 2015.
Modular Hardware Architecture for Somewhat Homomorphic Function Evaluation. (2015).

T. Sander, A. Young, and M. Yung. 1999. Non-interactive cryptocomputing for NC1.
In Foundations of Computer Science, 1999. 40th Annual Symposium on. 554–566.
DOI:http://dx.doi.org/10.1109/SFFCS.1999.814630

Peter Scholl and Nigel P Smart. 2011. Improved key generation for Gentry’s fully homomorphic encryption
Scheme. In Cryptography and Coding. Springer, 10–22.

Jaydip Sen. 2013. Homomorphic Encryption: Theory & Applications. arXiv preprint arXiv:1305.5886 (2013).
Alice Silverberg. 2013. Fully homomorphic encryption for mathematicians. Women in Numbers 2: Research

Directions in Number Theory 606 (2013), 111.
N.P. Smart and F. Vercauteren. 2011. Fully Homomorphic SIMD Operations. Cryptology ePrint Archive,

Report 2011/133. (2011). http://eprint.iacr.org/.
Nigel P Smart and Frederik Vercauteren. 2010. Fully homomorphic encryption with relatively small key

and ciphertext sizes. In Public Key Cryptography–PKC 2010. Springer, 420–443.
Nigel P Smart and Frederik Vercauteren. 2014. Fully homomorphic SIMD operations. Designs, codes and

cryptography 71, 1 (2014), 57–81.
Damien Stehlé and Ron Steinfeld. 2010. Faster fully homomorphic encryption. In Advances in Cryptology-

ASIACRYPT 2010. Springer, 377–394.
Damien Stehlé and Ron Steinfeld. 2011. Making NTRU as secure as worst-case problems over ideal lattices.

In Advances in Cryptology–EUROCRYPT 2011. Springer, 27–47.
Rainer Steinwandt. 2010. A ciphertext-only attack on Polly Two. Applicable Algebra in Engineering, Com-

munication and Computing 21, 2 (2010), 85–92.
Rainer Steinwandt and Willi Geiselmann. 2002. Cryptanalysis of Polly cracker. Information Theory, IEEE

Transactions on 48, 11 (2002), 2990–2991.

A Survey on Homomorphic Encryption Schemes:Theory and Implementation 1:35

Zhou Tanping, Yang Xiaoyuan, Zhang Wei, and Wu Liqiang. 2015. Efficient Fully Homomorphic Encryption
with Circularly Secure Key Switching Process. a a 1 (2015), 1.

Vinod Vaikuntanathan. 2011. Computing blindfolded: New developments in fully homomorphic encryption.
In Foundations of Computer Science (FOCS), 2011 IEEE 52nd Annual Symposium on. IEEE, 5–16.

Marten Van Dijk, Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan. 2010. Fully homomorphic encryp-
tion over the integers. In Advances in cryptology–EUROCRYPT 2010. Springer, 24–43.

Le Van Ly. 2006. Polly Two: a new algebraic polynomial-based public-key scheme. Applicable Algebra in
Engineering, Communication and Computing 17, 3 (2006), 267–283.

David Wagner. 2003. Cryptanalysis of an algebraic privacy homomorphism. In Information Security.
Springer, 234–239.

Fuqun Wang, Kunpeng Wang, and Bao Li. 2015a. An Efficient Leveled Identity-Based FHE. In Network and
System Security. Springer, 303–315.

Fuqun Wang, Kunpeng Wang, and Bao Li. 2015b. LWE-based FHE with better parameters. In Advances in
Information and Computer Security. Springer, 175–192.

Wei Wang, Zhilu Chen, and Xinming Huang. 2014. Accelerating leveled fully homomorphic encryption using
GPU. In Circuits and Systems (ISCAS), 2014 IEEE International Symposium on. IEEE, 2800–2803.

Wei Wang, Yin Hu, Lianmu Chen, Xinming Huang, and Berk Sunar. 2015. Exploring the feasibility of fully
homomorphic encryption. Computers, IEEE Transactions on 64, 3 (2015), 698–706.

Wei Wang and Xinming Huang. 2013. FPGA implementation of a large-number multiplier for fully homo-
morphic encryption. In Circuits and Systems (ISCAS), 2013 IEEE International Symposium on. IEEE,
2589–2592.

Wei Wang, Xinming Huang, Niall Emmart, and Charles Weems. 2014. VLSI design of a large-number multi-
plier for fully homomorphic encryption. Very Large Scale Integration (VLSI) Systems, IEEE Transactions
on 22, 9 (2014), 1879–1887.

Yongge Wang. Notes on Two Fully Homomorphic Encryption Schemes Without Bootstrapping. Technical
Report. Cryptology ePrint Archive, Report 2015/519, 2015. http://eprint. iacr. org.

David J Wu. 2015. Fully homomorphic encryption: Cryptography’s holy grail. XRDS: Crossroads, The ACM
Magazine for Students 21, 3 (2015), 24–29.

Ting Wu, Hui Wang, and You-Ping Liu. 2012. Optimizations of Brakerski’s fully homomorphic encryption
scheme. In Computer Science and Network Technology (ICCSNT), 2012 2nd International Conference
on. IEEE, 2000–2005.

Masahiro Yagisawa. 2015. Fully Homomorphic Encryption without bootstrapping. IACR Cryptology ePrint
Archive 2015 (2015), 474.

Hao-Miao Yang, Qi Xia, Xiao-fen Wang, and Dian-hua Tang. 2012. A new somewhat homomorphic encryp-
tion scheme over integers. In Computer Distributed Control and Intelligent Environmental Monitoring
(CDCIEM), 2012 International Conference on. IEEE, 61–64.

Andrew Chi-Chih Yao. 1982. Protocols for secure computations. In FOCS, Vol. 82. 160–164.
Xiaojun Zhang, Chunxiang Xu, Chunhua Jin, Run Xie, and Jining Zhao. 2014. Efficient fully homomorphic

encryption from RLWE with an extension to a threshold encryption scheme. Future Generation Com-
puter Systems 36 (2014), 180–186.

Zhenfei Zhang. 2014. Revisiting fully homomorphic encryption schemes and their cryptographic primitives.
(2014).

Yuliang Zheng, Tsutomu Matsumoto, and Hideki Imai. 1988. Cryptographic Applications of th-Residuosity
Problem with an Odd Integer. (1988).

